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The purpose of this review is to discuss the achievements and perspectives regarding rehabilitation of sensorimotor functions

after spinal cord injury. In the first part we discuss clinical approaches based on neuroplasticity, a term referring to all adaptive

and maladaptive changes within the sensorimotor systems triggered by a spinal cord injury. Neuroplasticity can be facilitated

through the training of movements with assistance as needed, and/or by electrical stimulation techniques. The success of such

training in individuals with incomplete spinal cord injury critically depends on the presence of physiological proprioceptive input

to the spinal cord leading to meaningful muscle activations during movement performances. The addition of rehabilitation

technology, such as robotic devices allows for longer training times and provision of feedback information regarding

changes in movement performance. Nevertheless, the improvement of function by such approaches for rehabilitation is

limited. In the second part, we discuss preclinical approaches to restore function by compensating for the loss of descending

input to spinal networks following complete spinal cord injury. This can be achieved with stimulation of spinal networks or

approaches to restore their descending input. Electrical and pharmacological stimulation of spinal neural networks is still in an

experimental stage; and despite promising repair studies in animal models, translations to humans up to now have not been

convincing. It is likely that combinations of techniques targeting the promotion of axonal regeneration and meaningful plasticity

are necessary to advance the restoration of function. In the future, refinement of animal studies may contribute to greater

translational success.
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Abbreviation: AIS = ASIA Impairment Scale

Introduction
Traumatic spinal cord injury represents a devastating but rare con-

dition (10–83 cases per million people worldwide; Wyndaele and

Wyndaele, 2006). Individuals experience impairment in their qual-

ity of life because of deficits in sensorimotor functions, the

dysfunction of the autonomic system and neuropathic pain.

Nevertheless, people with incomplete para-/tetraplegia can relearn

the ability to perform important daily activities, regain employ-

ment (which varies between countries: 21–67%, Lidal et al.,

2007) and attain a life expectancy that is close to normal. Some

standardized rehabilitation procedures became established only in
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the past 20 years. Nevertheless, there is still no full consensus on

the most effective approaches. In fact neurorehabilitative

approaches are multifactorial, vary to some degree between re-

habilitative centres and are frequently lacking evidence for their

effectiveness.

Today, clinical neurorehabilitative approaches in individuals with

incomplete spinal cord injury are largely based on observations

originally made in animal studies (Barbeau and Rossignol, 1994;

de Leon et al., 1998; Edgerton et al., 2004; Girgis et al., 2007;

Courtine et al., 2009). These animal-based developments of

neurorehabilitative approaches are an ongoing process aimed at

improving rehabilitation procedures. They can generally be viewed

as training of lost/impaired sensorimotor functions. It is, however,

important to acknowledge that rehabilitation after spinal cord

injury also involves the learning of new tasks such as transfer

training, e.g. from bed to chair, or catheterization of the bladder.

In this review we will focus on the rehabilitation of sensorimotor

systems involved in functional movements. In parallel, axonal

regeneration and plasticity inducing interventions (Raineteau and

Schwab, 2001; Blight, 2002; Raisman, 2003; Courtine et al., 2008;

Gosh et al., 2010) are being investigated in animal models and are

entering the clinical stage.

The impairment after spinal cord injury depends on both level

and completeness of injury (Fig. 1). This review focuses on basic

and clinical research to re-establish sensorimotor functions. The

first part concentrates on the significance of neuroplasticity in

sensorimotor systems as the basis for rehabilitation of functional

movements in incomplete human spinal cord injury. We will dis-

cuss the requirements and limitations as well as perspectives of

facilitating rehabilitative neuroplasticity. This concerns the training

of arm movements (usually reaching and grasping) as well as leg

movements (stepping) and the increasing impact that technology

has on such training. Most studies involving rehabilitation

approaches in people with spinal cord injury meet only the cri-

teria of evidence grade I (retrospective, non-randomized studies,

or empirical recommendation; adapted from ‘Oxford levels of

evidence’), or rarely grade II (at least one randomized study).

Frequently, they are based on experimental studies. More reliable

studies with a stronger body of evidence exist regarding the

effectiveness of rehabilitation on the outcome of sensorimotor

deficits in the stroke population because of the higher frequency

of stroke (Kwakkel et al., 1999). Although the usual mechanism

of injury in stroke and spinal cord injury is different (ischaemia

versus trauma), rehabilitative approaches might translate well as

the recovery of sensorimotor functions is similar between ischae-

mic and traumatic spinal cord injury (Iseli et al., 1999). Further, in

both stroke and spinal cord injury, neuroplasticity is the key to

overcoming injury-induced loss of CNS tissue and the subsequent

sensorimotor deficits. In this review, we discuss stroke studies

concerning only the optimal duration and intensity of training,

which we suggest can be translated to people with spinal cord

injury. Therefore, the decision for an appropriate treatment of

individuals with spinal cord injury should be based on solid

experimental evidence [e.g. repeatable and strong effects in

rodents, such as described by Edgerton et al. (2008)] to restore

sensorimotor functions in a greater subject group suffering com-

parable impairment, such as post-stroke patients (cf. Kwon et al.,

2013).

Figure 1 Rehabilitation of a spinal cord injury (SCI). Schematic overview of actual perspectives of rehabilitation approaches (circular

borders) to influence the outcome of a spinal cord injury (angular borders). The individual impairment depends not only on the ‘lesion

severity’ but also on the level of lesion. The selection of an appropriate approach has to be based on an early prediction of outcome and

the completeness of injury, respectively. Solid lines indicate currently applied approaches, interrupted lines indicate interventions being on

translation to human application.
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The second part of the review deals with current approaches

and perspectives on the restoration of function by compensating

for the loss of descending input through either the stimulation of

spinal networks or the restoration of descending input within the

spinal cord. In combination with rehabilitative training, repairing

the spinal cord will be essential for individuals with complete spinal

cord injury. Although several approaches succeeded in moderately

inducing regeneration and plasticity in animal models of spinal

cord injury, translational studies in human subjects to date have

shown no convincing effects. Possible reasons for this drawback

and the hurdles of translational research will be discussed.

Clinical aspects of
rehabilitation: role of
neuroplasticity

Basic aspects
Neuroplasticity comprises the adaptive (including maladaptive)

changes within spared neuronal circuitries and thus reflects the

reorganization of the nervous system after it has been injured.

Neuroplasticity after spinal cord injury occurs at several anatomical

and physiological levels of the CNS, i.e. spinal cord, brainstem and

cortex (Bruehlmeier et al., 1998; Jurkiewicz et al., 2007; Onifer

et al., 2011). It includes changes in synaptic formations and syn-

aptic strength (Rioult-Pedotti et al., 2007), axonal sprouting

(Bareyre et al., 2004) and changes of intracellular properties

(Boulenguez et al., 2010; Murray et al., 2010). There is also a

spontaneous recovery of sensorimotor functions within the first

few months after a spinal cord injury because of factors such as

the resolution of neuropraxia (Curt et al., 2008) and remyelination

of spared axons. It is hard to distinguish the relative contributions

of these factors to recovery and there might be an overlap of

mechanisms involved in the recovery of neuronal excitability

(Murray et al., 2010).

In this review we use the term ‘neuroplasticity’ to denote adap-

tations in the sensorimotor systems after the acute stage of spinal

cord injury, i.e. in the stable phase �3 months after injury.

Changes in sensorimotor system function can be reliably deter-

mined by assessing the neurological status (clinical and functional

examinations) and electrophysiological recordings (impulse con-

ductivity of the spinal cord and of peripheral nerves by recordings

of somatosensory-evoked potentials and neurographic examin-

ations, respectively; Curt et al., 2004). According to these assess-

ments, performed over 1 year in individuals with spinal cord

injury, most of the recovery of sensorimotor deficits and of som-

atosensory evoked potentials takes place over 12 to 15 weeks

(Curt et al., 2008). At later stages after the acute injury, a

stable phase dominates during which training-induced changes

can still be initiated (Wirz et al., 2005; Dobkin et al., 2006a;

Harkema et al., 2011; Field-Fote and Roach, 2011). Recovery of

motor functions does not solely rely on neuroplasticity, but also on

compensation and adaptation. For example, through the assist-

ance of the non-, or less affected limbs (Curt et al., 2008).

In the case of locomotor function, the affected leg shows little

change in the leg muscle EMG pattern despite a gait recovery

(den Otter et al., 2006). In particular at an early stage restoration

of function is achieved by adaptive changes that are based on

neural plasticity and, therefore, can hardly be separated.

Nevertheless, compensation and adaptation can be viewed as a

form of motor learning and thus, by definition, as neuroplasticity.

For individuals with spinal cord injury, functional training is the

most effective approach to direct and enhance plasticity as a mean

to recover motor function. Functional training can be defined as

the direct/task specific training of a motor function (e.g. walking;

reach and grasp movements). The mechanisms underlying the ef-

fects of facilitating neuroplasticity by functional training have been

explored in rodent (de Leon et al., 1998; Edgerton et al., 2004,

2008; Girgis et al., 2007; Courtine et al., 2009) and cat models of

spinal cord injury (Barbeau and Rossignol, 1994; de Leon et al.,

1998; Barbeau and Fung, 2001; Edgerton et al., 2004). Using

these animal models, rehabilitation of sensorimotor function after

spinal cord injury is directed toward training lost/impaired move-

ments (Edgerton et al., 2008). Among others, these studies dem-

onstrate that training rats or cats with a transected spinal cord on

a moving treadmill leads to a partial recovery of locomotor ability.

Thus, neuronal circuits for locomotion in the spinal cord can ‘learn’

by training independently of the connection to the brain. The

mechanisms underlying this training-induced plasticity that lead

to an improved recovery of locomotion include, among others,

the adaptation of neurotransmitter systems within the spinal

cord (glycinergic and GABAergic systems), the upregulation of

brain derived neurotrophic factor (BDNF) and enhanced collateral

sprouting (reviewed in Fouad and Tetzlaff, 2012). Based on these

animal studies, training of functional movements (e.g. stepping)

was successfully translated to individuals with incomplete spinal

cord injury (Dietz et al., 1995; Wernig et al., 1999; Dietz and

Harkema, 2004; Harkema et al., 2012). In the future when train-

ing becomes combined with plasticity-promoting treatments, such

as pharmacological and electrical stimulation-based approaches

(Chen et al., 2006; Courtine et al., 2009; Cortes et al., 2011;

Lamy, 2011), the role of neuroplasticity in enhancing recovery

of function might become even more important.

Facilitation of plasticity
Comparable with what has been shown in animal studies, loco-

motor training following spinal cord injury can improve locomotor

ability even in individuals with a low motor score (evidence grade

II; Dietz and Harkema, 2004). By unloading the body and standing

on a moving treadmill, individuals with spinal cord injury are

enabled to perform rudimentary stepping movements. These

movements evoke an appropriate afferent input to the spinal

cord leading to leg muscle activation comparable with that

during walking, which is the basis for the promotion of meaningful

neuroplasticity (Dietz and Harkema, 2004). The benefit of such

functional locomotor training does not depend on the approach

used. That is, body weight supported treadmill training is equally

effective as assisted over-ground walking (Dobkin et al., 2006a;

Musselman et al., 2009; Alexeeva et al., 2011; Field-Fote and

Roach, 2011). However, compared with earlier rehabilitation
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approaches that were designed to influence physical signs, such as

muscle tone, reflex activity or strengthening of muscle groups,

locomotor training has been shown to be more effective in im-

proving locomotor ability (Lucareli et al., 2011). Such functional

training leads to a task-specific improvement of leg muscle acti-

vation and, consequently of locomotor ability with only little in-

crease in voluntary leg muscle force (Martino, 2004; Wirz et al.,

2006). Even in subjects with severe spinal cord injury, locomotor

ability can be improved by training with assisted leg movements

and body unloading. This is associated with an increase in pat-

terned leg muscle activity that enables a reduction of body un-

loading during stepping (Dietz et al., 1995; Harkema, 2001) and a

strengthening of spared descending pathways (Thomas and

Gorassini, 2005). Besides facilitation of neural plasticity it is ex-

pected that also changes in muscle properties, associated with

the training, contribute to the improvement of function

(Howald, 1982).

Also in chronic incomplete spinal cord injury, when no more

spontaneous recovery can be expected, an improvement in mo-

bility can be achieved by functional training (Wirz et al., 2005;

Field-Fote and Roach, 2011; Hubli et al., 2012; van Hedel et al.,

2005). The gain in function achieved during such a specific train-

ing in the stable phase of a spinal cord injury might mainly be

attributed to plasticity. In motor complete spinal cord injury, a

locomotor EMG pattern can be both evoked and strengthened

by training although leg movements have to be permanently as-

sisted (Dietz et al., 1995; Harkema, 2001; Hicks et al., 2005).

Factors that enhance the recovery of locomotor function in

stroke are, for example, longer training times (41 h per day;

Kwakkel et al., 1999), high intensity training (Globas et al.,

2012), as well as asymmetric (Reisman et al., 2007) and faster

leg movements (Pohl et al., 2002). Although all of these studies

concern individuals with stroke, they might be translated to the

rehabilitation of subjects with spinal cord injury. Furthermore,

based on the knowledge that arm movements contribute to bi-

pedal gait, locomotor ability might be improved by involvement of

the upper limbs in training (Dietz, 2002; Kloter et al., 2011; Kloter

and Dietz, 2012; de Kam et al., 2013).

The question regarding the early timing of a training therapy

after spinal cord injury is still unresolved. Animal models indicate

that there might be a ‘therapeutic window’ for rehabilitation after

an injury (Norrie et al., 2005; Krajacic et al., 2009). In subjects

with a spinal cord injury such a therapeutic window has not yet

been defined although there is evidence that an early onset of

training might be favourable (Dobkin et al., 2006; Winchester

et al., 2009; Harkema et al., 2011). Of course, spinal shock asso-

ciated with flaccid paresis and problems in circulation prevents a

locomotor training programme in the acute/early stage after

trauma. However, this might not necessarily be a disadvantage

as rodent experiments indicate that training onset that is too

early might be deleterious to motor recovery (Maier et al., 2009).

For the selection of people with spinal cord injury who might

profit most from a locomotor training programme, an early pre-

diction of ambulatory function is helpful. For example, rehabilita-

tion of people with an (almost) complete spinal cord injury and an

unfavourable prediction, rehabilitation should be focused on

wheelchair driving and on other neurological deficits rather than

on the lost stepping ability. Using clinical and electrophysiological

assessments, a reliable prediction of stepping ability can be made

that consequently allows the planning of rehabilitation procedures,

e.g. locomotor training, within 4 weeks after a spinal cord injury

(Curt et al., 2008; Zörner et al., 2010; van Middendorp et al.,

2011). The essential criteria for a such a stratification are the initial

lower limb motor scores combined with preservation of spinal im-

pulse conductivity (i.e. presence of tibial somatosensory potentials;

Curt et al., 2008; Zörner et al., 2010) or, combined with lower

limb light touch sensation (van Middendorp et al., 2011).

Physiological requirements to facilitate
plasticity
Training effects depend on a number of physiological prerequisites

(Table 1 and Fig. 2) necessary to evoke a pattern of muscle ac-

tivation similar to that found in individuals without injury of the

nervous system as this is required to facilitate meaningful plasti-

city. A crucial factor that is needed to trigger a locomotor EMG

pattern in individuals with spinal cord injury is afferent input from

load receptors (Harkema et al., 1997; Dietz, 2012). This state-

ment is based on the observation that without loading the sole

of the foot during the stance phase no meaningful leg muscle

activation occurs in individuals with complete spinal cord injury

during supported stepping. Proprioceptive inputs from leg exten-

sor muscles, and probably from mechanoreceptors in the sole of

the foot, provide load-related afferent information. In addition,

corresponding to studies in cats (Kriellaars et al., 1994; Pearson,

2008), hip extension movements, i.e. hip-joint related afferent

input (but less knee or ankle joint excursions) are essential for

the initiation of the swing phase and the generation of a loco-

motor EMG pattern in people with incomplete spinal cord injury

(Dietz et al., 2002).

Spastic muscle tone is required to induce a locomotor EMG

pattern during assisted locomotion in individuals with motor (in)

complete spinal cord injury (Dietz et al., 1995). In addition, spastic

muscle tone can compensate in part for the spinal cord injury-

induced loss of supraspinal drive (Dietz and Sinkjaer, 2007).

Secondary changes in mechanical muscle fibre properties after a

CNS damage lead to a regulation of muscle tone during functional

movements at a simpler level, i.e. without modulated muscle ac-

tivation. This enables the patient, for example, to support the

body during the stance phase of gait. Consequently, the applica-

tion of the noradrenergic agonist clonidine (a potent antispastic

drug) abolishes tonic leg muscle activity and leads to flaccid paresis

of leg muscles, which prevents training effects (Dietz et al., 1995).

Therefore, antispastic medication should be kept to a minimum in

ambulatory people with spinal cord injury. In non-ambulatory

individuals with spinal cord injury, however, spastic muscle tone

can overshoot and lead to painful spasms.

Limitations of training-induced
plasticity
In humans, the amount of sensorimotor deficits and the conse-

quent chances for a recovery of function after spinal cord injury
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are determined by the level and severity of spinal cord damage

(Latash and Anson, 1996). In individuals with chronic incomplete

spinal cord injury that are severely affected [ASIA Impairment

Scale (AIS) C] some locomotor function can be re-established by

intensive training (Wirz et al., 2005; Hubli et al., 2012).

Nevertheless, even after such training, patients still need support

(e.g. braces and/or manual assistance) to compensate for their

limited stepping abilities. In contrast, individuals with less severe

spinal cord injury (AIS D) usually learn to walk without support. In

other words, the amount (and location) of spared spinal neural

tissue determines the effectiveness of training. In the future, indi-

viduals with (almost) complete lesions might profit from a com-

bination of training and epidural stimulation to facilitate the

initiation and performance of stepping movements (Harkema

et al., 2011).

There is also a limitation of changes in cortical structures after

spinal cord injury. This is reflected in the observation that there is

little remapping in the representation of limb function after spinal

cord injury. In people with chronic para/low tetraplegia, somato-

topical representation during movements of non/moderately

affected body parts is preserved or only slightly expanded (Curt

et al., 2002). In line with this, little cortical expansion towards

more denervated lower body parts occurs when cortical areas of

preserved limb function are stimulated (Freund et al., 2011). From

a clinical point of view, these results are not surprising as upper

limb function hardly profits from cortical areas denervated from

lower limbs during rehabilitation.

Age also limits plasticity and the subsequent restoration of func-

tion after spinal cord injury. Although similar results were obtained

regarding the recovery of neurological deficits in young and older

individuals, older patients have greater problems in translating this

recovery into improvements of daily life activities (Jakob et al.,

2009). Therefore, older individuals would probably profit from

age-adapted rehabilitation programmes, e.g. to focus the training

on a limited number of everyday functions at home.

Also, biological rehabilitation confounders have to be considered

(cf. Dobkin 2004). Co-morbidity, in particular infections, can have

a limiting effect on the neurorehabilitative potential not only for

neuroimmunological processes (Moreno et al., 2011) and stroke

(Vermeij et al., 2009) but also, as shown recently, for spinal cord

injury (Failli et al., 2012).

Another limitation of training found in animal models is the

observation that specific training can interfere with untrained

tasks (de Leon et al., 1998; Girgis et al., 2007). Training effects

are known to be fairly task-specific (Edgerton et al., 2008). The

finding that the training of one task limits another has, however,

not yet been described in the clinical setting. Further investigations

of the interaction of training paradigms appear warranted.

Lastly, following complete thoracic spinal cord injury, training

focuses on motor skills relevant to the individual, including wheel-

chair propulsion, transfer and muscle strength. In such a condition,

adaptations of the nervous system can hardly overcome the lack

of descending control.

Immobility: maladaptive plasticity
There are a number of maladaptive changes after spinal cord

injury such as neuropathic pain, autonomic dysreflexia and circu-

lation failure. For the sensorimotor systems, maladaptive plasticity

includes changes in neuronal function below the level of lesion

(Dietz et al., 2009; Boulenguez et al., 2010; Murray et al., 2010).

During recent years, observations were made indicating that

spinal neuronal circuitries deprived of supraspinal drive develop a

neuronal dysfunction. This dysfunction is reflected by a loss of

action potentials below and remote of the level of lesion (Lin

et al., 2007), an exhaustion of leg muscle EMG activity during

Table 1 Factors influencing training effects

Factor Function Validity References

1. Training duration Locomotion + + (stroke) Kwakkel et al., 1999
Hand function ?

2. High intensity training Locomotor function + + Barbeau and Rossignol, 1994; Dietz and Harkema,
2004; Curt et al., 2008

3. Movement velocity Locomotion + + (stroke) Pohl et al., 2002
Hand/arm function ?

4. (Spastic) Muscle tone Locomotion + + Dietz et al., 1995
Hand function ?

5. Augmented feedback Locomotion + + Riener et al., 2006; Kamper 2012
Hand function +

6. Virtual reality Locomotion + Mirelman et al., 2009; Riener et al., 2010
Hand function +

7. Load receptor input Locomotion + + Harkema et al., 1997; Dietz et al., 2002

8. Hip related afferent input Locomotion + + Dietz et al., 2002

9. Drug (noradrenergic; serotonergic)
application

Locomotion ? Remy-Neris et al., 1999; Courtine et al., 2009
(rodent)

10. Epidural stimulation Locomotion + Harkema et al., 2011

In this table the factors that might influence training effects are listed. They concern locomotor and/or hand/arm training after a spinal cord injury. The evidence

differs considerably between the factors. The validity of the effects are indicated: (?) some evidence from animal experiments, no evidence in humans; ( + ) moderate
evidence from human experiments/studies (evidence grade I); ( + + ) stronger evidence from human experiments/studies for positive effects of the approach
(evidence grade II).
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assisted locomotion (at a pre-motor neuronal level), and a change

in spinal reflex behaviour (humans: Dietz and Müller, 2004; Dietz

et al., 2009; rodents: Lavrov et al., 2006). The development of

dysfunction seems to depend on the loss of activity in neuronal

circuitries below the level of the injury in people with spinal cord

injury rather than on the completeness of the injury (Dietz et al.,

2009). Consequently, in severely affected but incomplete spinal

cord injury (i.e. AIS C), the dysfunction is suggested to be influ-

enced positively by an intensive training approach (Hubli et al.,

2012). The occurrence of neuronal dysfunction might be because

of an undirected synaptic plasticity (Beauparlant et al., 2013) lead-

ing to an imbalance of inhibitory and excitatory activity within

neuronal circuitries with a bias towards an inhibitory drive

(Dietz, 2010; cf Fig. 2). This assumption would be in line with

the observation of an increased activity of inhibitory signals to

neurons in spinalized rats (Ichiyama et al., 2011). Accordingly,

an intensive training programme in rats re-establishes a balance

between inhibitory and excitatory signals in spinal locomotor net-

works (Ichiyama et al., 2011).

The success of future repair interventions critically depends on

the integrity of neuronal function below the level of lesion, e.g.

non-exhausting leg muscle activation. Consequently, counter-

measures have to be developed to prevent the occurrence of

neuronal dysfunction in non-ambulatory individuals.

Special aspects of upper limb
rehabilitation
Upper limb function is impaired in �50% of individuals with spinal

cord injury because of the cervical location of the injury. The result-

ing functional impairments depend on the level and completeness of

damage to the cervical spinal cord. For individuals with tetraplegia

even a small gain in hand function has the highest priority

(Anderson, 2004). Also for the rehabilitation of impaired arm move-

ments in people with tetraplegia, facilitation of plasticity by func-

tional training (e.g. reach and grasp movements) prevails. Basic

research has only just begun to investigate forelimb function after

spinal cord injury (Girgis et al., 2007; Kanagal and Muir, 2008;

Maier et al., 2008). It was reported that in rodents with cervical

spinal cord injury reaching training promotes neuroplasticity and

task-specific recovery (Girgis et al., 2007). However, less is known

about the essential factors for effective training in people with cer-

vical spinal cord injury (Oess and Curt, 2012), or whether training-

induced gains-in-function persist for a significant period of time.

After cervical spinal cord injury, training approaches and their

success are influenced not only by the injury of spinal tracts but

also by the damage of motor neurons and roots (amounts up to

70% of paresis in C5 to C7 lesions), leading frequently to flaccid

paresis and muscle atrophy (Thomas et al., 1997; Dietz and Curt,

2006). Flaccid paresis can impede the re-establishment of hand

function as some spastic muscle tone is required to perform

simple grasp movements (Dietz and Curt, 2006). In contrast, an

imbalance of muscle tone within forearm muscles with a domin-

ance of flexor tone can also hamper the recovery of hand func-

tion. This can be prevented by inducing local muscle weakness by

botulinum toxin A injections allowing a certain degree of grasp

movements.

In individuals with lesions around C5, training interventions are

limited allowing only ‘passive hand function’, (i.e. supination

movement at the elbow joint) with the consequence of a low

degree of self-independence. In people with lesions at C6/7, the

most frequently occurring condition of cervical injuries, some hand

extension movement is usually preserved, allowing a ‘tenodesis

Figure 2 Neuroplasticity after spinal cord injury. Schematic

drawings showing the mechanisms underlying neuroplasticity

after spinal cord injury. The spinal neuronal circuits become

activated by an appropriate afferent input leading to the gen-

eration of a locomotor EMG pattern and, consequently, to

training effects. The equilibrium between inhibitory and excita-

tory signals within the neuronal circuits remains preserved.

Severely affected spinal cord injury subjects become not trained

for their locomotor ability. In these cases the neuronal circuits

become not activated and excitatory activity weakens. This leads

to a bias of inhibitory signals and, consequently, to an exhaus-

tion of leg muscle EMG activity during assisted stepping

(adapted from Dietz, 2010).
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grasp’. Inducing a mild contracture of finger flexor muscles can

facilitate this tenodesis grasp. Such a hand function can be trained

to achieve a largely independent living. So-called ‘active hand

function’ (which is found after lesions around C8 leaving some

innervation of intrinsic hand muscles) only slightly impairs hand

movements required for daily life activities as it spares the ability

to perform independent finger movements.

Presently, upper limb rehabilitation after cervical spinal cord in-

jury focuses on the training of unilateral reach and grasp move-

ments. The application of orthoses/splinting devices can be

beneficial as a means to improve the performance and accuracy

of functional hand/arm movements (Mirelman et al., 2009; Oess

and Curt, 2012). Studies on the improvement of arm/hand move-

ments using such functional training only exist for individuals with

stroke (evidence grade II; Krebs et al., 2008; Wolf et al., 2008;

Langhorne et al., 2009; Kamper, 2012).

Compared with thoracic spinal cord injury, an injury of the cer-

vical cord leads to a mixture of damage to central and peripheral

nervous system structures. Further, the level of lesion determines

the individual complex pattern of sensorimotor deficits. This

requires adapting rehabilitation programmes to individuals. The

complexity and variability of cervical lesions complicates the intro-

duction of promising repair interventions.

Technology support for functional
training
As soon as the concept of plasticity-based functional training

became established in the early 90s, the idea of the technical as-

sistance of impaired limb movements was considered (Dietz, 2010;

Riener et al., 2010; Benito-Penalva et al., 2012). These consider-

ations were fuelled by the notion that longer and more intensive

training with a high number of movement repetitions can best be

achieved using robotic training devices and that this technology

also allows for a monitoring of changes in movement performance

over the course of rehabilitation (Riener et al., 2006, 2010; Dietz,

2008; Benito-Penalva et al., 2012). Robotic devices can promote

recovery by facilitating plasticity (Everaert et al., 2010) and, cor-

responding to conventional training, they enable the performance

of motor functions, which promotes activation and strengthening

of neuronal pathways to a point where assistance is no longer

needed.

However, increased use of technology runs the risk of becoming

uncritically applied. Considering that neuronal activity is a key for

meaningful plasticity to occur (Hubel and Wiesel, 1965; Guic

et al., 2008), a robotic device should not overtake function. This

requires an active involvement of the patient in movement per-

formance. Just moving limbs does not lead to a meaningful muscle

activity and, consequently, no training effect can be expected.

Therefore, the robotic support provided has to be kept to a min-

imum so as to challenge the patient’s own effort for movement

performance (Reinkensmeyer et al., 2004; Field-Fote and Roach,

2011). Consequently, robotic-assisted training should be tailored

to the individual patient’s needs in order to challenge his/her own

contribution to movement performance and some patient groups

might specifically benefit from such training (Benito-Penalva et al.,

2012).

Another advantage of robotic devices is that they facilitate train-

ing for people with severe spinal cord injury (e.g. AIS C, sensori-

motor incomplete/non-functional) at a stage where other forms of

training (e.g. over-ground stepping with support) are costly and

require more resources, i.e. assistance/support by at least two

individuals. In addition, robotic devices have been designed to

facilitate and standardize unilateral arm/hand training with the

inclusion of both virtual reality (Takahashi et al., 2008; Kamper

et al., 2012) and haptic (Riener et al., 2006; Mirelman et al.,

2009) experiences. This not only makes training more engaging

for the patient, but can also provide augmented feedback about

movement performance.

In conclusion, the technology of robotic devices in the rehabili-

tation of sensorimotor deficits is still in an early stage (Krebs et al.,

1998; Dietz, 2012). It also has to be kept in mind that such

technologies are not superior to other approaches of functional

training per se (Dobkin et al., 2006; Duncan et al., 2011;

Dobkin and Duncan, 2012). However, they allow longer training

times in patients with severely impaired sensorimotor function. The

development of future robotic devices and their effective use is a

challenge that can only be overcome by the close cooperation

between engineers and medically trained rehabilitation specialists,

as well as multicentre studies to confirm efficacy of these rehabili-

tative strategies.

Preclinical approaches to
restore function
Plasticity promoting approaches such as functional training to im-

prove outcome are restricted to people with incomplete spinal

cord injury. The perspectives for regaining lost function in com-

pletely paralysed individuals (�60%) will be presented in the

second part of this review. Approaches will be discussed that are

directed at the restoration of function in individuals with severe

incomplete or complete spinal cord injury (i.e. AIS A/B). An over-

view of current approaches and their intentions are summarized

in Fig. 1.

Activating spinal neural networks
A complete thoracic spinal cord injury deprives spinal neuronal

networks of the descending drive that is necessary to trigger

their activation (e.g. locomotor function). Studies in animal

models have demonstrated that after complete transection of

the spinal cord these networks can be activated pharmacologically,

by electrical stimulation, or by natural sensory afferent input (e.g.

standing on a moving treadmill). Therefore, both pharmacological

and epidural electrical stimulation of the thoraco-lumbar spinal

cord lend themselves as potent tools to compensate for the loss

of excitatory drive from supraspinal centres. Attempts to stimulate

spinal networks in animal models include epidural (Iwahara et al.,

1991; Gerasimenko et al., 2003; Ichiyama et al., 2005) and

intraspinal stimulation (Barthélemy et al., 2007; Mushahwar
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et al., 2007). Both approaches have supported the idea that

stimulation can be used to initiate locomotor activity after com-

plete spinal cord injury or to assist with the execution of locomotor

movements in incomplete lesions. Compared with direct muscle

stimulation (functional electrical stimulation), which has frequently

been applied to enable motor function (Thrasher and Popovic,

2008; Everaert et al., 2010; Alon et al., 2007), stimulation of

spinal networks allows for a more natural, coordinated recruitment

of synergistic muscle groups and causes less muscle fatigue. A

challenge of the translation of these techniques to the clinical ap-

plication is the invasiveness of surgically implanted electrodes

overlaying (epidural) or even penetrating (intraspinal) ‘healthy’

parts of the spinal cord. Epidural stimulation has moved to appli-

cation in human spinal cord injury (Minassian et al., 2004;

Harkema et al., 2011). A patient with motor complete spinal

cord injury was able to perform voluntarily controlled (but not

stepping) movements with epidural stimulation (Harkema et al.,

2011). Thus, epidural stimulation does not only facilitate the per-

formance of leg movements by spared descending connections

but also helps to overcome a critical threshold for activating

spinal neural networks and promote meaningful plasticity. This is

an important observation as for the first time voluntarily controlled

leg movements could be induced in a motor complete subject with

spinal cord injury. Therefore, such an intervention might be a

viable approach for restoration of some function in a selected

group of subjects with severe spinal cord injury. It remains to be

shown whether epidural stimulation will generate sufficient muscle

activity in individuals with spinal cord injury to support the body

during stepping and what the long-term effects of such a treat-

ment will be.

Locomotor activity can also be facilitated pharmacologically

using neuromodulators. Studies in various animal models have

demonstrated that intravenous, intrathecal or the indirect applica-

tion (using cells grafts) of neuromodulators, including dopamine

(L-DOPA, noradrenaline or serotonin; Jankowska et al., 1967;

Barbeau and Rossignol, 1991; Cazalets et al., 1992; Ribotta

et al., 2000; Schmidt and Jordan, 2000) can trigger and facilitate

locomotor rhythms. Such treatments in combination with epidural

stimulation results in some recovery of locomotor function in

rodents (Courtine et al., 2009; van den Brand et al., 2012).

For a translation to the application in humans some challenges

have to be considered. The effects of neuromodulating substances

vary between vertebrates. Serotonin can initiate locomotor move-

ments in the rabbit (Viala and Buser, 1969), neonatal rats

(Cazalets et al., 1992; Kiehn and Kjaerullf, 1996), and facilitates

walking in spinalized rats (Feraboli-Lohnherr et al., 1997) but does

not initiate locomotion in the cat (Barbeau and Rossignol, 1991).

In individuals with incomplete spinal cord injury, oral application of

L-DOPA has no influence on the recovery of locomotion during

rehabilitative training (Rémy-Neris et al., 1999; Maric et al.,

2008).

Another challenge is the temporal control of pharmacological

stimulation, e.g. locomotion has to be initiated and terminated

at defined time points. Furthermore, the relation of electrical

and pharmacological stimulation of spinal networks and the

emergence of unwanted muscle activation has to be carefully con-

sidered. There is a thin line between that which constitutes a

benefit versus that which constitutes a detriment and could be

easily crossed by either mode of stimulation.

Presently, epidural and pharmacological stimulation of the iso-

lated spinal cord is still in an experimental stage. The current

approaches of stimulation techniques are unlikely to be beneficial

to a majority of patients with spinal cord injury (Domingo et al.,

2011). With increasing severity (especially complete lesions),

where both excitatory and inhibitory control of spinal networks

is lacking, artificially induced motor function is difficult to use by

an individual. Furthermore, the aforementioned stimulation tech-

nique is restricted to lower limb function where restricted mobility

can be provided by the use of a wheelchair. Nevertheless, enhan-

cing locomotor function with electrical stimulation remains a

promising research direction.

Neural repair

Promises

A partial repair of the damaged spinal cord could avoid the prob-

lems of stimulation techniques following complete spinal cord

injury. During the past decades, a number of approaches to

induce regeneration in the spinal cord were moderately successful

in rodent models.

The best cell candidate for a transplantation-based treatment of

spinal cord injury remains a matter of investigation (Tetzlaff et al.,

2011). Schwann cells have been studied for many years and have

been demonstrated to reliably form tissue bridges following com-

plete lesions of the spinal cord (Bunge and Pearse, 2003). Other

types of grafts are auto-transplantation of olfactory ensheathing or

stem cells (Fortun et al., 2009). Also these cells are known to be

permissive for the outgrowth of lesioned axons. In the case of

olfactory ensheathing cells, neither negative nor beneficial effects

were found in individuals with motor complete spinal cord injury

(Mackay-Sim et al., 2008). Also results from a larger group of

individuals examined in China did not show signs of motor recov-

ery (cf. Dobkin et al., 2006b). Lastly these trials were not able to

detect smaller but relevant negative or positive effects because of

the small number of subjects included (Mackay-Sim et al., 2008)

or because of methodological limitations (China trial, cf. Dobkin

et al., 2006).

Cell grafts on their own (not even stem cells), will likely not be

sufficient to promote substantial repair of the human spinal cord

because axonal regeneration beyond a graft is rarely observed in

animal models. However, cell grafts can be an essential factor for

combinations with other regeneration promoting treatments

(Fouad et al., 2005; Pearse et al., 2007; Lu and Tuszynski,

2008). More recently alternative sources from skin-derived precur-

sor cells show promise as they effectively promote regeneration

and remyelination of axons without co-treatments in rodents

(Biernaskie et al., 2007). Also, other cell grafts such as oligo-

dendrocyte precursor cells might have potential in remyelinating

spared axons thereby contributing to recovery (Karimi-

Abdolrazaee et al., 2006).

The excitement about the use of stem cells has taken a major

hit by the interruption of the GERON trial and the fact that the

tumour risk of such a treatment cannot be ignored. Nevertheless,
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an encouraging result of a study grafting embryonic tissue comes

from the Tuszynski laboratory (Lu et al., 2012). This approach

shows a significant outgrow of axons from embryonic-derived

neurons over longer distances in the adult rodent spinal cord.

The key to the success of this study might have been the use of

the embryonic stem cells in combination with a medium involving

growth factors leading to a longer survival of the cells.

Pharmacologically, a promising candidate for promoting repair

(regeneration and plasticity) is chondroitinase ABC, a chondroitin

sulphate proteoglycan digesting enzyme (Fawcett, 2009). This

enzyme has repeatedly demonstrated its ability to allow axonal

regeneration and plasticity in different animal models, currently

making it one of the most appreciated experimental treatments.

Similarly, the application of NogoA (a prominent myelin associated

inhibitor) neutralizing antibodies has resulted in significant neurite

growth-promoting effects in rodent and primate spinal cord injury

models (Zörner and Schwab, 2010). Recently, a phase I trial has

been successfully completed.

Many experimental treatments address the inhibitory environ-

ment of the adult CNS and result in only moderate axonal regen-

eration. An alternative approach focuses on a cell intrinsic factor/

pathway determining regenerative abilities of neurons, i.e.

PTEN/mTOR (phosphatase, phosphatase and tensin homolog/

mammalian target of rapamycin). The results of manipulating

this pathway using genetically modified mice indicate that regen-

eration of corticospinal tract fibres following incomplete spinal

lesions is possible (Liu et al., 2010).

For the success of all regeneration- (and plasticity) inducing

therapies it will be of crucial importance that axons form correct

connections. This fine-tuning of new connections might be facili-

tated by functional training as demonstrated in animal models

(Garcı́a-Alı́as et al., 2009). However, to demonstrate that new

connections are functionally meaningful is challenging. An ex-

ample where adaptive changes/rewiring resulted in new indirect

connections (with different transmission speed) of cortical signals

through the red nucleus has been shown by the Schwab group

(Raineteau et al., 2001). In this study the rewiring was paralleled

by significant recovery. Furthermore, it has been demonstrated

that adaptations in descending tracts (especially collateral sprout-

ing) are contributing to spontaneous and training-induced recov-

ery (Weidner et al., 2001; Bareyre et al., 2004; Courtine et al.,

2008; Krajacic et al., 2010) indicating that in the case of incom-

plete spinal cord injury, new/alternative connections offer a

promising substrate for rehabilitative training.

Challenges

Over 30 years of research to repair the injured spinal cord did not

result in the successful translation of treatments that promote

functional recovery from animal models to the clinical setting.

This lack of clinical success stands in contrast with many promising

results in animal models that have been reported. This discrepancy

is raising doubts about the quality of reports from animal models

that are frequently flawed, for example, by a reporting bias

because of missing data and a lack of negative results (Ioannidis,

2005; Hunter, 2011). It might, in part, be rooted in insufficient

communication/cooperation between basic and clinical scientists,

e.g. to explore animal spinal cord injury models that reflect best

the human condition (Metz et al., 2000). But, it would be wrong

to put the blame exclusively on inadequate spinal cord injury

animal models.

One reason for the lack of successful translation concerns un-

realistic expectations, such as anticipating a cure, although only

small benefits are found in animal models. Such expectations are

repeatedly fuelled by overstated headlines in the media (Bubela

and Caulfield, 2004). For example, studies in animal models re-

ported regeneration of a few axons over a few millimetres, which

‘is a far cry from what might be needed in humans with cervical

spinal cord injury to reconstitute a meaningful recovery of lower

extremity function’ (Tansey et al., 2012). Considering the rela-

tively small functional benefits of treatments found in standardized

and controlled animal models of spinal cord injury, it is not surpris-

ing that when these treatments are applied in the clinical setting,

where a much higher variability in lesion size and location exists,

no effects are found.

Frequently it is also overlooked that treatments are often tested

in animal models with incomplete lesions because most neuronal

growth inducing approaches rely on residual tissue bridges to

achieve growth/plasticity of spared axons. Thus, in complete

spinal cord transection these treatments can only promote benefits

if the lesion site is bridged. In clinical trials of spinal cord injury,

typically the first safety phase is performed in individuals with

complete lesions where usually no sufficient tissue bridges exist

(Dietz and Curt, 2006). Another factor that influences the devel-

opment of effective treatments to repairing the injured spinal

cord is that neurite growth is inhibited by a variety of factors,

such as myelin-associated inhibitors including NogoA (Zörner and

Schwab, 2010), a lack of neurotropic support, developmental

changes in neurons restricting their regenerative ability (Qiu

et al., 2002), chondroitin sulphate proteoglycans (Fawcett, 2009)

in the scar tissue formed around the lesion site (Hermanns et al.,

2001) and in the perineuronal nets (Massey et al., 2006).

Combinatorial treatments addressing more than one of these im-

pediments for neurite growth currently have a high priority in

basic research. However, such treatments are challenging, due

not only to technical difficulties, but also to unpredictable treat-

ment interactions and the necessity of a large number of controls.

Limitations of animal models also include different projections of

spinal tracts in different species determining the degree of recov-

ery. For example, when comparing primates to rodents the corti-

cospinal tract has a higher degree of midline crossing collaterals,

enabling a higher degree of recovery in primates as compared to

rodents (Rosenzweig et al., 2010). In addition, quadrupedal loco-

motion allows more post-lesion activities and thus self-training

compared with bipedal walking in humans (Fouad et al., 2000;

Caudle et al., 2011). Furthermore, treatments in animal models

are frequently applied directly after injury, (which is clinically un-

realistic), with injury types typically not found in patients (e.g.

incision lesions rather than contusions over two to three segments

in patients; cf. Metz et al., 2000).

Beyond these limitations, results from animal models frequently

cannot be repeated in the same animal model (Steward et al.,

2006). The field has recognized this problem and has responded

by repeating studies and promoting publication of ‘negative’ re-

sults (see issue 233 of Experimental Neurology, 2012), as well as
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by encouraging critical discussions of deficiencies in research

approaches (Liu et al., 2010; Sena et al., 2010; Kwon et al.,

2011; Steward et al., 2012). Such deficiencies include a low stat-

istical power of animal experiments with relatively small numbers

of animals, resulting in the probability of false positive results

(Ioannidis, 2005) and a bias to publish such positive results

(Sena et al., 2010). Another bias might occur because of an in-

vested interest in a treatment with the consequence that scientists

are reluctant to publish negative results of a therapy. This idea was

fostered by the results of a survey performed recently (Kwon

et al., 2010): 47% of the participants strongly agreed and 42%

mildly agreed to this statement. But even if there was no invested

interest, the survey indicates that scientists generally are ‘reluctant

to publish their own negative result on a therapy’.

In general, it has to be recognized that not all scientific achieve-

ments in basic research in spinal cord repair do necessarily advance

the field towards clinical trials. Treatments designed to promote

axonal regrowth have a substantial risk potential (e.g. enhanced

pain). Therefore, progress has to be made in understanding the

physiological changes in the injured spinal cord as well as the drug

interactions and possible side effects of a treatment. Such contri-

butions are important for developing safe and reliable treatments

in the future. Nevertheless, although there have been disappoint-

ing reports about abandoned clinical trials over the recent years,

there are new promising treatments promoting axonal regener-

ation and/or sprouting (Fig. 3). The clinicaltrials.gov registry

gives testimony that several small open label trials are under way.

Perspectives
During the past 20 years, basic and clinical research activities have

strongly advanced the field of spinal cord research and, conse-

quently, of rehabilitating people with spinal cord injury.

Principles to promote neuroplasticity derived from basic research

have become successful in terms of their translation to the human

condition and will further be refined and supplemented by

advanced technology. Treatments directed at improving function

by pharmacological or electrical stimulation are on the verge of

translation, but face substantial challenges. Such challenges are

found throughout the clinical sciences (e.g. stroke; Narayan

et al., 2002). Nevertheless, the knowledge gained by basic

research, e.g. the refinement of stimulation techniques or search

for appropriate animal models, will serve as a basis for successful

translations. This makes the perspectives for some restoration of

lost functions even after motor complete spinal cord injury

promising.

Conclusions
In people with incomplete spinal cord injury neuroplasticity can be

facilitated and refined by training of upper and lower limb move-

ments with the goal to individually optimize the functional out-

come. The prognosis of outcome after injury by clinical and

electrophysiological examinations allows an early selection of

appropriate training approaches. These should focus on relearning

specific everyday movements. An effective rehabilitation of sen-

sorimotor systems is based on physiological requirements that lead

to a meaningful muscle activation. For severely affected people

with spinal cord injury [AIS A/B/(C)], the prospects are less pro-

mising. Stimulation approaches might facilitate stepping but hardly

upper limb movements. Repair interventions are as yet, not suc-

cessful. At a cervical level, where repair would be most required to

improve hand/arm function, limitations for repair exist due to a

combination of damage to both spinal tracts and motor neurons/

ventral roots. Thus, basic research needs to continue to develop,

to repeat and to combine treatments with the aim to repair the

injured spinal cord. Lastly, guidelines are needed regarding what

should be translated and what can realistically be expected from

reliable and safe treatments (Kwon et al., 2010).

Figure 3 Axon regeneration versus sprouting after a spinal cord

injury. The figure summarizes the mechanisms of regeneration

and sprouting after a spinal tract damage. (A) An injury severs

some axons while sparing others. (B) Regeneration is the growth

from the injured axonal tips. Regenerating axons can grow

through or around a lesion site. (C) Sprouting of spared (i.e.

uninjured) axons. They often sprout into a denervated area, in

response to an injury elsewhere in the CNS. (D) Sprouting can

also occur from uninjured portions of injured neurons (i.e.

growth from uninjured axonal branches or from the main axonal

shaft de novo proximal to the injury site as shown here; from

Zheng and Fouad, 2012).
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