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ON THE COMPUTATIONAL CONTENT OF THE AXIOM OF CHOICE 

STEFANO BERARDI, MARC BEZEM, AND THIERRY COQUAND 

Abstract. We present a possible computational content of the negative translation of classical analysis 

with the Axiom of (countable) Choice. Interestingly, this interpretation uses a refinement of the realizability 

semantics of the absurdity proposition, which is not interpreted as the empty type here. We also show how 

to compute witnesses from proofs in classical analysis of 3-statements and how to extract algorithms from 

proofs of V3-statements. Our interpretation seems computationally more direct than the one based on 

Godel's Dialectica interpretation. 

Introduction. It is well-known that the Axiom of Choice [16] is validated by the 
Brouwer-Heyting-Kolmogorov explanation of the logical constants [3]. In view of 
the negative translation of classical arithmetic into intuitionistic arithmetic [13, 6], 
one would expect that it is possible to make constructive sense of the Axiom of 
Choice as used in informal mathematics, for instance in the use of Zorn's Lemma, 
or in establishing the existence of a well-ordering on the reals. 

This, however, appears to be non-trivial. The combination of the Axiom of 
Choice and the Excluded Middle turns out to be extremely problematic from a 
constructive point of view. To make constructive sense of such a combination can 
actually be seen as one of the main aims of Hilbert's programme [8, 9, 1]. We 
address here the more modest question of the analysis of the computational content 
of the Axiom of Choice, by giving a novel realizability interpretation of the negative 
translation of the Axiom of (countable) Choice. This interpretation is due to the 
third author, motivated by [5]. 

Most of the work cited above has been inspired by metamathematical questions 
(consistency proofs, proof theoretic strength). Quite a different motivation arises 
from the computer science point of view, namely the extraction of algorithms from 
proofs. Here one encounters the same problem of the combination of the Axiom of 
Choice with classical logic. Up to now there were only two possibilities: (i) to use 
the bar recursive Dialectica interpretation of the Axiom of Choice due to Spector 
[10, 22]; (ii) to avoid the Axiom of Choice whenever possible, for example by 
encoding functions as relations such as done by Murthy in [17,4]. 

We improve on (i) since our interpretation is computationally much more direct 
than Godel's Dialectica interpretation, and the resulting algorithm is more intuitive 
than bar recursion. 
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We improve on (ii), since encoding functions as relations is often unnatural (see 
the discussion of Higman's lemma in [17]). Moreover, the encoding relies on the 
definability of a function value f(x) as the smallest y satisfying <f>(x,y), and this 
only works well if y ranges over an effective well-ordering such as the natural 
numbers. The approach here allows to interpret directly the first informal proof of 
Higman's lemma presented in [17], and applies also to the case where y ranges over 
an arbitrary simple type over N. 

Our paper is organized as follows. In the first section we present the formal 
system under consideration. In Section 2, we enumerate some known difficulties 
in combining the Axiom of Choice and the Excluded Middle. They appear in 
quite different forms in different formalisms: as the impossibility of a recursive 
realization, as a non-conservativity result, and as a problem with a formulation 
in sequent calculus. In the next section we present the programming language in 
which the realizing objects live. The central and longer part is then Section 4, the 
description of a realizability interpretation, with a precise and detailed proof of 
correctness. This proof of correctness is non-constructive. (We use an intuitionistic 
meta-theory throughout this paper, unless explicitely stated otherwise.) We show in 
the next section that this interpretation can be generalized to the case of the axiom 
of Dependent Choice, and in this case, reduce intuitionistically its correctness to a 
principle of bar induction. In Section 6, we shortly review Spector's bar recursive 
interpretation of Double Negation Shift [22], which suggests a computational con
tent of the negative translation of Axiom of Choice based on Godel's Dialectica 
translation. We end by a section with a heuristic explanation of our realizability 
interpretation, based on a game-theoretical analysis of proofs. 

§1. Presentation of HAra. 
1.1. Types. The types of HA™ are N and with T, T' also z —> x'. Here and below 

types will be denoted by lower case greek letters x, X', — 
1.2. Terms. The terms of HA™ are built from (typed) variables and constants 

using lambda abstraction and (well typed) application. There are countably many 
variables x, y, z, ... for each type x. The constants are: 0 : N, s : N —> N and 
RT : T —» (N —• T —> T) —• N —• x for every type T. Terms are denoted by M, M', 
N,..., and M : x expresses that the term M has type r. 

1.3. Formulae. Prime formulae are equations of the form M = M', with M,M' : 
N. Higher type equations, say M = M' with M, M' : N —» N, are abbreviations 
of equations of lowest type, such as Mx — M'x with x fresh. The set of formulae 
of HA" is generated in the usual way from the prime formulae by the boolean 
connectives A, ==>•, _L and the quantifiers V, 3. We use <j>, </>',... to denote formulae. 
We abbreviate </> =>• J- by -xf>. 

1.4. Theory. The theory HA", intuitionistic higher-order arithmetic, is built up 
from three parts: (i) axioms and rules for first order many-sorted intuitionistic 
predicate logic; (ii) equality axioms and the axiom schema of induction; (iii) lambda 
calculus axioms and rules and the defining equations of the constants RT, RxxyQ = 
x, Rrxy(sz) = yz{Rrxyz). Thus our theory HAra essentially coincides with HAro 

from [26], the only difference being that we consider V as defined and use the lambda 
• version instead of the combinator version. We do not include extensionality axioms 
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or rules into the theory HA™. The theory HA™ is HA™ with classical logic; HA™, 
minimal higher-order arithmetic, is HA™ without the axiom schema J_ = > <p. 

1.5. The Axiom of Choice. Theories of classical (intuitionistic) analysis can be 
obtained from HA™ (HA™) by adding the Axiom of Choice. The Axiom of Choice 
of types T, T', denoted by AC(T, T') , is the axiom schema 

[Vx : T 3 j : x' <j>{x,y)] => 3 / : t - • r ' VX : T <j>{x,fx) 

(schematic in formula 0). Here we will mainly consider AC(N, T) (schematic in T), 
that we may abbreviate to AC. The axiom AC is sufficiently strong to formalize a 
large part of classical analysis. Intuitionistically, AC is not a strong axiom, as may 
be expected from the Brouwer-Heyting-Kolmogorov interpretation of a V3 prefix. 
More formally, it follows from results of Goodman [7] that adding AC(N, N) and 
AC(N, N —• N) to HA™ is conservative over Heyting Arithmetic. 

1.6. A negative translation. We will use the denotation V <j> for ->-></>. This notation 
is justified by the fact that -I-I can be thought of as a modal operator on formulae; 
we can prove indeed that V (j> follows from <f>, and V i// from V 4> and V [<j> => if/]. 

As negative translation we use a standard version of the double negation trans
lation, i.e., prefixing prime formulae and 3 by V. The idea is essentially due to 
Kolmogorov [13]. The negative translation of a formula <f>, denoted by K <j>, is de
fined by the six inductive clauses below (throughout this paper, = denotes syntactical 
identity). The double negation of prime formulae requires some explanation. 

Since absurdity will not be interpreted by the empty type, we cannot realize the 
Ex Falso axiom _L =>• <j> for all <fi. However, we must be able to prove ± => K <f> in 
order to preserve provability. We overcome this problem by exercising some care in 
the negative translation. We employ the fact that J. =>• (<j> => _L) can be proved for 
all <j> by two simple =>• -introductions, without using the Ex Falso axiom. Hence 
it suffices that formulae K <p are stable,1 in particular the equivalence to a negative 
formula should be provable without appealing to the Ex Falso axiom. The stability 
of prime formulae requires the Ex Falso axiom. Therefore the negative translation 
of a prime formula cf> will be V <j>. 

• K_L = ± 
• K</> = V0if<?!>isa prime formula 
• K[4>=>y/] = [K<f>]=*Ky/ 
• K[(j>Aif/] = K(j)AKif/ 
• KMX:T<J)=\/X:T:K(J) 

• K 3x : T 4> = V 3x : T K </>. 
The negative translation satisfies the following preservation property: if <j> is 

provable in HAM, then K 0 is provable in HA". In the presence of AC, one cannot 
expect such a simple preservation result since, as we shall see below, AC is classically 
much stronger than intuitionistically. 

The theory HA™ + K AC will be called negative analysis. We need the following 
technical results. 

LEMMA 1.1. The following schemata are provable in HA™: 
( i ) -L=»-0; 

1A formula is stable if and only if it is equivalent to the negation of another formula. Equivalently, 4> 
is stable if and only if cj> «^=> V <j>. 
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(ii)V--^ <=> -tf; 
( i i i ) 0 ^ V 0 ; 
(iv) K <t> <=> V K <p; 
(v) K 3x : x <f> <=> V 3x : T <j>, provided 4> is a prime formula; 
(vi) <£ => K (j>, provided <p is a formula not containing =>•; 
(vii) K -*p «=> -iK (j>. 

PROOF. The clauses (i)-(iii) and (vi), (vii) are trivial. For (iv), observe that the 
standard proof of this fact by formula induction does not use the axiom schema 
± => <j>. For all <f> we have V 3x : x V <j> •<=>• V 3x : x <j> via -i3x : T 0 -£=>• Vx : 
T -i^ using (ii), so we have (v). H 

The negative translation of AC, K AC, reads: 

[Vx : N V 3y : r K 0(x, j)] = ^ V 3 / : N ^ r V x : N K <P(x,fx). 

By the stability of formulae after the negative translation, which follows from 
Lemma 1.1 (iv), K AC is subsumed by the following axiom schema: 

[Vx : N V 3y : x ->4>(x)y)]=>V3f : N -> r Vx : N ~«p(x,fx). 

Par abus de langage we will from now on denote this schema by K AC. 
We can now extend the preservation property above to: if <$> is provable in classical 

analysis, then K 0 is provable in negative analysis. The proof goes by inspection 
of the standard preservation proof, taking care that _L =*> <p is avoided using the 
lemma above. 

§2. Classical logic and the Axiom of Choice. In this section, we enumerate some 
known difficulties in giving a constructive interpretation of the Axiom of Choice 
in the presence of classical logic. The main remark is that K AC fails to be an 
intuitionistic consequence of the Axiom of Choice.2 We point out three independent 
reasons: 

• K AC makes problematic the constructive interpretation of the notion of func
tion; actually, it refutes the intuitionistic version of Church's Thesis; 

• K AC is proof theoretically very strong, we can actually interpret by K AC 
impredicative second-order comprehension, so that one cannot give any predicative 
interpretation of K AC; 

• a standard computational interpretation of classical arithmetic, the one using 
infinitary propositional calculus [18, 23], when extended to quantification over 
functions, fails to interpret the Axiom of Choice. 

2.1. The impossibility of a recursive realization. In the classical system HA™ + AC, 
we may define the characteristic function of any predicate. Indeed, for any statement 
(f>{x), we have 

3/Vx[<A(x) ^ [ / (x)=0] ] 

since, by the Excluded Middle, 

Vx 3y [0(x) ^ [y = 0]]. 

2This is to be contrasted with the induction schema over integers, whose negative translation is an 
instance of the induction schema itself. 
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If we take for <f> some non-decidable formula, then we may prove in this way the 
existence of non-recursive functions in HA™ + AC. For example, take <f>(x) = 
Vz ->T(x, x, z), where T{e, x, y) is the standard Kleene predicate (which can be for
mulated as an equation), i.e., <j>(x) is the (non-)Halting Problem. As a consequence 
of the above observation we can prove in HA™ + K AC 

(1) V 3 / V x [ [ V / ( x ) = 0] <=> Vz-J(x,x,z)]. 

In usual realizability notions _L has no realizers. As a consequence, <j> is realizable if 
and only if -<<f> is not realizable, so <j> is realizable if and only if V <j> is realizable. It 
follows that there is no recursive realization of the above theorem (1) of H A™ + K AC, 
and hence there is no sound recursive realization of HA™ + K AC itself. 

For exactly this reason, and because the semantics of the system NuPrl is based 
on recursive realizability, the work [17, 4] restricts itself to a fragment of classical 
logic that does not include the Axiom of Choice. This often forces one to encode 
functions as relations, and this encoding may be unnatural (see the discussion of 
Higman's Lemma in [17]), or even impossible. 

It is interesting to analyse in what way our interpretation avoids this difficulty. The 
main obstacle for recursive realizability is the equivalence between the realizability of 
<j> and the realizability of V <j>, which comes from the fact that the absurd proposition 
has no realizers. Our interpretation introduces potential "realizers" for the absurd 
proposition, and because of this, V <j> can be realizable though <j> is not realizable. 
What is hard to understand intuitively is why taking into account possible "absurd 
situations" (that will actually never happen) has such an effect. 

It also follows from the observations above that in HA™ + AC we can refute the 
formula 

CT = V/ : N -• N 3e : N Vx : N 3y : N [T(e,x,y) A U(y) = / (*)] 

where T(e,x,y) is again the standard Kleene predicate and U is Kleene's result 
extracting function, i.e., U(y) = z means that the output of the computation with 
code y is z. This formula CT expresses Church's Thesis in an intuitionistic way, 
stating that every function / has a recursive index e. 

Note that both HA™ + CT and HA™ + AC + CT are consistent due to the exis
tence of models in which all functions are recursive, such as HEO, see [26]. Since 
CT is a formula not containing = > , it implies its negative translation K CT by 
Lemma l.l(vi). We can thus prove _L in the system HA™ + K AC + CT. 

It may come as a surprise that we come up with a recursive object that realizes 
a principle which itself refutes CT. This, however, has nothing to do with adopt
ing realizers of J_, but with the extensionality of our realizing objects. Note that 
CT expresses recursiveness in an intensional way, by stating that every function / 
has an index e. In this respect we cite Troelstra [27], who credits Kreisel [14] for 
the essence of the argument: 'choice, recursiveness and extensionality are incom
patible relative to intuitionistic finite-type arithmetic'. Our realizing objects are 
extensional, and hence they do not realize CT. As a consequence, ->CT is trivially 
realized. 

A particularly simple proof can be obtained by employing the fact that our 
realizing objects are not only extensional, but even continuous. Assume by con
tradiction that M is a continuous realizer of CT. Let e = M(Ax.O), that is, 
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e is an index of the zero function. Let / be the length of the initial segment 
of the zero function such that M is constant on the corresponding open set 
in the Baire topology. This open set contains a function, say / , which is not 
the zero function. We have Mf — e, so e is also an index of / , contradic
tion. 

2.2. Proof theoretic strength of K AC. A second difficulty in interpreting K AC 
comes from the fact that in intuitionistic logic, K AC is proof-theoretically much 
stronger than AC. 

We have seen already that HA™ + AC is conservative over HA [7]. In contrast, 
by using the fact that in HA™ + AC we may define the characteristic function 
of any predicate, it is not difficult to see that we can interpret the second-order 
Comprehension Axiom in HA™ + K AC. This system is proof theoretically much 
stronger than HA (see, for instance, [21], Section 8.5), which implies that there 
cannot be any predicative way of modeling HA™ + K AC. 

These remarks may explain a comment of Godel after presenting the negative 
translation [6]: "Intuitionism appears to introduce genuine restrictions only for 
analysis and set theory; these restrictions, however, are due to the rejection, not 
of the principle of Excluded Middle, but of notions introduced by impredicative 
definitions." 

It can be shown that the negative translation extends to impredicative calculi, 
and by Godel's own interpretation of the Axiom of Choice by constructible sets, it 
is even possible to make sense in this way of the full higher-order arithmetic with 
the Excluded Middle and the Axiom of Choice in an "intuitionistic" impredicative 
higher-order arithmetic. (See the introductory note to 1933e in [6]). 

An important aspect that is not covered in this comment however is a more "in-
tensional" aspect of logical systems, independent of their proof-theoretic strength. 
From an intuitionistic viewpoint, the proof object, that counts as evidence for the 
truth of a proposition, is of primary importance. 

2.3. Problem in sequent calculus. Let us analyse now another way to get a possible 
computational content from classical arguments by considering Gentzen's sequent 
calculus formulation of classical arithmetic. One elegant approach is to use deriva
tions in infinitary propositional logic [18, 23]. There is a general cut-elimination 
result for this logic which gives a computational interpretation of proofs. If we 
introduce countable disjunction and conjunction, we can interpret in this way clas
sical quantification over natural numbers and give a computational interpretation 
of proofs in classical arithmetic. 

A natural attempt is then to introduce disjunction and conjunction over the set of 
all number theoretic functions, and hope that we can interpret in this way classical 
quantification over number theoretic functions. Then, as noticed in Tait's paper 
[23], there is a natural formulation of the Axiom of Choice in infinitary propositional 
logic. We start from atoms <£m„, <j>mn, and axioms 

and we ask whether it is possible to build a cut-free proof, uniformly in 0, of 

(2) V A ^m"' V A ^mf{m)> 
m n f m 
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from these axioms. It is not difficult to see that there cannot be such a cut-free 
proof. We will explain this in some detail.3 Assume by contradiction A is a cut-free 
proof of (2). 

First, observe that all conjunctions in (2) are countable, so by the subformula 
property all conjunctions in A are countable, so that A is at most countably branch
ing. Since A is also well founded, it follows that A is countable and that at most 
countably many functions /o, / i , • • • appear in A. 

Second, replace every subformula of the form V/ 4>(f) m A by V* <l>{fk) and 
call the resulting tree A'. Observe that \Jj- <j>{f) can only be introduced in A from 
some <j>{fk)- It follows that A' is indeed a proof of 

V A ^m"' V A 4">fk(mY 
m n k tn 

Third, the above conclusion of A' is false. This can be seen by taking / to be 
a function diagonalizing over fp, f\, ..., e.g. / («) = /„(«) + 1, and <f>mn «=> 
f{m) = n. Indeed, \Jm /\n <f>mn is false since / is total, and \Jk f\m <j>mfk(m) is false 
since / is by construction different from all fk&-

§3. The programming language 3P. The programming language £P extends the 
types, terms and equations of HAm with type constants for interpreting _L and 
equations, type constructors for lists and pairs, term constants associated to the 
new types, general recursion and infinite terms to form choice sequences. 

3.1. Types of ^a. The types of 9* are l\l, Unit, Abs and with x, x' also x —• x', 
xxx' (cartesian product) and [x] (lists over type T). The type Unit serves to interpret 
prime formulae, and the type Abs to interpret _L The type Abs will not be empty. 
Like in the case of HAC0, types will be denoted by lower case greek letters x,x', 
The types of HA" will be called N-types. 

3.2. Terms of £P. The terms of J8 are built from (typed) variables and constants 
using lambda abstraction, (well typed) application, and the formation of infinite 
terms: if Mo,Mi,... is an infinite sequence of terms of type x, then (&x.Mx) 
is a term of type N —> x. (The infinite terms are not for computational pur
poses, they only play a role in the termination proof.) There are countably many 
variables x,y,z,... for each type x. The set of constants of & extends that of 
HAm with constants RT for types x that are not N-types, () : Unit, Dummy : Abs, 
Axiomi, Axiorri2 : N —> Abs, constants for general recursion (fixpoint combinators 
of all appropriate types) and constants for pairing and projection and list construc
tion and destruction. Terms are again denoted by M, M', N, ..., and M : x 
expresses that the term M has type x. 

3.3. Equations of 3P. The only formulae of^8 are equations of the form M = M', 
with M, M' terms of J3 of the same type, not necessarily N. 

3.3.1. Theory of J8. The theory of J3 is equational, built up from the usual 
lambda calculus axioms and rules, defining equations for the constants RT as in 
HAra, but now for all types x of 3s, pairing axioms and list axioms and axioms for 

3Cf. [23], Tait describes this result as known already, but does not give further references. We think 
Tait was implicitely referring to the failure of completeness for uncountable infinitary logic, see for 
instance [20], 
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general recursion as usual, and the following axiom schema for infinite terms: 

(#) (Ax.Mx)k = Mk 

(schematic in x, MO, M\, ... of type x and natural number k). 
3.3.2. Pragmatics of &>. We allow ourselves a liberal use of 3P. We will assume 

that all terms are well typed and we will reduce type information to a minimum 
that is required to reconstruct the type of a well typed term from the context. 
For every natural number k, we abbreviate s(... (s 0). . .) (with k times s) by k_, 
called the numeral k. The term fcT of N-type x is defined inductively by: k_H = k; 
kr^r' = ^X '• z-k.Z'- We write pairs as (M,N) and triples as (M,N,P) instead 
of (M, (N, P)). We even write k{x, y).M instead of Xz : x x x'.M', where M' is 
obtained from M by replacing x by the first projection of z and y by the second. 
Lists are denoted by [M\,... ,M„] {Mi : x for 1 < /' < n). Adding a term H at the 
beginning of a list L will be denoted by H: L. 

Instead of the explicit use of fixpoint combinators we define terms by giving the 
recursion equations. As an example we define a term get: N —> [N x x x x'] —> (x —> 
x' —* T") —> T" —» T", which will play a role in the sequel. The term (get x I f a) 
searches the list / for the first triple whose first component matches x; if such a 
triple is found, then the output is / applied to the second and third component of 
the triple, otherwise the output is a. Formally, 

get x [] / a — a 

getx ((x',y,y'):l) f a — if (x = x') then ( / v y') else (getx / / a). 

Here and below, if (M = M') then . . . else... (with M, M' of type N) is a sugared 
version of a well-known primitive recursive term. 

3.4. Known facts about 0>. There exists a reduction relation —• on the terms of 
& such that the reflexive, symmetric and transitive closure of —> coincides with = 
(convertibility) on the terms of &. Moreover, —• satisfies: 

(i) the Church Rosser Theorem; 
(ii) every closed normal form of type N is a numeral k_; 
(iii) every closed normal form of type Unit is (); 
(iv) every closed normal form of type Abs is either Dummy or of the form Axiom^ 

or Axiotri2 ;̂ 
(v) the Continuity Lemma: let M : (N —• T) —> x' and N : N —> x be such that 

MN has a closed normal form. Then there exists a natural number m such that for 
all N' : N —> x with N[ — N'i for all i < m w e have MN = MN'. In particular we 
have extensionality: if Ni = N'i for all natural numbers i, then MN — MN'. 

§4. A readability interpretation. Realizability, due to Kleene, aims at formal
izing the notion of constructive truth, see [25] for an overview. A realizability 
interpretation interprets a logic, usually an extension of Heyting Arithmetic, in a 
programming language. More specifically, to each formula <j> of the logic is as
sociated a type \<f>\ of the programming language. One then defines by formula 
induction when a program of type |<£| realizes the formula (j>. Intuitively, it means 
that this program is a constructive justification of the formula (p. To each proof of 
a closed formula 4> is associated a program of type \<f>\ which realizes the formula (j>. 
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In this section a readability interpretation of HA™ + K AC in & will be given, 
essentially modified readability due to Kreisel [14], together with realizers of ±. It 
consists of a mapping of formulas of HAC0 to types of 5s together with a realizability 
relation between programs in & and formulas of WN°, where the program has the 
type to which the formula is mapped. The main result will be that every theorem 
of HA™ + K AC can be realized in 3P. The difficult step in proving this result is the 
realization of K AC. 

4.1. Mapping formulas of HA™ to types of £P. The idea behind this mapping is 
usually referred to as "forgetting dependencies". In an uncurried form it is already 
present in [14]. By formula induction we define a type |0| of & for every formula <j> 
ofHAra: 

• |Af = Af'| = Unit 
• |_L| = A b s 

• \(j>hy/\ = |0| x \y,\ 
• \\/x\T(j)\ =T^\(j)\ 
• \3x : T <p\ = T x \<p\. 
Note that the domains of quantification in HAra are types of HAm, and hence of 

&, so that the mapping | | is well denned. 
4.2. Reducibility in £P. In order to define the realizability relation we need a 

notion of reducibility for closed terms of & of N-type. By induction on the N-type 
we define: 

• M : N is reducible if and only if M reduces to a numeral. 
• M : T —> %' is reducible if and only if MN is reducible for every reducible N : T. 

In the sequel, we shall need the following technicalities. 

DEFINITION 4.1. Two expressions E and E' (terms or formulae) are called related 
if they are syntactically identical up to the indices of the constants Axiom,. Note 
that related terms are of the same type. 

LEMMA 4.2. IfM and M' are two related terms of type N, then M = n if and only 
ifM' = n. IfM and M' are two related terms of type Unit, then M = () if and only 
ifM' = (). 

PROOF. By induction on the length of reduction sequences. H 

LEMMA 4.3. If M and M' are two related terms of N-type, then M is reducible if 
and only ifM' is reducible. 

PROOF. By an easy induction on the common N-type of M and M', using 
Lemma 4.2 for the base case N. H 

4.3. Realizability relation. We give an inductive definition of "M realizes <j>", 
where <f> is a closed formula of HA™ with possibly closed reducible terms of 9> 
occurring in the prime constituents of <j>, and M a closed term of & of type 
\4>\. 

• M : Abs realizes .Lifand only ifM = Axiom,fc for some i — 1,2 and numeral &. 
• M : Unit realizes M\ = Mi if and only if M — () and M\ and Mi reduce in 9* 

to the same numeral. 
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• M : |01 —> \y/\ realizes <j> =>• y if and only if MN realizes y/ whenever N 
realizes 4>. 

• M : \<p A y/\ realizes cp A y/ if and only if M = (N, P) with N realizes <f> and P 
realizes y/. 

• M : T —> |0| realizes Vx : x <p if and only if MN realizes <f>[x :— N] for all 
reducible N : x. 

• M : x x \cp\ realizes 3x : x <p if and only if M = (N, P) with TV" : x reducible and 
P realizes <f>[x := JV]. 

Note that the above definition uses reducibility for N-types only. In the case M\ = 
Mi above, the equation is of type N. The terms M\ and Mi come from (possibly) 
open terms of HA™ in which closed reducible terms of ^ are substituted for the 
variables. Thus M\ and M2 are closed and reducible, since all constants of H A™ are 
reducible constants of 3s. Hence we can verify M\ = M2 in 3s, relying on Fact (i) 
and (ii) from 3.4. 

In the sequel, we shall need the following technical lemma. 

LEMMA 4.4. If4> and <f>' are two related formulae, and M, M' two related terms, 
then M realizes </> if and only if M' realizes <j>'. 

PROOF. By an easy induction on the realization relation, using Lemma 4.2 and 
Lemma 4.3. H 

4.4. Main result and applications. In this subsection we formulate the main result, 
sketch a proof and give two applications of the main result. The essential and 
difficult step in the proof of the main result, the realization of K AC is given in the 
next subsection. 

THEOREM 4.5. Every theorem of HA™ + K AC can be realized by a term in 2P in 
which no infinite terms and no constants Axiom, occur (i = 1,2). 

PROOF. Apart from the realization of K AC, the proof is more or less standard. 
For example, the axiom Vx : N ->(sx = 0) is realized by M = kx : N kh : 
Unit.Dummy. Indeed, Mn realizes -<(sn = 0) for every natural number n, since 
nothing realizes sn = 0 (here we use Fact (i) and (ii) from 3.4). H 

4.4.1. Application 1: the consistency of analysis. The main result immediately 
implies the consistency of analysis. Assume _L is provable in HA™ + AC. Then 
K±, i.e., _L, is provable in HA™ + K AC. Hence _L is realizable by a term of & in 
which no constants Axiom, occur (;' = 1, 2). This is impossible by the definition of 
realization. 

4.4.2. Application 2: how to compute witnesses with AC and classical logic. As
sume a formula <j>{x) of HA™, with x : N, is decidable, i.e., of the form M^x = 0 
for suitable closed term M^ of HA™. We will freely write 4>{x) instead of M^x = 0. 
Assume 3x : N 0(x) is a theorem of HA™ + AC. Then V 3x : N K <p{x) is a theorem 
of HA™ + K AC. By Lemma 1.1 (v) we have that V 3x : N 4>{x) is a theorem 
of HA™ + K AC, and hence realizable by a term not containing constants Axiom, 
(i = 1, 2), say by M. We have that 

./V = X{x, h) : N x Unit.if <p(x) then (Axioms) else Dummy 
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realizes ->3x : N 0(x). So MN realizes ± and must hence be convertible to Axioms 
for some numeral «. We claim 4>(n), i.e., n is a witness. Consider the following 
extensionally equal terms: 

F = Xx : NXh : Unit.if <fi(x) then (Axiomix) else Dummy 

F' = Xx : NXh : Unit.if <j>{x) then (if <p(x) then (Axioms) else Dummy) 

else Dummy. 

We have N = X(x, h).Fxh. Furthermore, F' can be obtained from F by replacing 
Axiomi by Ax.if <j>{x) then (Axiomix) else Dummy. Let us call this substitution a, 
and let Ea denote the result of applying the substitution a to the expression E, for 
any expression E. 

Since F and F' are extensionally equal we have by extensionality: 

Axioms = MN = M{X(x,h).Fxh) = M(X{x,h).F'xh). 

We have Fa = F' and, since M does not contain the constant Axiomi, Ma = M. 
Hence we can calculate: 

(Axiomin)o- = (M{X(x,h).Fxh))a — M(X(x,h).F'xh) = Axiomin. 

It follows that 

Axiomin = if <j>(n) then (Axiomin) else Dummy. 

Using Fact (iv) from 3.4 we get 4>(n). 
4.4.3. Application 3: extraction of algorithms. Let <j>{y,x) be M^yx = 0 with 

x : N and y : x. Assume Vy : x 3x : N <p(y, x) is a theorem of HA™ + AC. Like in 
Application 2 above, there exists an Axiom,-free realizerM of Vy : x V=bc : N<p{y, x) 
in &. Then we have for every reducible, Axiom,-free Y : x, that MY is an Axiom,-
free realizer of V 3x : l\l <j>{Y,x). Define 

A^ = XyX(x,h) : N x Unit.if <f>{y,x) then (Axioms) else Dummy, 

then NY realizes -Bx : N <f>(Y,x) as above. Hence MY(NY) realizes _L and hence 
reduces to Axiomi« for some numeral n. Like above, we have <p{Y,n). At this 
point, observe that in the reduction of MY(NY) to Axioms no special features 
of the constants Abs, Axiom,, Dummy are used. As a consequence, they may be 
considered as variables as well. Let a be the substitution [Abs := N, Axiomi := Xx : 
IM.x, Dummy := 0]. Then {MY{NY))a is a well-typed term which reduces to «. 
Thus the term F = (Xy : x.My{Ny))a is a well-typed term of & with the property 
that <p(Y,FY) for every reducible, Axiom,-free Y : x. In particular, for x = N we 
have <p(n, Fn) for every numeral n. 

4.5. Realization of K AC. Recall that K AC is the following schema: 

[Vx: N V3y : t n ^ j ) ] ^ V 3 / : N -> x Vx : N-.<£(*,/x). 

We start with some preliminary calculations: 

|Vx : N V 3y : x -^(x,y)\ = N - • ( (T X (|0| -+ Abs)) -> Abs) -» Abs 

h 3 / : N - ^ T V x : N - ^ ( x , / x ) | = ( ( l \ l - *T ) x (N -+ \<f>\ -> Abs)) -> Abs. 

A realizer of K AC should be a term M such that MHP realizes ± whenever H 
realizes Vx : N V 3y : x -xj>{x,y) and P realizes ->3f : N —+ T VX : N ->0(x, fx). 
Moreover, M should not contain constants Axiom, (/ = 1, 2). The general idea is 
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to approximate a function witnessing 3f : N —> x VX : N -><p{x,fx) by means of 
a list L of triples {X, Y,Z), where X : N and Y : x are reducible, and Z realizes 
-.(£(X, r ) . Given such a list L = [(X,, Yu Z\),... , {X„, Y„, Z„)] with all the X,s 
distinct, we consider a function fun L : N —* x which maps A", to F, (1 < z < n) 
and takes function values 0T in arguments different from all Z,s. Formally: 

fun / x — get x I {ky : xkz : |0| —• Abs.j) 0T. 

Furthermore, we consider a function kx : N.rea L x A : N —• |<£| —> Abs which 
maps Xi to the realizer Z, (1 < z < «) and takes values ̂ 4 (to be specified below) in 
arguments different from all A",s. Formally: 

rea / x a = get x I {ky : xkz : |0| —* Abs.z) a. 

Consider 

P(fun L, kx : N.rea L x A). 

If Ix : N. reaLxA realizes Vx -K^(X, funLx), then we would have thatP(funL, kx : 
N.rea L x A) realizes ± and we would be done. However, this is in general not the 
case since we cannot choose A such that A realizes -KJ>{X, 0T) for all x different from 
all Z/S. We claim that, as A may depend on x, there is a possibility to construct A 
in such a way that it allows us to compute a better approximation of the function 
witnessing 3 / : N —• x Vx : N -><j>{x, fx). The type of A must be |<£| —• Abs, so we 
must have 

A = k x ' :\4>\.--- , 

where - i s of type Abs. It is tempting to fill in • • • with (Axiom,x). The resulting 
term 

P(fun L, Ax.rea L x {kx' : |<£|.Axiom,-x)) 

of type Abs is not a solution, since it contains Axiom,, but it will play an important 
role in the discussion below. Note that kx : N.rea L x A only accesses A in case x 
does not occur as first component of a triple in L. The basic intuition is that, if the 
above term reduces to Axiom,^, then this tells us that P needs more information 
about its arguments, in particular it needs a function value and a realizer for the 
argument k. 

Observe that, so far, H realizing Vx : N V 3y : x -^<p{x, y) has not been used. 
For filling in • • • we use H. Recall that the type of H is N —> ((T X {\<j>\ —> Abs)) —> 
Abs) —> Abs. The obvious way to continue is putting 

A = kx' : \4>\.H x 

Now • • • is of type (T X {\<j>\ —> Abs)) —> Abs and is hence of the form k{y, z). • • •, 
so that we have 

A~kx' : \<p\.H x{k{y,z).---), 

where - i s again of type Abs. The crucial idea is now to put 

A = kx' : \4>\.H x {k{y,z).-- • {{x,y,z):L)), 

where • • • stands for a recursive call of the whole procedure described above. 
This informal discussion motivates the following recursive definition: 

<D p h I = p (fun /,lx.rea / x {kx'.h x {k{y,z).<b p h {{x,y,z):/)))). 
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Here (member x L) tests if x occurs as first component of a triple in L. Since the 
only occurrence of Axiom i in F is the one which is explicitly shown, we have that 

F' = F[Axiomi := Ax.if (member x L) then Dummy else (Axiomix)]. 

Recall that P(fun L,F) = <S>' P H L = Axioms. By extensionality we have 
P(fun L, F') = P(fun L, F) = Axiom^. By substitution we get 

P(fun L,F') = (Axiomi£.)[Axiomi :— Ax.if (member x L) then Dummy 

else (Axiomix)] 

= if (member fc L) then Dummy else (Axioms). 

By Fact (i) (Church Rosser Theorem) from 3.4 we get ->(member k_ L). This is (ii) 
and completes the proof of the lemma. H 

Using the lemma above we can prove by contradiction that <S P H [] realizes 
-L We give an informal argument, which can easily be formalized using the axiom 
of Dependent Choice and classical logic. The argument is similar to the argument 
used by Tait in [24]. Suppose Q> P H [] does not realize _L Then, by the lemma 
above, there exist X\, Y\, Z\ such that [{X\, Y\,Z\)] satisfies the conditions of 
the lemma, in particular <b P H [{X\, Y\,Z\)] does not realize _L Applying the 
lemma again yields X2, Yi, Zi such that Iterating this argument infinitely 
many times yields an infinite sequence of triples (Xt, Yt, Z,) (i = 1, 2, . . . ) such 
that each finite initial subsequence satisfies the conditions of the lemma. Note that 
the Xts all convert to different numerals. Define (classically!) (n, Y^,Z'n) to be 
{Xj, Yj,Zj) if Xi — n for some i, and («,0T, Axiom\n) otherwise. This results in 
an infinite sequence An.(n, Y'n, Z'„) such that An. Y'n is reducible and &.n.Z'n realizes 
Vx : N -.4>(x,(ln.r„')*)- It follows that P{M.Y^,M.Z'n) realizes J_ and hence 
reduces to a term of the form Axiom,-̂ . By Fact (v) from 3.4, the Continuity Lemma, 
P{JSLn.Y'n,An.Z'n) only depends on a finite initial subsequence of An.(n, Y^,Z'„). 
This conflicts with the above construction of [{X\, Y\,Z\),... , (Xn, Y„, Z„)] for n 
large enough. 

4.6. Comments on this interpretation. This interpretation gives a quite direct 
computational interpretation of the Axiom of Choice. For instance, it allows to 
interpret directly the first informal proof of Higman's lemma presented in [17], and 
avoids in this case the encoding of a function as a relation. Observe furthermore that 
the computation is demand-driven in the sense that the list of triples only contains 
function values and realizers that are really needed for the computation of a realizer 
of_L. 

It should be noted also that our interpretation works for AC(T, T') where x = N 
but T' is arbitrary. As it is given, it uses in an essential way the restriction z = N, 
but we shall present below heuristic arguments that suggest a possible extension to 
higher types. 

Already in the case AC(N, N —> N), the encoding of a function as a relation used 
in [17] to avoid the use of AC(N, N) does not work any more. The fact that the 
Axiom of Choice AC(N, N) is validated by considering functions as relations indeed 
uses the existence of a well founded total ordering on N, but we don't know of any 
such effective ordering on N —> N. 
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§5. Axiom of Dependent Choice. We realize now the negative translation of DCT, 
the axiom of Dependent Choice at type x: 

[Vn : NVx:x3y:x<f>{n,x,y)]=>3f: N -» x "in : N <p{n,/(«),/(« + 1)), 

which, as explained in [11], implies directly the usual versions of the Axiom of 
Choice and of the axiom of Dependent Choice. Below it is implicit that x and y 
are of the same type x, n of type N and that the function / : N —> T is such that 
/ ( 0 ) = a, where a is some fixed object of type x. 

The axiom of Dependent Choice is commonly used in informal mathematics. As 
proved in [11], AC(N, N) trivially implies DCN by primitive recursion. For higher 
types T, the axiom of Dependent Choice appears to be stronger than the Axiom of 
Choice. (In [11], Problem 9 asks whether AC(N, N —> N) implies DCN^N, and we 
do not know if this question is still open.) 

The negative translation of this schema is subsumed by the following axiom 
schema K DC: 

[Vfi Vx V 3y ^ ( « , x j ) ] ^ V 3 / V « -^(/ i , / ( « ) , / ( « + 1)). 

We shall give a program that realizes this schema. Furthermore, we prove this fact 
not using classical logic and dependent choices, but intuitionistic meta-reasoning 
together with a certain strong principle of bar induction. 

This interpretation is based on the same idea of partial approximation of a 
function. An approximation o f / satisfying V« -><p(n,f(n),f(n + 1)) will be given 
as a term u — (n,f„,l) where n is a numeral, / „ a term of type x and / a list of the 
form 

[{0,a,q0),...,{n - \, fn-i,q„-\)] 

such that qi is of type \~«i>{i,fi,fi+\)\ for i < n (with the convention that fo = a, 
the fixed object of typed x). It is now standard to redefine fun and get such that 

fun u i 

is /,• if i < n, and 0T if i > n, and that 

get u i b 

is qt if i < n, and b if n < i. 
If u = (n,f„,l) is such an approximation, and / is of type x and q of type 

| - i 0 ( n , / „ , / ) | , we write u + (f,q) for the approximation (n + \,f, (n,fn,q): l). 
We say that v is a direct extension of u if v is of the form u + (f,q) for some / , q, 
and we denote this by u < v. 

We define recursively, when u is of the form («, / „ , /) 

O P H u = P (fun u, Ai.get u i [Xx1 : \4>\.H [n + 1) {k{y, z).<t> P H (u + [y, z))))). 

It is then possible to show that Xhkp.<S> p h (0, a, []) realizes K DC, by a classical 
argument similar to the one we gave for the negative translation of the Axiom of 
Choice. 

For an intuitionistic reduction to the principle of bar induction, we introduce 

<b' P H u = P (fun w, Az'.get u i (Xx' : |0|.Axiomi/)). 

As before, we can suppose that Axiom i does not occur in P nor in H. 
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We define a reducible approximation as an approximation («, / „ , /) such that / „ 
is a reducible term of type z and / is a list 

[(0,a,q0),...,{n ~ l,/n_i,tf„_i)] 

such that / , is a reducible term of type z and qt realizes -«j>(i, ft,fi+\) for i < n, 
with /o = a. Furthermore we ask that Axiomi does not appear neither in / „ nor 
in/. 

Note that, for each reducible approximation u, the term <&' P H u realizes _L. 
Furthermore, by a reasoning similar to the one of the previous section, if<b'PHu 
does not reduce to a term of the form Axiomi «0, then we have <& P H u = O' P H u 
and so <D P H u realizes _L. A natural terminology is to say that the approximation 
u is partial if <&' P H u reduces to a term of the form Axiomi no, and complete 
otherwise. 

We claim that the set of complete approximations is a bar on the set of reducible 
approximations. This follows from the fact that any sequence of reducible approx
imations «o < "i < u2 < • • • is eventually complete. That is, there exists «o such 
that u„ is complete if «o < n. This is established using the Continuity Lemma as in 
the previous section. 

It is now direct to prove by bar induction that <&P H u realizes _L if u is a reducible 
approximation. If u < v implies that <b P H v realizes _L, it follows indeed from the 
definition of <D that Q> P H u realizes J_. 

§6. Comparison with Spector's work. In [6] Godel introduced the so-called Di-
alectica interpretation, a translation of intuitionistic arithmetic into HAra, which 
satisfies the following preservation property. If <j> is a theorem of intuitionistic arith
metic, then <j>D = 3 / Vx 4>D, with <j>[, quantifier-free, can be validated in HA™ ( / 
and x may be sequences of variables). This means that there exists a closed term F 
such that Vx <J>D[/ '•= F] is a theorem of HAW. The types of / and x only depend 
on the logical structure of 0, and F depends on the proof of 0. Thus the Dialectica 
interpretation absorbes the quantifiers of <j> at the cost of higher types in 3 / Vx 4>r,. 

In [22] Spector extended the Dialectica interpretation to analysis, by interpreting 
Double Negation Shift, DNS for short. DNS is the following axiom schema 

[Vx : N V <t>(x)] = • V Vx : N <j>{x). 

It is direct to show that this schema plus the Axiom of Choice implies intuitionis-
tically the negative translation of the Axiom of Choice. An alternative approach 
is taken by Howard in [10], who first shows that the theory HAm extended with 
the axiom schema <j> <==> <j)D plus bar induction has a bar recursive Dialectica 
interpretation, and then shows that K AC and K DC are theorems of this extended 
theory. 

The crucial step, where [22] goes beyond [6], is the Dialectica interpretation of 
DNS, which leads to the following formula. 

(3) Vayd3nzf [</>(n, anz, z(anz)) =»<f>{yf, f(yf), df))] 

Here the type of n is N, the type of / is N —> z and the types of the other variables 
can easily be inferred. The problem is to find closed terms yielding n, z, f when 
applied to a, y, d. This will be done by bar recursion. 
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Spector solved the system of functional equations arising from (3), i.e., 

(4) Va y d 3« z f [n = yf A anz = f(yf) A z{anz) = df] 

by first reducing it to 

(5) Ma y d 3 / V« < yf 3z„ [anz„ = fn A znfn — df] 

and then solving (5) by bar recursion. Clearly (5) implies (4) by taking n = yf and 
z zn. 

We introduce the following abbreviation 

<f>{", f) = n < yf =4> 3 z„ [anz„ = / « A z„/n = <//]. 

Let ^4, Y, D be given. We shall define by bar recursion a functional O which extends 
every list L = [Fm-\,... ,FQ] to a functional F = <X>L satisfying .FY = F, for all 
z < m and Vn > m <j>{n,F). Then F = $[] solves (5). Assume such <5>(X : L) 
has already been defined for all X. We are looking for a definition of OL. We 
redefine fun L as the function which extends L with infinitely many function values 
0T. If y(fun L) < m, then we put Q?L = fun L and F = $ L vacuously satisfies 
\/n > m (j>{n,F), since n > YF for all n > m. Now suppose 7(fun L) > m. By 
assumption we have for any X that F = <&{X: L) satisfies Vn > m + 1 <f>(n, F). So 
if we put <DL = ®(Fm : L), then it only remains to determine a suitable Fm such that 
F — $>{Fm :L) satisfies <j>(m,F), i.e., 3 zm [Amzm — Fm A zmFm = DF]. Take to 
this end Fm = AmZm with Zm — Xx.D{<&{x :L)), then indeed Fm = Fm — AmZm 

and Zm{Fm) — Zm{Fm) = D{<b(Fm :L)) = DF. This completes the definition of 
<J>, and hence (5) is solved. 

If we resume the definition of <J>, then we get: 

. , , (fun/ i f y ( fun / )<m 
$ a y d I = < J \ > 

1 5> a y d (am(2.x.d(<t> a y d (x:l))):l) otherwise 

with m the length of the list /, which is an instance of the definition schema of bar 
recursion (see [22], [10]). Using <I> it is easy to find closed terms yielding n, z, f 
when applied to a,y, d, or in other words to solve (3). 

There is an important difference in motivation between the work of Spector and 
ours. Spector's aim was to prove the consistency of analysis and to characterize 
its proof theoretic strength in terms of a subrecursive calculus. To this end, bar 
recursion suits well. Our aim is to explore the computational content of various 
choice axioms in combination with classical logic in order to extract algorithms 
from proofs. To this end, the Dialectica interpretation is rather indirect, and the 
realizability interpretation suits better. 

§7. Game semantics. The purpose of this informal section is to explain how the 
program was found that realizes the negative translation of the Axiom of Choice. 
The importance of this section is that it may indicate a connection with the work 
on sequential algorithms, and may pave the way for a generalization to the case of 
the Axiom of Choice at higher-types, i.e., the axiom AC(r, T') with r ^ N. 
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7.1. A semantics of classical arithmetic. The first step is to give an intuitive 
interpretation of cut-free provability as denned by Novikoff [18]. This is defined 
for an infinitary propositional calculus. Each arithmetical formula can be naturally 
represented in such a calculus. For instance \/k 3n > k Mm > k f(n) < f{m), 
which expresses that any function / has a minimum among its values / ( « ) for 
k < n, becomes the propositional formula 

A V A *»»' 
k n>_k m>k 

where <t>nm is, for given numerals n and m, the truth value of the (decidable) formula 
f{n)<f{m). 

The formulae are denned inductively by 

• 0 and 1 are formulae, 
• if <j>i is a family of formulae over a countable decidable set, then /\7 <f>t and V, <t>i 

are formulae. 

Iterated conjunctions (disjunctions) are packed together as one single conjunction 
(disjunction), so that in every formula conjunctions and disjunctions are alternating. 
The notion of intuitionistic validity 

• 1 is valid, 
• V, 4>i is valid if and only if there exists z'o such that 4>ia is valid, 
• /\, fa is valid if and only if 0, is valid for all i, 

has a natural game theoretical interpretation. The game is played by two players, 
Vbelard and 31oise, who quarrel about the truth of a given formula. The player 
Bloise, who argues in favour, plays when the formula is existential, say V, 4>i, by 
choosing an index ;'o ("Bloise's Choice"), after which the game is continued with 
the formula <j>ia. The player Vbelard, who argues against, plays when the formula 
is universal, say /\ . <f>j, by choosing an index jo, after which the game is continued 
with the formula <j>j0. The game ends when either Vbelard or 31oise chooses the 
formula 0 or 1. Evidently, the game always terminates. If either 31oise or Vbelard 
chooses 1, then Bloise wins the game and Vbelard loses. Dually, if either 31oise or 
Vbelard chooses 0, then Vbelard wins the game and 31oise loses. 

We have the following completeness result: the player Bloise has a winning strat
egy for the game associated to the existential formula <f> if and only if this formula 
4> is intuitionistically valid. (Every formula is equivalent to an existential formula 
by prefixing it with a singleton disjunction.) 

For instance, there is no winning strategy for the formula 

AV A /(")</»> 
k n>km>k 

because it is not possible to compute effectively such a minimum value for a func
t i o n / . 

The notion of classical validity, as described by Novikoff [18], is inductively 
defined by the clauses 

• 1 is valid, 
• V, 4>i is valid if and only if there exists J'O such that <j>i(j is 1, or is an universal 

formula / \ 4>kj such that, for all j , the formula 0,-o/- V V, <& is valid, 
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• /\, fa is valid if and only if fa is valid for all i. 
This definition may seem not well founded, but it correctly defines classical validity 
as the smallest set satisfying the above closure properties. 

For instance, a formula of the form y/ V V,- faVfao is always valid. This is shown by 
induction on the formula V; fa • First, recall that <j> is the usual defined complement 
of fa, changing \Js into /\s, Is in Os, and conversely. Second, fa0 is either 0 or 1, or 
a universal formula /\ fa0j by the alternation of \Js and /\s. In the first two cases, 
it is trivial to choose the index of a valid disjunct in the formula above. In the third 
case, choose the index such that we get the formula y/ V V, fa V fa0 V fa0j, which is 
valid for all j by the induction hypothesis. 

The game semantics has to be adapted to the classical notion of validity: in the 
case of a disjunction V, fa, the game proceeds with the formula /\j[fa0j V V, <t>i\-
The other cases do not change. A tentative interpretation of this definition is that 
it describes exactly a winning strategy for a game between Vbelard and 31oise. This 
strategy is suggested by the inductive definition of classical validity: in the case of 
an existential formula, and after a choice jo of Vbelard, 31oise should try again and 
choose a new i in 

<l>khV\Jfa, 
i 

using information drawn from faOJ(l (if this latter formula is 1, then Bloise should 
choose this formula, of course). 

There is such a winning strategy for the formula 

A V A *-»• 
k n>km>k 

with <t>nm = f{n) < f{m), which can be described as follows. The game starts by 
Vbelard giving a value k. The player zlloise answers choosing an arbitrary value 
n > k, say n — k and Vbelard answers by playing m — mo > k. The formula 
becomes 

nm-

n>km>k 

If facmo i s t r u e > t n e n 31oise wins. If fam is false, the strategy for Bloise is to choose 
the last value given by Vbelard. After Vbelard chooses a value m = m\ > k, the 
formula becomes 

facmo V <t>momi V V A ^ 
nm • 

n>km>k 

The player 31oise wins if f(mo) < f{m\). In this way, to each game corresponds 
a sequence mo, m\, ... such that famis, fan0m,, ••• are all false, i.e., such that 
f(mo) > /(mi) > . . . Since N is well founded, Bloise will win eventually by 
following this strategy. 

7.2. Game semantics and realizability. It is possible to represent Bloise's strategy 
by a program that realizes the negative translation of the formula Vk3n >k\/m >k 
/ ( " ) < f(m), which is VA: V 3« > k Vm > k V / («) < f{m). We make the 
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(inessential) simplification that k = 0. Consider the following program: 

(S>Pn = P (n, XmXh. if <pnm then {h ()) else (<D P m)), 

where () is the only constant of type Unit. It is possible to show that Xp.<& p 0 
realizes the formula V 3« Vm V /(«) < f(m). This program follows closely 
the previous strategy of 31oise, and the proof that Xp.<b p 0 realizes the formula 
V 3« Vm V / («) < f{m) is similar to the argument showing that this strategy is 
winning. 

7.3. A strategy for the Axiom of Choice. In [5] it was conjectured that it should 
be possible to extend this interpretation in the case of quantification over functions. 
The idea would be simply to allow as index set the set of all functions, and, apart 
from this single change, to keep the same notion of games and strategies. This 
suggested the realization of the Axiom of Choice given above. 

There is an essential difficulty, closely connected to the problem in sequent calcu
lus mentioned above, that we cannot require the strategy for 31oise to win eventually 
against any player Vbelard. For instance, let us consider the classically valid formula 

V A A /(*(*)) ̂  /»> 
g k m>k 

where g should be a function such that k < g{k) for all k. It should be clear that 
Vbelard may force the game to be infinite by playing successively k = 0, 1, 2, . . . 
since at each move Bloise can only hope to update the value g{k). 

To analyse this difficulty, we shall consider the more general case of a game-
theoretic justification of the Axiom of Choice 

AC = VAA & v V A V *«/(»0r 
m x y f m y 

In the sequel, <f>mx abbreviates V^ <t>mxy', we have taken the instance of AC with this 
latter formula in order to have alternating quantifiers in case <f>mx is universal. The 
player 31oise has the following natural strategy. 31oise starts by playing an arbitrary 
function, for instance the constant function fo = Xx.O. The player Vbelard answers 
by a value m — mo and the formula becomes 

(pm00 V AC. 

The player 31oise can then play m = m0, and Vbelard answers with two values 
x = xo and y — yo- The formula becomes 

4>m0xoyo V 4>moO V A C . 

The player 31oise backtracks by choosing f\ = fo + [mo i—• *o] which is denned 
by f\{m) = /o(w) for m ^ mo and f\{m) = x0 for m = mo. We can suppose that 
Vbelard will answer with a value m\ ^ m0. Indeed, if mi = w0, then the formula 
will have the form 

'Pmoxayo V (pmoxo V . . . 

and we have seen above that 31oise has always a winning strategy for this kind of 
formulae. 
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In this way, we can associate to this game a successive updating of the function 

/ o 

fk = fo + [m0 i—• x0] + [mi i—• x\]-\ h [mk i—> xk\ 

where w/+i is Vbelard's answer to the move / — fj of Bloise. 
The crucial point now is that Vbelard loses as soon as we have mk+\ = m, for 

some j < k. 
If we assume that the player Vbelard can only base his move on finitely many 

information from the move / = fk of 31oise, this will happen eventually, by a 
continuity argument. 

Hence, if we change our notion of winning strategy in asking only that the 
player 31oise has to win eventually against any "finite" player Vbelard, this strategy 
is a winning strategy for the formula AC. The program that realizes the negative 
translation of the Axiom of Choice is a direct translation of this strategy. As 
in the arithmetical case, the proof of reducibility of this program closely follows 
the argument that such a strategy is "winning" against any "reasonable" player 
Vbelard. 

This argument is only yet heuristic and the main problem is making precise what 
is a "finite" player Vbelard. We have seen that it would be wrong to ask that it wins 
against any, non-computable, strategy. But it is probably too restrictive to ask that 
it wins eventually against any computable strategy. One may try to define a winning 
strategy for 31oise as a strategy winning eventually against any continuous strategy 
for Vbelard. We avoided here this difficulty by formulating the interpretation in a 
functional system, but we can hope for a much more perspicuous analysis of the 
computation if it is expressed as an interaction between strategies. 

Another possibility would be to use sequential algorithms for representing func
tions. To give a function will then not be an atomic operation, but the function will 
in general be given "piece by piece". One may then hope to avoid the consideration 
of continuity. 

§8. Conclusion. There are many directions in which this work can be improved 
and some potential connections that seem worthwhile to analyse. 

One is the formulation of this work in the framework of sequential algorithms, 
which is indeed the natural framework in which one can observe "intensional be
haviour" of functionals, which has been our main tool in the realization of the 
negative translation of the Axiom of Choice. We expect from such a formulation a 
much more transparent proof of termination (and it will be interesting to see what 
becomes in this formalism the difficulty of finding "fresh" constants). We also think 
that in such a framework, the generalization to higher types, that is, a computa
tional interpretation of AC(r, T') for arbitrary r and r', should be straightforward. 
An elegant form would be an interpretation of the notion of dependent types in the 
framework of sequential algorithms, together with a direct interpretation of V <fi, 
and the inference of V Vx : r.<p(x) from Vx : T.V 4>(X). 

Closely related should be the question of a constructive formulation of our proof 
of realizability. Can we adapt the method of [2] and avoid the use of infinite terms? 
Our hope is that our interpretation, computationally more direct than the one of 
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Spector [22, 10], may provide help for a constructive understanding of classical 
analysis with the Axiom of Choice. 

Experiments with some examples, in particular Higman's Lemma, have revealed a 
computational inefficiency of our interpretation. Intuitively, our algorithms proceed 
by trial and errors and may "forget too many things" of previous trials. It seems 
possible to design improved algorithms, that "remember" and can use all previous 
trials. This problem is closely connected to the problem of the computational 
interpretation of the implication V <p =>• V y/ ==> V (0 A y/) so that its solution 
should have consequences even for the problem of the computational content of 
propositional classical logic. 

The previous remark, and metaphors such as "trials and errors", "conjecturing 
laws that are refined by experimentation", are immediately suggested by trying 
to understand the computational behaviour of our interpretation. They hint at 
possible connections with learning theories, such as the one described in [19], where 
the learning agent may benefit from negative information. 

Yet another natural connection is with the work of Hilbert [8, 9] and Ackermann 
[1]. Our interpretation can be seen as a variation of Hilbert's epsilon method 
[8, 9], with a (classical) proof of termination. It will be interesting to compare our 
algorithm with the one described in Ackermann's paper [l].4 

Acknowledgement. We thank Anne Troelstra for helpful comments and answers 
to various questions that arose during the preparation of this paper, Loi'c Colson for 
interesting discussions on the axiom of choice and impredicativity at the beginning 
of this work, and Marco Hollenberg, Erik Barendsen and Jan Springintveld for 
carefully reading successive draft versions. 

REFERENCES 

[1] W. ACKERMANN, Begriindung des Tertium non datur mittels der Hilbertschen Theorie der Wider-
spruchsfreiheit, Mathematische Annalen, vol. 93 (1924), pp. 1-36. 

[2] M. BEZEM, Strong normalization of barrecursive terms without using infinite terms, Archiv Jiir 
mathematische Logik und Grundlagenforschung, vol. 25 (1985), pp. 175-182. 

[3] E. BISHOP, Foundations of constructive analysis, McGraw-Hill, New York, 1967. 
[4] R. CONSTABLE and C. MURTHY, Finding computational content in classical proofs, Logical frame

works (G. Huet and G. Plotkin, editors), Cambridge University Press, 1991, pp. 341-362. 
[ 5 ] T H . COQUAND, A semantics of evidence for classical arithmetic, this JOURNAL, vol. 60 (1995), 

pp. 325-337. 
[6] K. GODEL, Collected work, vol. I and II (S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, 

R. M. Solovay, and J. van Heijenoort, editors), Oxford, 1986. 
[7] N. GOODMAN, Intuitionistic arithmetic as a theory of constructions, Ph.D. thesis, Stanford Univer

sity, 1968. 
[8] D. HILBERT, Die logischen Grundlagen der Mathematik, Mathematische Annalen, vol. 88 (1923), 

pp. 151-165. 
[9] D. HILBERT, The foundations of mathematics, From Frege to Godel (J. van Heijenoort, editor), 

Harvard University Press, Cambridge, MA, 1971, pp. 465-479. 
[10] W. A. HOWARD, Functional interpretation of bar induction by bar recursion, Compositio Mathe-

matica, vol. 20 (1968), pp. 107-124. 

4According to [15], if it is well-known that the proof of convergence of Ackermann's algorithm was 
defective as presented in [1], it is not known yet, not even non-constructively, if the method converges at 
all. 



622 STEFANO BERARDI, MARC BEZEM, AND THIERRY COQUAND 

[11] W. A. HOWARD and G. KREISEL, Transfinite induction and bar induction of types zero and one, and 
the role of continuity in intuitionistic analysis, this JOURNAL, vol. 31 (1966), pp. 325-358. 

[12] S. C. KLEENE, On the interpretation of intuitionistic number theory, this JOURNAL, vol. 10 (1945), 
pp. 109-124. 

[13] A. N. KOLMOGOROV, On the principle of the excluded middle, From Frege to Godel (J. van 
Heijenoort, editor), Harvard University Press, Cambridge, MA, 1971, pp. 465-479. 

[14] G. KREISEL, On weak completeness of intuitionistic predicate logic, this JOURNAL, vol. 27 (1962), 
pp. 139-158. 

[15] , Mathematical logic, Lectures on modern mathematics (Saaty, editor), vol. Ill, Wiley, 
1965, pp. 95-195. 

[16] G. E. MOORE, Zermelo's axiom of choice: Its origins, development and influence, Springer-Verlag, 
1982. 

[17] C. MURTHY, Extracting constructive content from classical proofs, Ph.D. thesis, Cornell Univer
sity, 1990. 

[18] P. S. NOVIKOFF, On the consistency of certain logical calculi, Matematiceskij sbornik (Recueil 
Mathematique), vol. 12 (1943), no. 54, pp. 230-260. 

[19] D. N. OSHERBON, M. STOB, and S. WEINSTEIN, Systems that learn: An introduction to learning 
theory for cognitive and computer scientists, MIT Press, 1986. 

[20] D. SCOTT and A. TARSKI, The sentential calculus with infinitely long expressions, Colloquium 
Mathematicum, vol. VI (1958), pp. 165-170. 

[21] J. R. SHOENFIELD, Mathematical logic, Addison-Wesley, 1967. 
[22] C. SPECTOR, Provably recursive functional of analysis: A consistency proof of analysis by an 

extension of principles formulated in current intuitionistic mathematics, Recursive function theory (J. C. E. 
Dekker, editor), Proceedings of Symposia in Pure Mathematics, no. V, American Mathematical Society, 
1961, pp. 1-27. 

[23] W. W. TAIT, Normal derivability in classical logic, Lecture notes in mathematics (J. Barwise, 
editor), no. 72, Springer-Verlag, Berlin, 1968, pp. 204-236. 

[24] , Normal form theorem for bar recursive functions of finite type, Proceedings of the second 
Scandinavian logic symposium (J. E. Fenstad, editor), North-Holland, Amsterdam, 1971, pp. 353-367. 

[25] A. S. TROELSTRA, Realizability, ILLC Prepublication Series for Mathematical Logic and Foun
dations ML-92-09. 

[26] , Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes 
in Mathematics, no. 344, Springer-Verlag, Berlin, 1973. 

[27] , A note an non-extensional operations in connection with continuity and recursiveness, 
Indagationes Mathematicae, vol. 39 (1977), pp. 455-462. 

TORINO UNIVERSITY 
DIP. INFORMATICA, C. SO SVIZZERA 185 

10149 TORINO, ITALY 
E-mail: stefano@di.unito.it 

UTRECHT UNIVERSITY 
DEPARTMENT OF PHILOSOPHY 

P.O. BOX 80126, 3508 TC UTRECHT, THE NETHERLANDS 
E-mail: bezem@phil.ruu.nl 

CHALMERS UNIVERSITY OF GOTHENBURG 
DEPARTMENT OF COMPUTER SCIENCES 

S-41296, GOTHENBURG, SWEDEN 
E-mail: coquand@cs.chalmers.se 

mailto:stefano@di.unito.it
mailto:bezem@phil.ruu.nl
mailto:coquand@cs.chalmers.se

