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S U M M A R Y
Earth’s magnetic field is generated by processes in the electrically conducting, liquid outer
core, subsumed under the term ‘geodynamo’. In the last decades, great effort has been put
into the numerical simulation of core dynamics following from the magnetohydrodynamic
equations. However, the numerical simulations are far from Earth’s core in terms of several
control parameters. Different scaling analyses found simple scaling laws for quantities like
heat transport, flow velocity, magnetic field strength and magnetic dissipation time.

We use an extensive data set of 116 numerical dynamo models compiled by Christensen and
co-workers to analyse these scalings from a rigorous model selection point of view. Our method
of choice is leave-one-out cross-validation which rates models according to their predictive
abilities. In contrast to earlier results, we find that diffusive processes are not negligible for the
flow velocity and magnetic field strength in the numerical dynamos. Also the scaling of the
magnetic dissipation time turns out to be more complex than previously suggested. Assuming
that the processes relevant in the numerical models are the same as in Earth’s core, we use this
scaling to estimate an Ohmic dissipation of 3–8 TW for the core. This appears to be consistent
with recent high core–mantle boundary heat flux scenarios.

Key words: Numerical approximations and analysis; Dynamo: theories and simulations;
Magnetic field; Heat flow.

1 I N T RO D U C T I O N

The Earth’s magnetic field is generated by motions of an electri-
cally conducting fluid in the outer core, the bulk being liquid iron.
The processes include magnetic induction and are subsumed under
the term ‘geodynamo’. It is generally accepted that the fluid mo-
tions in the outer core, which are most important for maintaining
the geodynamo, are driven by convection, that is, by thermal and
compositional buoyancy forces (Olson 2007). There are, in gen-
eral, three ways to study the dynamics of the outer core. The first
builds on theoretical considerations like force balances and thermo-
dynamics (e.g. Jones 2011). Secondly, it is possible to model the
whole system numerically on the basis of the fundamental physical
equations. Finally, laboratory experiments analogue to the processes
proposed for the Earth’s core can help to determine certain aspects
of the dynamics. In this paper, we focus on the second approach.

An important part of the increase in knowledge about core dy-
namics in the last two decades came from numerical simulations of
the dynamo process. Starting from the first successful 3-D magneto-
hydrodynamic (MHD) self-sustained dynamo models of Glatzmaier
& Roberts (1995) and Kageyama & Sato (1995), numerical dynamo
simulations have been able to reproduce various features of the ge-
omagnetic field, such as field morphology, secular variations and
polarity reversals. The problem, however, remains how to apply
results from numerical simulations to the Earth.

A major challenge is the discrepancy between numerical models
and the core in terms of the non-dimensional parameters defined in
Table 1. Specifically, numerical dynamos have far too slow rotation
(Ekman number too large), are less turbulent (Rayleigh number too
small) and excessively viscous relative to their electrical conductiv-
ity (magnetic Prandtl number too large) compared to the core. This
gap cannot be bridged easily due to the enormous computational
power required to resolve all relevant time and length scales.

One way of using present-day numerical dynamo simulations to
estimate quantities that are relevant to Earth’s core (e.g. heat flux,
flow velocity and magnetic field strength) is to extract scaling laws
between these quantities and other characteristic parameters from
the data. Assuming that the relevant processes in the core are the
same as in our simulations, we may extrapolate the results to the
parameter regime of the core and in that way gain insight into the
processes in Earth’s core.

This has been done for various quantities. Important results were
the diffusivity-free scalings of heat transport, flow velocity and
magnetic field strength (Christensen & Aubert 2006) and simple
scalings for the magnetic dissipation time (Christensen & Tilgner
2004; Christensen 2010). The question arises, however, how com-
plex a model needs to be to do justice to the data.

We address the classical problem of model selection, where a
model is defined in terms of a number of parameters. On the one
hand, the paradigm of Occam prefers a model that is less complex
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Table 1. Non-dimensional parameters, their estimated values for Earth’s
core (following Olson 2007) and values in the models studied here. The first
four quantities are input parameters to the numerical simulations, the lower
ones are output parameters. U is a characteristic velocity; ν is kinematic
viscosity; k is thermal conductivity; κ is thermal diffusivity; α is thermal
expansivity; η = (μ0σ )−1 is magnetic diffusivity with σ , electrical conduc-
tivity; Q is heat flux; the remaining quantities are defined in the text. Note
that the thermal diffusivity κ and the electrical conductivity σ have recently
been revised. These ab initio calculations have increased the numerical val-
ues of κ and σ by roughly a factor of three (de Koker et al. 2012; Pozzo
et al. 2012). As a result, the non-dimensional parameters depending on those
quantities have been revised with respect to those given in Olson (2007). We
give the updated numbers for Pr, Pm and Rm.

Quantity Definition Earth’s core This study

Ekman Ek = ν/�D2 ∼3 · 10−14 10−6–10−3

Rayleigh Ra = αgo�TD3/νκ ∼1020±? 3 · 105–2.2 · 109

Prandtl Pr = ν/κ ∼0.1 0.1–10
Magnetic Prandtl Pm = ν/η ∼3 · 10−5 0.06–33.3

Nusselt Nu = QD/4πrorik�T ? 2.02–29.8
Magnetic Reynolds Rm = UD/η ∼2300 39–5695

over another that is more complex (when both fit the data equally
well), generally meaning that the former model contains the fewest
parameters of all models. However, what is often not recognized, and
is equally important, is that models with fewer parameters can have
greater predictive power than more complicated models. Physical
theories are not only validated by their fit to existing data, but even
more by their performance in predicting new data. A few words are
in order to motivate why this phenomenon is true.

We imagine a noisy data set with n points and fit it with p pa-
rameters; we begin by taking p = n to achieve a perfect fit to our
data. Because of noise, this model is extremely complex, containing
high-frequency oscillations (in the case of a function f (x) fitted to
points distributed in x). Imagine now receiving a new datum. The n
parameter model will have almost no predictive power for this new
datum, since it has fitted all of the noise in the data set from which
it was derived. Indeed, a far simpler model, with p � n will have
far greater predictive power. We use this principle by implement-
ing a procedure called ‘leave-one-out cross-validation’ (LOOCV),
where we systematically omit one of the data points and hold it in
reserve as a test point, against which different models can test their
predictive power. In this way, we evaluate the predictive power of
models, and find models based on an optimal number of parameters
that have the most predictive power.

The format of the paper is as follows: In Section 2, we present the
database used in our analysis. In Section 3, we illustrate the method
of cross-validation (CV) with a toy problem, before going on to
apply it to the dynamo problem at hand. Subsequently, we analyse
the scaling laws for heat transport, flow velocity and magnetic field
strength using diffusivity-free parameters (Section 4) and traditional
non-dimensional numbers (Section 5). Section 6 is concerned with
the scaling of magnetic dissipation time as well as the application
of the scalings to the core.

2 DY NA M O DATA S E T

2.1 Numerical dynamo simulations

In the numerical dynamo simulations used in this study, convection
is driven by a fixed superadiabatic temperature contrast �T between
inner and outer boundaries of a rotating spherical shell. Moreover

the Boussinesq approximation is used, that is, density variations
enter the equations only through a buoyancy term in the momentum
equation. The standard set of equations consists of five equations
describing conservation of momentum (Navier–Stokes equation),
magnetic induction, the transport of temperature and the solenoidal
nature of the magnetic field B and the velocity field u (cf. eqs 1–5).

These equations can be non-dimensionalized by introducing four
independent control parameters. Their choice is not unique. We fol-
low Christensen & Aubert (2006) and use the shell thickness D =
ro − ri of the outer core, the inverse rotation rate �−1 , the temper-
ature difference �T and the quantity (ρμ0)1/2�D as fundamental
scales for length, time, temperature and magnetic field, respectively;
ro is the outer core radius, ri the inner core radius, ρ density and
μ0 magnetic permeability. This leads to the following set of non-
dimensional equations for magnetic field B, fluid velocity u and
temperature T:

∂u

∂t
+ (u · ∇)u + 2(ẑ × u) + ∇� =

Ra Ek2 Pr−1 r

ro
T + (∇ × B) × B + Ek ∇2u, (1)

∂B

∂t
= ∇ × (u × B) + Ek Pm−1 ∇2B, (2)

∂T

∂t
+ (u · ∇)T = Ek Pr−1 ∇2T, (3)

∇ · B = 0, (4)

∇ · u = 0, (5)

where ẑ is the unit vector in the direction of the rotation axis. In these
equations, gravity is assumed to vary proportional to the radius,
go being the value of gravity at the outer boundary; volumetric
heating is neglected and � is the non-hydrostatic pressure. The four
non-dimensional parameters governing eqs (1)–(5) are defined in
Table 1.

For our analysis of scaling laws, we use a database of 185 numer-
ical dynamo models built over time by Christensen and co-workers.
Most of the models were previously reported in Christensen &
Aubert (2006) and Christensen et al. (2009), and studied in Chris-
tensen (2010) and King et al. (2010). The mechanical boundary
conditions are no-slip and the ratio between inner and outer core
radius is 0.35 as in Earth’s core. The inner core of the models is
insulating in some simulations and conducting in others. The exte-
rior of the shell is electrically insulating in all cases. We restrict our
analysis to this database, which is homogeneous in terms of model
setup and numerical method, to avoid unwanted effects of varying
too many control parameters in the scaling law selection.

2.2 Scaling laws and model setup

We seek to extract scaling laws from numerical solutions of the
MHD eqs (1)–(5) as explained in the Introduction. Under certain
conditions, these scaling laws may then be extrapolated to the more
extreme parameter range of Earth’s core. An example of a scaling
law is the classical heat transport (Nu − Ra) scaling in non-rotating,
plane-layer convection. The functional relationship between Nu and
Ra can be expressed as Nu ∼ Raβ with possibly different values of
β for different convective regimes (e.g. Aurnou 2007).
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Similarly, we follow the groundbreaking work of Christensen &
Aubert (2006) and others and restrict our scaling analysis to power
laws of the form

ŷ = α

p−1∏
j=1

x
β j
j . (6)

Observations are collected in y and are the output of the numerical
simulations; predictions ŷ in eq. (6) are calculated from xj, the inde-
pendent variables, which are mostly control parameters of the MHD
equations. The number of data (numerical dynamo simulations) and
thereby the size of ŷ is n; the total number of free parameters is p
consisting of the pre-factor α and (p − 1) exponents β j.

The task of fitting this functional form to given data can be
transformed to a linear problem by taking the logarithm

log ŷ = log α +
p−1∑
j=1

β j log x j . (7)

Our linear model includes the coefficients log α and β j. These
are fitted by multiple linear regression which minimizes the mean
quadratic misfit

χ 2 = 1

n

n∑
i=1

(
ζi − ζ̂i

σi

)2

, (8)

where we have defined ζ = log y for ease of notation. The contri-
bution of the different data points to χ 2 can be weighted by their
standard deviation σ i.

As another measure of misfit between data and fitted values, we
define the mean relative misfit to the original data y (not in log -
domain),

χrel =
√√√√ 1

n

n∑
i=1

(
yi − ŷi

yi

)2

, (9)

for comparability with Christensen & Aubert (2006).

2.3 Errors in the dependent variable

We seek to fit the linear model to observed values ζ , but, in doing so,
we face the question of what the appropriate attribution of errors for
these observations is. In principle, the numerical experiments are
perfect, and it may be our parametrized theory that is an imperfect
representation of the data. Obvious error sources are the limited
resolution of the models and the limited time averaging of fluctuat-
ing properties; but equally there may be errors in the observations
as a result of the simulations perhaps not achieving equilibrium, or
perhaps as a result of bistability and/or hysteresis in the non-linear
system (see, e.g. Simitev & Busse 2009). Two routes are available
to us: following Christensen & Aubert (2006), we can assume that
the errors are equal in ζ = log y, or we could alternatively assume
that the errors are equal in the original measured variable y. The
first hypothesis leads to the error σ ζ = c, where c is constant; one
can see, from a consideration of the perturbation δ(log y), that this
leads to δy/y = c, namely that the ‘percentage’ errors in the original
observations y are constant. Whether this is a good model remains
open. The second assumption, that there are constant errors σ y in
the original observations y, leads to

σζ = σy/y = σy/eζ , (10)

when the errors are small. In this model, the errors shrink dras-
tically when ζ is large. In the absence of definitive knowledge

concerning the errors, we choose to carry out fitting using both
attributions of error. In the following sections, we assume equal
errors in ζ . The results under the assumption of equal errors in the
original variable y are given in Appendix A. Considering the result-
ing error distributions, it is still not clear which error attribution is
appropriate.

2.4 Parameter range

For the extraction of scaling laws from the dynamo database, we only
use simulations that satisfy the following criteria (largely following
Christensen & Aubert 2006):

(1) The simulation must be fully convective as required by
Nu > 2.

(2) The generated magnetic field has to be dipole-dominated. As
a measure of dipolarity, we use f dip = Bdip/B12, the time-averaged
ratio of the mean dipole field strength to the field strength in har-
monic degrees 1–12 on the outer boundary. The condition for a
dipole-dominated field is taken as f dip > 0.35.

(3) The Prandtl number should not fall too far from the values
estimated for Earth’s core: Pr ≤ 10. (Models in the data set with
Pr > 10 are rather new and have not been used by any other study.)

Applying these restrictions to the data, we are left with 116 numer-
ical dynamo simulations. We also tested excluding the models with
the highest Ekman numbers, Ek = 10−3, as done in Christensen &
Aubert (2006). However, this hardly changed the result of our anal-
ysis. In Section 2.5, we will determine the effect of the requirements
on Nu, f dip and Pr.

The 116 numerical dynamo simulations contain 40 models
with an imposed two- or fourfold symmetry. We tested the ef-
fect of discarding those and found the same scaling laws as for
the full data set (Section 4), with the exponents just slightly
changed.

Fig. 1 shows the distribution of the control parameters Ra, Ek,
Pm and Pr as well as the output quantities Rm and Nu within
the 116 models used in the scaling law analysis. In general, the
distribution of the parameter values appears to be sufficiently uni-
form over some range to allow the extraction of scaling laws. Only
in the case of Pr, the values cluster at Pr = 1 with very few

Figure 1. Histograms of the values of the non-dimensional parameters in
the 116 simulations used in the scaling law analysis. All parameters apart
from Pr show a distribution that allows the extraction of scaling laws.
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Figure 2. Plot of Nu versus Ra for all 185 dynamo models of the database.
Colour indicates the value of Pr: dark blue Pr ≤ 0.1, light blue 0.1 < Pr < 1,
white Pr = 1, light red 1 < Pr < 10, dark red Pr ≥ 10. Crossed-out models
do not fulfil the criteria of Section 2.4. Note that the remaining 116 models
fall into the rapidly rotating regime.

differing values. Hence, the database is not favourable to elicit a Pr-
dependence. If we really were to apply the scaling laws to the Earth,
Pr fortunately is the number that requires the least extrapolation
(cf. Table 1).

2.5 Dynamic regime

Convective heat transfer can be separated into two regimes, the
rapidly rotating and the buoyancy-dominated regime (Aurnou
2007). In the rapidly rotating regime, the flow is largely two-
dimensionalized by the Taylor–Proudman theorem. For stronger
forcing, buoyancy breaks the columnar structure leading to 3-D
convective structures (King et al. 2009). The two regimes are char-
acterized by different heat transport efficiencies and different slopes
in a plot of Nu versus Ra.

Fig. 2 shows the quantities Nu versus Ra for the models in
our database. Crossed-out models are rejected by the criteria in
Section 2.4. Obviously, the majority of the 185 dynamo mod-
els falls into the rapidly rotating regime. By applying the cri-
teria on f dip and Pr, we throw out the models that are slightly
buoyancy-dominated or transitional. The criterion Nu > 2 would
appear not to make a great difference were it not applied. As
a result, we are left with 116 rapidly rotating models for our
analysis.

There have been attempts to classify geodynamo models ac-
cording to their Earth-likeness. Christensen et al. (2010) used four
criteria based on magnetic field morphology, namely relative axial
dipole power, equatorial symmetry, zonality and flux concentration.
They found that Earth-like dynamo models fall into a certain area
in the (Rm − Ekη) domain, where Ekη = Ek/Pm is the magnetic
Ekman number. Fig. 3 shows where the 116 dynamo models of this
study plot in terms of Ekη and Rm. According to the criteria of
Christensen et al. (2010), 61 of the models have a magnetic field
morphology that is Earth-like. We applied our scaling law analysis
also to this subset of the data. The resulting scaling laws are given
in Appendix B. They are very similar to the ones in Section 4 using
all 116 dynamo models.

Figure 3. Earth-likeness of the 116 dynamo models used in this study
according to the criteria of Christensen et al. (2010). Ekη = Ek/Pm is the
magnetic Ekman number. Models that exhibit an Earth-like magnetic field
morphology plot inside the area confined by the dashed line. Colour indicates
the value of Pm: dark blue Pm ≤ 0.1, light blue 0.1 < Pm < 1, white Pm =
1, light red 1 < Pm < 10, dark red Pm ≥ 10.

3 C RO S S - VA L I DAT I O N

3.1 Model selection

Extracting scaling laws from multivariate data is a model selection
problem, or more specifically, a variable subset selection problem.
In Section 2.2, we have defined the functional form of the scalings
of interest (eq. 6). The question now is which independent variables
xj, should be included in the linear model (eq. 7) to explain the
values of the dependent variable ŷ.

The solution to this problem is not trivial. Normally one wishes to
examine the discrepancy between theory and observation through a
quantity such as mean quadratic misfit χ 2 (eq. 8). In a linear prob-
lem, however, it is always possible to reach χ 2 = 0 with p ≤ n, the
number of free parameters less or equal to the number of data. Model
selection ideally avoids overfitting, so the model contains ‘just the
right’ (number of) independent variables in the sense that the model
accounts for the variability in the data but is not more complex than
required (Occam’s razor). In the Introduction, we explained how it
is possible for simpler models to have more predictive power than
complex ones, and this is the property we seek to exploit.

A variety of approaches exists in the areas of frequentist and
Bayesian statistics to tackle the task of model selection. An elegant
way of determining the required independent variables xj for a model
is CV. It is probably the simplest method for estimating prediction
error (Hastie et al. 2009). High predictive power, in turn, is certainly
a desirable property for a scaling law.

3.2 LOOCV

We use leave-one-out cross-validation (LOOCV) in our analysis.
One observation of the n data is set aside as a validation sample.
The parameters of the linear model, log α and β j, are estimated
(‘trained’) from the remaining (n − 1) data (training sample) by
minimizing mean quadratic misfit χ 2 (eq. 8). Then the model is val-
idated by applying it to the validation sample. This process is done
consecutively, setting aside a different part of the data and predicting
it from the remainder. The misfit between the validation data point
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and its prediction from the corresponding model is accumulated,
leading to the CV estimate of the prediction error

PCV = 1

n

n∑
i=1

(
yi − ŷ∗

i

σi

)2

, (11)

where the prediction ŷ∗
i has been obtained using the model that was

trained on all but the ith datum. The CV estimate of prediction error,
PCV, is calculated for models containing different combinations of
independent variables, xj. The favoured variable combination is the
one with minimum PCV. The parameters of the final scaling law are
trained on all n data.

Various other model selection methods such as Akaike’s informa-
tion criterion (AIC), Mallows’ Cp, the jackknife and the bootstrap,
are asymptotically equivalent to LOOCV (Stone 1977; Efron 1983).
A generalization of LOOCV is k-fold CV with k instead of n par-
titions. We experimented with different k. For the main purpose of
this paper, however, the resulting differences are minor.

3.3 Example: curve fitting

To illustrate the problem of model selection and how it can be solved
by LOOCV, we give a synthetic example from the domain of curve
fitting, which in this case also is a linear problem. Let us suppose
we are given noisy data y, and all we know is that the data come
from a model in the form of a Chebyshev expansion

y =
m∑

i=0

βi Ti (x) + ε, (12)

where Ti are Chebyshev polynomials and ε is the noise. Now, we
want to retrieve the underlying functional form and especially de-
termine the degree m of the underlying polynomial.

Fig. 4(a) shows 51 noisy data points that were created from a
Chebyshev polynomial of degree m = 4 by adding Gaussian noise
with standard deviation σ true = 0.1. The polynomial coefficients
are listed in Table 2. As in the applications later in this study, the
amplitudes of the contributions from different polynomial degrees
differ significantly.

Figure 4. Curve fitting, synthetic example. (a) Black crosses are 51 noisy
data that were created from a Chebyshev polynomial of degree m = 4 (black
line) by adding Gaussian noise with standard deviation σ = 0.1. The dashed
red curve is the final fitted polynomial. (b) Mean quadratic misfit χ2 for
polynomials of degrees 0–15. (c) LOOCV estimate of prediction error PCV

for the same polynomial degrees. χ2 is successively reduced by increasing
polynomial degree, whereas PCV is minimum for the true polynomial degree.
For numerical values, see Table 3.

Table 2. Curve fitting, synthetic
example. True polynomial coeffi-
cients β true used in the synthetic
example, and their multiple linear
regression estimates β̂.

Pol. degree β true β̂

0 1 1.0000
1 1 1.0335
2 0.5 0.4921
3 −0.2 −0.1590
4 −0.08 −0.0922

Table 3. Curve fitting, synthetic example.
Values of mean quadratic misfit χ2 and
LOOCV estimate of prediction error PCV

for polynomials of degrees m from 0 to 8
and 48 to 50, see also Figs 4(b) and (c). At
polynomial degree m = 50, the number of
free parameters equals the number of data,
p = n = 51. Minimum values are bold.

Pol. degree χ2 PCV

0 0.5624 0.5851
1 0.1324 0.1454
2 0.0234 0.0279
3 0.0131 0.0161
4 0.0094 0.0116
5 0.0093 0.0118
6 0.0091 0.0127
7 0.0088 0.0131
8 0.0088 0.0135
...

...
...

48 3.4620e-05 4.5578e+22
49 1.1865e-05 1.1348e+24
50 0 –

Fig. 4(b) gives the mean quadratic misfit χ 2 (eq. 8), assuming σ =
1 out of ignorance, for multiple linear regressions using polynomials
of degrees 0–15; the corresponding numerical values are given in
Table 3. The misfit χ 2 can, of course, be reduced successively by
using polynomials of higher degrees and falls to 0 for a polynomial
of degree 50, when p = n, the number of free parameters p equals
the number of unknowns n.

Fig. 4(c) shows the LOOCV estimate of prediction error PCV (eq.
11) for polynomials of degrees 0–15. The corresponding numerical
values in Table 3 show that minimum PCV is reached for polynomial
degree 4. LOOCV is also able to correctly identify the noise in the
data. For the correct degree 4 polynomial, the noise level is found
to be

√
χ 2 ≈ 0.097 (cf. Table 3). This value is better than for any

other polynomial degree, the true answer being σ true = 0.1.
The model selection procedure by LOOCV chooses the right

degree m of polynomial by rating the different models according
to their predictive abilities. Moreover, the subsequently estimated
polynomial coefficients β̂ and the estimated noise level are quite
close to their true values β true and σ true, respectively.

4 D I F F U S I V I T Y- F R E E S C A L I N G S

Following Christensen (2002), there have been several studies ad-
vocating diffusivity-free scaling laws for the application to Earth’s
core (Christensen & Aubert 2006; Christensen et al. 2009; Chris-
tensen 2010). The underlying physical rationale is the hypothesis
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Table 4. Cross-validation estimates of prediction error PCV for the best-fitting scaling laws for heat
transport, flow velocity and magnetic field strength for all possible parameter combinations. Minimum
values are again bold.

(Ra∗
Q ) (Pm) (Ek) (Ra∗

Q , Pm) (Ra∗
Q , Ek) (Pm, Ek) (Ra∗

Q , Pm, Ek)

Nu∗ 0.0106 2.5772 1.0396 0.0100 0.0095 0.8412 0.0096
Ro 0.0438 1.8391 0.9118 0.0116 0.0315 0.6164 0.0118

Lo/ f 1/2
ohm 0.0760 0.9238 0.3486 0.0264 0.0580 0.3466 0.0266

Table 5. Overview of the scaling laws preferred by LOOCV for the diffusivity-free parameters.
The exponents of the non-dimensional parameters are shown together with their standard errors
from the multiple linear regression. Covariances between the fitted values are minor. The mean
relative misfit χ rel of the different models is also displayed.

Pre-factor Ra∗
Q Pm Ek χ rel

Nu∗ 0.075 ± 0.004 0.505 ± 0.005 – 0.033 ± 0.008 0.100
Ro 1.16 ± 0.05 0.436 ± 0.003 −0.126 ± 0.007 – 0.106

Lo/ f 1/2
ohm 0.60 ± 0.04 0.306 ± 0.005 0.157 ± 0.011 – 0.161

that diffusive processes do not play a primary role in Earth’s core.
Hence, a modified Nusselt number

Nu∗ = 1

4πrori

Qadv

ρc�T �D

= (Nu − 1)
Ek

Pr
, (13)

has been introduced, where Qadv is advected heat flux and c is
heat capacity; the remaining quantities were defined in Section 2.1.
Moreover, a modified Rayleigh number

Ra∗ = Ra Ek2

Pr

= αg0�T

�2 D
, (14)

and a modified flux-based Rayleigh number

Ra∗
Q = 1

4πrori

αg0 Qadv

ρc�3 D2

= Ra∗ Nu∗

= (Nu − 1)
Ra Ek3

Pr 2
, (15)

are used, neither of them containing any diffusivity. On the basis
of these diffusivity-free parameters, Christensen & Aubert (2006)
studied the scaling of heat transport, flow velocity and magnetic field
strength in numerical dynamo models. The preferred scalings for
all three quantities were simple power laws only depending on Ra∗

Q .
In this section, we use our model selection procedure by LOOCV
to study whether a data-driven analysis yields the same result as the
diffusivity-free hypothesis.

4.1 Heat transport

The heat transport in terms of diffusivity-free parameters is given
by Nu∗. We test scaling laws of the form of eq. (6) and allow any
combination of Ra∗

Q , Pm and Ek as explanatory variables. The CV
estimates of the prediction error PCV for the best-fitting laws with all
different parameter combinations are given in Table 4. The scaling
law with minimum PCV includes the parameters Ra∗

Q and Ek:

Nu∗ = 0.075 Ra∗0.51
Q Ek0.03. (16)

Comparably low PCV results from scaling laws including the param-
eter combinations (Ra∗

Q), (Ra∗
Q, Pm) and (Ra∗

Q, Pm, Ek). Table 5

Figure 5. Heat transport scaling, preferred scaling law by LOOCV. Colour
indicates the value of Pm: dark blue Pm ≤ 0.1, light blue 0.1 < Pm < 1,
white Pm = 1, light red 1 < Pm < 10, dark red Pm ≥ 10.

shows the fitted values of eq. (16) together with their standard er-
rors. The table also contains the mean relative misfit χ rel defined in
eq. (9).

Fig. 5 shows the fit of the scaling law (eq. 16) to the 116 data
points. Disregarding the additional Ek-dependence, the scaling is
very similar to Nu∗ = 0.076 Ra∗0.53

Q (Christensen & Aubert 2006).
Although the exponent of Ek is quite small, LOOCV, under the
assumption of equal errors in ζ = log (Nu∗), argues for this depen-
dence, and the numerical value of the exponent is four times larger
than its standard error in regression. One reason for the weak Ek-
dependence could be that an asymptotic behaviour has not yet been
reached within the rapidly rotating regime (cf. King et al. 2010).
Also, it should be mentioned that LOOCV under the assumption
of equal errors in the original variable y = Nu∗ favours a simple
Ra∗

Q-dependence devoid of any Ek-dependence (see Appendix A).
We compare our heat flux scaling relation with others that have

recently appeared in the literature. King et al. (2010) compare scal-
ing relations developed for experiments in rotating cylinders (in
which gravity is parallel to the rotation axis) with the same type of
numerical results that are analysed herein, namely rotating convec-
tion with radial gravity. For the rapidly rotating regime, they find
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a preferred fit to their experimental data that is also in reasonably
good agreement with the numerical results of the form

Nu = A

(
Ra

Rac

)6/5

, (17)

where Rac ∝ Ek−4/3 is the critical Rayleigh number for the onset
of convection. In terms of the flux-based quantities that we are
considering here, this law becomes

Nu∗ ∝ (Ra∗
Q)6/11(Ek Pr )1/11. (18)

The numerical values of these indices, 0.545 and 0.09, are not
terribly different from the ones that we discovered here.

Conversely, a recent explanation of the same experimental data
by King et al. (2012) proposes

Nu = A

(
Ra

Rac

)3

∝ Ra3 Ek4 (19)

based on a physically motivated boundary layer analysis. In terms
of the flux-based parameters, this is equivalent to

Nu∗ ∝ (Ra∗
Q)3/4 Pr 1/2 Ek−1/4. (20)

The Ekman dependence of this law is clearly much stronger than
others that have been proposed (including our own), and has an
opposite sign of exponent when converted to flux-based variables.
The lack of experimental data in the strongly rotation-dominated
regime contributes to this lack of understanding.

4.2 Flow velocity

A measure for flow velocity in non-dimensional form is Ro as
defined by

Ro =
(

2Ekin

V

)1/2

, (21)

where Ekin is kinetic energy and V is the volume of the shell (Chris-
tensen & Aubert 2006). Applying the same procedure as in Section
4.1 leads to a flow velocity scaling of

Ro = 1.16 Ra∗0.44
Q Pm−0.13. (22)

This scaling law is shown in Fig. 6. It is virtually identical to
the Ra∗0.43

Q Pm−0.13 law that could not firmly be established by

Figure 6. Flow velocity, favoured scaling law. Colours as in Fig. 5.

Figure 7. Flow velocity scaling only with Ra∗
Q (not preferred by LOOCV).

Colours as in Fig. 5. There is a clear division between blue (Pm < 1) and
red (Pm > 1) above and below the fitting line.

Figure 8. Residuals between Ro-data and model predictions from Fig. 7
plotted versus Pm. A clear unresolved Pm-dependence is visible. Colours as
in Fig. 5.

Christensen & Aubert (2006) because the improvement in mis-
fit compared to the one-parameter law Ro = 0.85 Ra∗0.41

Q did not
seem to be sufficient. According to our analysis, however, Pm plays
a role in the Ro-scaling with PCV(Ra∗

Q, Pm) = 0.0116 compared
to PCV(Ra∗

Q) = 0.0438 arguing for the additional dependence (cf.
Table 4). This becomes also evident in Fig. 7 where the one-
parameter fit (including only Ra∗

Q) to the velocity data is shown,
and in Fig. 8 where the corresponding residuals are plotted versus
Pm. An unresolved Pm-dependence is visible.

4.3 Magnetic field strength

An adequate measure for magnetic field strength is given by Lo/ f 1/2
ohm

according to Christensen & Aubert (2006). The Lorentz number Lo
is defined analogously to Ro (eq. 21) as

Lo =
(

2Emag

V

)1/2

, (23)
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Figure 9. Magnetic field strength, favoured scaling law. Colours as in Fig. 5.

with magnetic energy replacing kinetic energy. The time-averaged
fraction of Ohmic dissipation,

fohm = Dohm

P
, (24)

is the ratio of Ohmic dissipation,

Dohm =
∫

j2/σ dV

=
∫

(η/μ0)(∇ × B)2 dV, (25)

to the power P generated by buoyancy forces; j is the electrical
current density.

Again, we look for a scaling of power-law form that includes any
combination of Ra∗

Q , Pm and Ek. The law favoured by our model
selection analysis is

Lo

f 1/2
ohm

= 0.60 Ra∗0.31
Q Pm0.16. (26)

It is shown in Fig. 9. Also in this case, our analysis differs from
Christensen & Aubert (2006) who preferred the one-parameter
scaling Lo/ f 1/2

ohm = 0.92 Ra∗0.34
Q over the Ra∗0.32

Q Pm0.11 law. (The

exponent of Pm in a two-parameter law for Lo/ f 1/2
ohm has risen

from 0.11 in the original study to 0.16 in eq. (26), proba-
bly due to adding dynamo models with large Pm to the data
set.) The estimated prediction errors are PCV(Ra∗

Q, Pm) = 0.0264
versus PCV(Ra∗

Q) = 0.0760 favouring the additional dependence
(cf. Table 4).

4.4 Discussion

The diffusivity-free scalings for heat transport, flow velocity and
magnetic field strength contain only a dependence on Ra∗

Q (Chris-
tensen & Aubert 2006). Our model selection analysis by LOOCV,
however, favours more complex scalings with an additional pa-
rameter. As mentioned in Section 4.1, the Ek-dependence in the
Nu∗-scaling may be due to a non-asymptotical regime and disap-
pears when a different error attribution is used (Appendix A). The
Pm-dependence in the scalings of Ro and Lo/ f 1/2

ohm is a significant
feature which also persists when using different methods of model
selection.

Summing up, we used diffusivity-free parameters in the first
place. However, the diffusivities come back into the scaling laws by

additional dependencies complicating the simple laws. This means
that diffusive processes may not be neglected in the regime of nu-
merical dynamo models that we are looking at (cf. Section 2.5) An
attempt to apply the scaling laws to Earth’s core is undertaken in
Section 6.4.

5 S C A L I N G W I T H T R A D I T I O NA L
PA R A M E T E R S

In the previous section, we have shown that the numerical dynamo
simulations in general do not support diffusivity-free scalings of
heat transport, flow velocity and magnetic field strength. The ques-
tion is now about the scalings in terms of traditional parameters Ra,
Pm, Ek and Pr (definitions in Table 1). In this case, it is necessary to
allow a possible Pr-dependence to account for the variability in the
data. (The diffusivity-free parameter Ra∗

Q in eq. (15) has an implicit
Pr-dependence.)

Again, we look for exponential scaling laws of the form of eq.
(6). LOOCV favours the following scaling laws for convective heat
transport, flow velocity and magnetic field strength, respectively:

Nu − 1 = 0.009 Ra0.93 Ek1.00 Pr−0.09, (27)

Ro = 0.15 Ra0.84 Pm−0.13 Ek1.75 Pr−0.90, (28)

Lo

f 1/2
ohm

= 0.18 Ra0.54 Pm0.17 Ek1.15 Pr−0.71. (29)

(We choose (Nu − 1) as measure of convective heat transport and
stay with Lo/ f 1/2

ohm as measure of magnetic field strength to get laws
that are comparable with the scalings of Section 4. In the case of the
magnetic field scaling, it should be noted that even the simplest law,
Lo/ f 1/2

ohm ∼ Ra∗β

Q , is actually not diffusivity-free in general, since
f ohm contains the magnetic diffusivity η via the Ohmic dissipation
Dohm, cf. eqs (24) and (25). The scaling is only diffusivity-free when
f ohm ≈ 1 as assumed for Earth’s core.)

The dependencies in eqs (27)–(29) are complex enough to require
all parameters in the scaling laws. Only in the (Nu − 1)-scaling,
Pm is not included as it is the case in Section 4.1. It is, however,
clear that these scalings are pure linear regression results on the
data lacking any physical rationale. Table 6 shows that the scalings
are quite complex. Creating diffusivity-less parameters (eqs 13–
15) with inbuilt Ek- and Pr-dependencies has been an attempt to
simplify the relations.

We can actually find a parameter similar to the modified Rayleigh
number, Ra∗ = RaEk2Pr−1 (eq. 14), in the scalings for flow velocity
and magnetic field strength (eqs 28 and 29), when we look at the
exponents of Ra, Ek and Pr that form a ratio of approximately 1 : 2
: −1 in the Ro- and Lo/ f 1/2

ohm-scalings. This parameter combination
is also known as the convective Rossby number, Roc = (Ra∗)1/2

(e.g. Liu & Ecke 1997; Aurnou et al. 2007). The convective Rossby
number describes the ratio of buoyancy over Coriolis forces when
using the convective free-fall velocity, uconv ∼ √

αg0�T D, which
results from a balance between inertia and buoyancy, as velocity
scale. Hence, it is not surprising to find Ra∗ in the velocity scaling.
It is slightly more surprising to see it in the magnetic field scaling,
although induction scales with the velocity field. On top of the Ra∗-
dependence, there is certainly a Pm-dependence present in both
scalings. The heat transport scaling (eq. 27), however, is not at all
reminiscent of Ra∗ and does not contain a Pm-dependence either.
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Table 6. Overview of the scaling laws preferred by LOOCV for the traditional parameters. The exponents
of the non-dimensional parameters are shown together with their standard errors from the multiple linear
regression. χ rel is the mean relative misfit between fitted and observed values (eq. 9).

Pre-factor Ra Pm Ek Pr χ rel

Nu − 1 0.009 ± 0.001 0.93 ± 0.02 – 1.00 ± 0.02 −0.09 ± 0.02 0.165
Ro 0.15 ± 0.02 0.84 ± 0.01 −0.13 ± 0.01 1.75 ± 0.02 −0.90 ± 0.02 0.100

Lo/ f 1/2
ohm 0.18 ± 0.03 0.54 ± 0.02 0.17 ± 0.02 1.15 ± 0.03 −0.71 ± 0.02 0.173

6 M A G N E T I C D I S S I PAT I O N
I N E A RT H ’ S C O R E

6.1 Magnetic dissipation time

The magnetic dissipation time τ diss is defined as the ratio of magnetic
energy over Ohmic dissipation (eq. 25)

τdiss = Emag

Dohm
. (30)

With knowledge about τ diss and an estimate of Emag, we are able to
put numbers on the Ohmic dissipation Dohm in Earth’s core.

Christensen & Tilgner (2004) found an inverse dependence of
τ diss on the magnetic Reynolds number Rm. The same study rejects
an additional dependence on Re = Rm/Pm (which is equivalent to an
additional dependence on Pm) because of results of the Karlsruhe
laboratory dynamo. Later, Christensen (2010) revisited the τ diss-
scaling favouring an additional dependence on the magnetic Ekman
number Ekη = Ek/Pm.

Using the magnetic diffusion time τ η = D2/η to normalize the
magnetic dissipation time

τ ∗
diss = τdiss

τη

, (31)

the 2004 and the 2010 laws are given as

τ ∗
diss,04 = 0.27 Rm−1, (32)

τ ∗
diss,10 = 0.59 Rm−5/6 Ek1/6

η

= 0.59 Rm−5/6 Pm−1/6 Ek1/6. (33)

6.2 LOOCV analysis for τ diss

According to the scaling laws of eqs (32) and (33), it seems reason-
able to test scaling laws for τ ∗

diss that have power-law form including
the parameters Rm, Pm, Ek (and possibly Pr). Our model selection
analysis by LOOCV on the basis of the 116 numerical dynamo
models favours the full model,

τ ∗
diss = 0.33 Rm−0.89 Pm0.10 Ek0.09, (34)

shown in Fig. 10. PCV(Rm, Pm, Ek) = 0.0777 compared to
PCV(Rm) = 0.1400 and PCV(Rm, Ekη) = 0.1321. The standard errors
on the pre-factor and on the exponents in eq. (34) are 0.08, 0.03,
0.03 and 0.02, respectively. The mean relative misfit χ rel of this scal-
ing law is 0.289, significantly larger than for the previous scalings.
(Allowing a Pr-dependence in the model selection procedure again
leads to the full model including Pr and reduces the mean relative
misfit to 0.205. However, see the remarks on the distribution of Pr
in our data set in Section 2.4.)

A scaling law with only Rm as independent variable on the basis of
the 116 dynamo models would be τ ∗

diss = 0.083 Rm−0.80, displayed
in Fig. 11. While the numerical dynamo database of Christensen
and co-workers has grown over the years, the exponent of Rm in a

Figure 10. Magnetic dissipation time. Favoured scaling law. Colours as in
Fig. 5.

Figure 11. Magnetic dissipation time. Simple Rm-law with unresolved fur-
ther dependencies. Colours as in Fig. 5.

simple one-parameter law for τ ∗
diss has decreased in absolute magni-

tude from −1 (Christensen & Tilgner 2004) via −0.93 Christensen
(2010) to −0.8 in this study. The first thing to note in the plot is
the clear unresolved Pm-dependence in the data plotted according
to this law. The subsets of data with equal Ek (and similar Pm)
appear to follow slopes that are similar to −0.8 with different y-axis
intercepts. This would mean that Ek and Pm mainly determine the
pre-factor in the exponential scaling law. The favoured scaling law
for τ ∗

diss (eq. 34) implies that this quantity grows with increasing Pm.
This dependence is contrary to the scaling including the magnetic
Ekman number (eq. 33).
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6.3 Application to Earth’s core

One quantity that is of interest for the study of the Earth’s deep
interior is the amount of Ohmic dissipation in the core. Christensen
& Tilgner (2004) used their scaling law for the magnetic dissipation
time (eq. 32) to derive 42 yr for the magnetic dissipation time and
an estimate of 0.2–0.5 TW for the Ohmic dissipation, which was a
rather small value compared to other estimates. These calculations
are based on Rm = 800 (note the differing parameter definition in
the original paper) and Emag = (2.8–6.2) · 1020 J. Christensen (2010)
found an Ohmic dissipation time that is five times shorter and hence
a five times higher value for the Ohmic dissipation using the revised
scaling law (eq. 33).

We base our calculations on the current estimates for the non-
dimensional parameters given in Table 1. A major revision of these
numbers has resulted from studies by de Koker et al. (2012) and
Pozzo et al. (2012) that have increased the numerical values of
the thermal and the electrical conductivities, κ and σ , for Earth’s
core by roughly a factor of three. Together with flow velocities
of ∼15 km yr−1 inferred from secular variation studies (Bloxham &
Jackson 1991; Holme 2007), this yields Rm ≈ 2300. Note, however,
that large uncertainties are associated with this estimate that is based
on the large-scale flow only.

The value for the magnetic energy in Christensen & Tilgner
(2004) was derived from an assumed magnetic field strength of 2–
3 mT in the core that comes from considerations about the field
strength at the core–mantle boundary (CMB). More recent stud-
ies of the magnetic field strength in the core found similar values.
Aubert et al. (2009) used two end-member scenarios, high and low
power, to study the evolution of heat flow in the core. The high-
power model gives a present-day rms core magnetic field of 2.3 mT,
whereas the low-power model leads to a magnetic field of 1.1 mT.
Buffett (2010) studied tidal dissipation in the Earth’s core. In this
context, nutation observations can be explained by a core-averaged
field strength of 2.5 mT. Gillet et al. (2010) studied variations of
length-of-day (LOD) in the context of torsional waves. They es-
timated an rms field strength of ∼4 mT inside the Earth’s core.
Concluding, the value of 2–3 mT for the rms field strength in the
Earth’s core still lies in the range of recent estimates, although the
value could also be slightly higher. Hence, we use the same esti-
mate of (2.8–6.2) · 1020 J for the magnetic energy as Christensen &
Tilgner (2004).

Finally, we have to assume that the processes in the numerical
simulations are relevant to the dynamics of Earth’s core to be able
to extrapolate using scaling laws. This is by no means certain. How-
ever, we may try since Earth’s core appears to reside in the rapidly
rotating regime (King et al. 2010) as do the numerical dynamo
models of this study (cf. Section 2.5).

Under these assumptions, the scaling in eq. (34) yields a magnetic
dissipation time of 2.3 yr. Using eqs (30) and (31), this leads to an
Ohmic dissipation of 3.4–8.4 TW in Earth’s core. (Using a τ ∗

diss-
scaling that additionally includes Pr leads to a slightly higher Ohmic
dissipation.) If we include the uncertainties of the non-dimensional
parameters Rm, Pm and Ek, the error bars will increase further. Due
to the size of the exponents, however, a change in the value of Rm
would alter the result most as would a change in the estimate of
Emag.

The Ohmic dissipation contributes to the total heat flux at the
CMB. For the conductive heat flux at the top of the core, de Koker
et al. (2012) find 14–20 TW using their new estimate for the thermal
conductivity. Also Pozzo et al. (2012) suggest high adiabatic heat
flux at the CMB with 15–16 TW on the basis of the increased thermal

conductivity. These estimates are higher than the 5–15 TW found
from independent considerations of core temperature, geodynamo
energetics and buoyancy flux of lower mantle thermal plumes (Lay
et al. 2008), which at that time were already large compared to
the previously estimated 3–4 TW. Since the dissipation should be a
fraction of the total heat flux through the system, the lower range of
the values 3.4–8.4 TW for Ohmic dissipation in Earth’s core appears
to be consistent with the recent high CMB heat flux scenarios.

6.4 Implications

The scaling laws for flow velocity (eq. 22), magnetic field strength
(eq. 26) and Ohmic dissipation time (eq. 34), as defined here, are
not independent (Christensen 2012, personal communication). The
parameter definitions lead to Emag ∼ Lo2 (eq. 23), τ diss = Emag/Dohm

(eq. 30) and Dohm = fohm P ∼ fohm Ra∗
Q (eq. 24); the latter scaling

is not exact, but for large enough Nu almost perfectly satisfied (ap-
pendix of Christensen & Aubert 2006). The interdependence of the
three laws enables us to predict the τ diss-scaling from the Ro- and the
Lo/ f 1/2

ohm-scalings yielding τ ∗
diss ∼ Rm−0.89 Pm0.09 Ek0.11. The com-

pliance with the LOOCV-preferred scaling law (eq. 34) shows the
internal consistency.

Using the scaling laws for flow velocity (eq. 22) and magnetic
field strength (eq. 26) as well as the parameter values from Table 1,
we can also extrapolate these quantities from the numerical models
to Earth’s core. Combining eqs (22) and (26) and eliminating Ra∗

Q

yields

Lo/ f 1/2
ohm = 0.54 Ro0.70 Pm0.25. (35)

Two ways are viable here: either (i) we use an estimate for the veloc-
ity in the core to derive a magnetic field strength, or (ii) we do the cal-
culation vice versa. In case (i), assuming a velocity of ∼15 km yr−1

at the core surface (see Section 6.3) and f ohm ≈ 1 in the core as in
Christensen & Aubert (2006), we find a magnetic field strength

Brms =
√

�ρμ0η�

= Lo (ρμ0)1/2 �D (36)

of ∼0.1 mT, where � = Lo2PmEk−1 is the Elsasser number. This
number is lower compared to the estimates in Section 6.3 by a factor
10–40. In case (ii), using an estimate of ∼3 mT for the magnetic
field strength in the core, we find ∼5.6 cm s−1 for the velocity, which
is by a factor of 100 larger than the usual estimates. So using the
scaling laws for Ro (eq. 22) and Lo/ f 1/2

ohm (eq. 26), either (i) the
magnetic field strength is too low, or (ii) the velocity is too high.
The Pm-dependence in eqs (22), (26) and hence also (35) is at
variance with the scalings found by Christensen & Aubert (2006),
whose laws lead to much better agreement between magnetic field
strengths and flow velocities thought to occur in the Earth.

It should, however, be noted that the usual velocity estimate
of ∼15 km yr−1 is only valid for the large-scale motions on the
surface of the core since it is derived from secular variation data.
Small-scale velocities in the core’s interior might well be signifi-
cantly higher. Besides, the resolution of this discrepancy might be
a modification of the scaling laws in the low-Pm limit. In any case,
the application of the scalings of flow velocity and magnetic field
strength to Earth’s core remains to be addressed.

7 C O N C LU S I O N S

Numerical dynamo simulations can complement theoretical consid-
erations and laboratory experiments in the goal to gain insight into



Extracting scaling laws from numerical dynamo models 1275

Earth’s core. The derivation of scaling laws has been one important
way. This approach, however, involves two major difficulties. The
first is that we have to make sure that the numerical models are
in the same dynamic regime as Earth’s core. Although numerical
models can produce Earth-like magnetic fields (e.g. Christensen
et al. 2010), this point is by no means certain. The second task
is extracting scaling laws from the data that capture all relevant
parameters.

We have studied approaches to the second task on the basis of
116 numerical dynamo models from the database of Christensen and
co-workers. Model selection deals with the question of how many
independent variables have to be included in a model (scaling law)
to account for the variability in the data, while avoiding overfitting.
Our method of choice is LOOCV. It rates models according to their
predictive abilities and ideally prevents overfitting.

Using LOOCV, we have studied the diffusivity-free scalings of
heat transport (Nu∗), flow velocity (Ro) and magnetic field strength
(Lo/ f 1/2

ohm) proposed by Christensen & Aubert (2006) as well as the
scaling of the magnetic diffusion time (Christensen & Tilgner 2004;
Christensen 2010). The physical rationale leading to diffusivity-free
scalings is the idea that diffusive processes do not play a major role in
Earth’s core. However, it turns out that in velocity and magnetic field
strength scaling, an additional dependence on Pm is required by the
numerical dynamo data (Table 5). (The small Ek-dependence in the
heat transport scaling disappears under a different error attribution
to the data and might be blamed on the non-asymptotical regime of
the data.) The additional dependencies mean that diffusivities come
back into the scalings. Hence, we find that diffusive processes are
relevant in the numerical dynamos.

Similarly, Soderlund et al. (2012) find that transitions in dynamo
behaviour from dipolar to multipolar are controlled by a compe-
tition of inertial and viscous forces. This means that also in this
fundamental change in the systematics of present-day numerical
dynamos, (viscous) diffusivity matters.

The relevance of diffusive processes is also apparent from our
study of scalings with traditional parameters (Section 5). The
favoured scaling laws are complex and require almost all possible
parameters. Interestingly, it is possible to find something similar to a
modified Rayleigh number Ra∗ with an additional Pm-dependence
in the scalings for velocity and magnetic field strength. This is not
at all true for the heat transport scaling.

The magnetic dissipation time τ ∗
diss is a quantity relevant to the

study of Earth’s core since it allows us to estimate the Ohmic dis-
sipation. However, also the preferred τ ∗

diss-scaling is more complex
than suggested in previous studies. This leads to large error bars in
the estimated quantities.

Using the τ ∗
diss-scaling and an estimate for the magnetic energy,

we derived a range of 3–8 TW for the Ohmic dissipation in Earth’s
core. The lower range, 3–4 TW, of these values appears to be con-
sistent with recent high CMB heat flux scenarios (Lay et al. 2008;
Pozzo et al. 2012; de Koker et al. 2012). An unresolved issue is the
application of velocity and magnetic field strength scaling to the
core.
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A P P E N D I X A : E Q UA L E R RO R S
I N T H E O R I G I NA L VA R I A B L E

In Section 2.3, we discuss two possibilities of attributing errors to
the data. Either we assume equal errors in ζ = log (y) as above,
or equal errors in the original measured variable y. Table A1 lists
the scaling laws that are preferred by LOOCV under the second
assumption when we allow the parameters Ra∗

Q , Pm and Ek to enter
the laws as in Section 4.

There are two major differences between the scaling laws derived
under the assumption of equal errors in ζ (Table 5) and the ones with
equal errors in y (Table A1). In the first case, the Nu∗-law exhibits
an Ek-dependence, whereas in the second case it does not. However,
in the second case, the Ro-law additionally depends on Ek. To check
the validity of the assumption of Gaussian errors either in ζ or in y,
we looked at the histograms of the residuals resulting from the two
Nu∗-laws. In both cases, the assumption of Gaussian errors seems
to be justified.

A P P E N D I X B : R E D U C E D DATA S E T :
E A RT H - L I K E DY NA M O M O D E L S

Only considering models that lie in the ‘Earth-like triangle’ for
magnetic field morphology in Fig. 3 (criteria of Christensen et al.
2010), the dynamo data set is reduced from 116 to 61 models.
Table B1 shows the scaling laws that in this case are preferred
by LOOCV under the assumption of equal errors in ζ = log (y).
Although the data set is reduced by almost half, the resulting laws
only differ in their exponents (up to ±0.04), but not in the parameters
included (cf. Table 5).

Table A1. Overview of the scaling laws preferred by LOOCV assuming equal errors in y. The
corresponding laws assuming equal errors in ζ = log (y) are given in Table 5. The exponents of
the non-dimensional parameters are shown together with their standard errors from the multiple
linear regression. χ rel is the mean relative misfit between fitted and observed values (eq. 9).

Pre-factor Ra∗
Q Pm Ek χ rel

Nu∗ 0.083 ± 0.004 0.545 ± 0.005 – – 0.137
Ro 1.20 ± 0.07 0.471 ± 0.006 −0.098 ± 0.006 −0.034 ± 0.007 0.123

Lo/ f 1/2
ohm 0.59 ± 0.05 0.302 ± 0.008 0.147 ± 0.010 - 0.174

Table B1. Earth-like dynamo models: Overview of the scaling laws preferred by LOOCV
for the diffusivity-free parameters assuming equal errors in ζ = log (y). The exponents of the
non-dimensional parameters are shown together with their standard errors from the multiple
linear regression. χ rel is the mean relative misfit between fitted and observed values (eq. 9).

Pre-factor Ra∗
Q Pm Ek χ rel

Nu∗ 0.069 ± 0.007 0.479 ± 0.009 – 0.054 ± 0.013 0.114
Ro 1.49 ± 0.08 0.460 ± 0.004 −0.126 ± 0.008 – 0.075

Lo/ f 1/2
ohm 0.38 ± 0.04 0.268 ± 0.008 0.179 ± 0.016 – 0.155


