FACTORING ABSOLUTELY SUMMING OPERATORS THROUGH HILBERT-SCHMIDT OPERATORS

by HANS JARCHOW

(Received 10 August, 1987)

Introduction. Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator $S:C(K) \rightarrow l_2$ is also nuclear, and therefore factors $S = S_1S_2$, with $S_1:l_2 \rightarrow l_2$ a Hilbert-Schmidt operator and $S_1:C(K) \rightarrow l_2$ a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X^{**} , does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator $X \rightarrow l_2$ factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformulate the question in an appropriate manner and then show that counter-examples are available among super-reflexive Tsirelson-like spaces as well as among quasi-reflexive Banach spaces.

Preliminaries. We shall use standard notation and terminology for Banach space theory. In particular, by a subspace of a Banach space we always mean a closed linear submanifold, and an operator will always be a continuous linear mapping between Banach spaces. Given a Banach space X, we shall write as usual B_X for its closed unit ball, X^* for its dual, and X^{**} for its second dual. Further unexplained notation and termnology is as in [12] and [13].

As for the theory of operator ideals, we shall follow A. Pietsch [16] with only minor changes in notation. By Γ_p we denote the ideal of all L_p -factorable operators $(1 \le p \le \infty)$ and by Π_r the ideal of all (absolutely) *r*-summing operators $(1 \le r < \infty)$. We say that a Banach space X has the *property GL* if $\Pi_1(X, Y)$ is contained in $\Gamma_1(X, Y)$ for every Banach space Y. Every Banach lattice and, in particular, every Banach space with an unconditional basis has this property. By trace duality, X has the property *GL* if and only if X^{*} has it. The concept goes back to Y. Gordon and D. R. Lewis [5]. For more details, see G. Pisier [18, Ch. 8], [17] and [20].

Let (g_n) be a sequence of independent standard Gaussian random variables. Following W. Linde and A. Pietsch [11] we say that an operator $S: X \to Y$ between Banach spaces X and Y is γ -summing if there is a constant C such that $(\mathbb{E} \sum_{i=1}^{n} g_i Sx_i ||^2)^{1/2} \le C \cdot \sup\{(\sum_{i=1}^{n} |\langle u, x_i \rangle|^2)^{1/2} | u \in B_{X^*}\}$ for all finite sequences $(x_i)_{i \le n}$ in X. These operators form an ideal Π_{Y} which contains all the ideals $\Pi_p(1 \le p < \infty)$.

The concept of a γ -summing operator is closely related to the notion of type and cotype. Recall that $S: X \to Y$ is said to be of type p (1), respectively cotype <math>q

Glasgow Math. J. 31 (1989) 131-135.

 $(2 \le q < \infty)$, if there is a constant C such that

$$\left(\mathbb{E}\left\|\sum_{i=1}^{n}g_{i}Sx_{i}\right\|^{2}\right)^{1/2}\leq C\cdot\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1/p},$$

respectively

$$\left(\sum_{i=1}^{n} \|Sx_i\|^q\right)^{1/q} \le C \cdot \left(\mathbb{E}\left\|\sum_{i=1}^{n} g_i x_i\right\|^2\right)^{1/2},$$

again for all finite sequences $(x_i)_{i \le n}$ in X. If the identity map of a Banach space X has this property then we say that X has type p, respectively cotype q. It is known that X has cotype 2 if and only if $\Pi_{\gamma}(Z, X) = \Pi_2(Z, X)$ holds for every Banach space Z (or only for $Z = l_2$). Similarly, X has type 2 if and only if $\Gamma_1(Z, X)$ is contained in $\Pi_{\gamma}(Z, X)$ for all Z. Instead of using Gaussian variables, we could also have worked with independent Bernoulli variables, alias Rademacher functions. It is well-known, however, that this would lead to an equivalent definition of type and cotype, and also of a γ -summing operator (result by T. Figiel, communicated by A. Pietsch). We refer to B. Maurey and G. Pisier [14], A. Pietsch [16], and G. Pisier [18] for further information.

Factorization through Hilbert-Schmidt operators. We say that an operator $S: X \rightarrow Y$ factors through a Hilbert-Schmidt operator if $S = S_1S_2S_3$ with operators $S_1: l_2 \rightarrow Y$, $S_3: X \rightarrow l_2$, and a Hilbert-Schmidt operator $S_2: l_2 \rightarrow l_2$. These operators form an ideal which we denote by \mathfrak{X} . It consists of course of 1-summing operators only. As was mentioned before, we wish to characterize the Banach spaces X such that $\mathfrak{X}(X, l_2) = \prod_1(X, l_2)$. We have the following result.

PROPOSITION 1. For every Banach space X, the following are equivalent.

- (a) $\mathfrak{X}(X, l_2) = \Pi_1(X, l_2).$
- (b) Every 1-summing operator with domain X has a 2-summing adjoint.
- (c) Every 2-summing operator with domain X^* is L_1 -factorable.
- (d) X^* has cotype 2 and the property GL.

Proof. (a) \Leftrightarrow (b) is due to the known fact that an operator $S: Y \to Z$ has a 2-summing adjoint iff US is in $\mathcal{X}(Y, l_2)$ for every $U \in \mathcal{L}(Z, l_2)$.

(b) \Leftrightarrow (c) By trace duality, (b) is equivalent to saying that every operator from Y into X with 2-summing adjoint belongs to $\Gamma_{\infty}(Y, X)$, for any Banach space Y. But this is (c), by transposition and localization.

Since $(d) \Rightarrow (c)$ is obvious, all we need to show is $(c) \Rightarrow (d)$. Note that (c) implies that X^* has the property GL and satisfies $\Pi_1(X^*, Y) = \Pi_2(X^*, Y)$ for all Y. Every Banach space Z of cotype 2 is known to satisfy $\Pi_1(Z, Y) = \Pi_2(Z, Y)$, but it is an open question if conversely this property implies that Z has cotype 2. No problems arise, however, if Z has in addition the property GL; therefore the proof is completed by the following known result.

LEMMA 2. If a Banach space Z has the property GL and satisfies $\Pi_1(Z, l_2) = \Pi_2(Z, l_2)$, then Z has cotype 2.

132

A proof is given in [18, Proposition 8.16]. For the sake of completeness, we include another proof which is apparently new. Suppose Z has the announced properties. We wish to show that every $U \in \Pi_{\gamma}(l_2, Z)$ is 2-summing; equivalently, SU is nuclear for every $S \in \Pi_2(Z, l_2)$. By hypothesis, S = BA for some $A: Z \to L_1(\mu)$, $B: L_1(\mu) \to l_2$, where μ is an appropriate measure. Since $L_1(\mu)$ has cotype 2, AU is 2-summing. By Grothendieck's theorem, B is 1-summing, and so SU = BAU is a trace class operator on l_2 . Since $S \in \Pi_2(Z, l_2)$ was arbitrary, $U \in \Pi_2(l_2, Z)$ follows by trace duality.

Some examples. It is clear that the equivalent properties listed in the preceding proposition are shared by all L_{∞} -spaces and that they are preserved under the formation of quotients. It is also clear that a Banach space X has this property if and only if X^{**} does. There are, however, Banach spaces X satisfying $\mathfrak{X}(X, l_2) = \prod_1(X, l_2)$ such that X^{**} is not isomorphic to a quotient of an L_{∞} -space. We prove first of all the following result.

PROPOSITION 3. Given $2 \le q < \infty$, let X be an infinite-dimensional Banach space which is of cotype $q + \varepsilon$ for all $\varepsilon > 0$ but no quotient of which is isomorphic to l_q . Then X^{**} cannot be isomorphic to a quotient of any L_{∞} -space.

Proof. Suppose we are wrong: X^{**} is isomorphic to a quotient space of an \mathcal{L}_{∞} -space, say Z. Let $Q: Z \to X^{**}$ be the quotient map. We shall now use known results relating p-summing operators and cotype; cf. [14] and [16] for details. By the local reflexivity principle, X^{**} has also cotype $q + \varepsilon$ for all $\varepsilon > 0$. Fix r > q. Since Z is an \mathcal{L}_{∞} -space, Q is r-summing and even r-integral. Consequently, X^{**} appears as a quotient of some $L_r(\mu)$. In particular, we get $X = X^{**}$, and this space is even super-reflexive. If follows that X^* has type $q^* - \varepsilon$ for all $\varepsilon > 0$, with $q^* := q \cdot (q - 1)^{-1}$. Being isomorphic to a subspace of the \mathcal{L}_1 -space Z^* (via Q^*), X^* contains an isomorphic copy of l_q , by the result of S. Guerre and M. Lévy [6]. Equivalently, l_q must be isomorphic to a quotient of X, a contradiction.

REMARK. In case q = 2 we could have applied as well the forerunner, due to D. Aldous [2], of the Guerre-Lévy result.

EXAMPLE 1. In [9], W. B. Johnson constructed a super-reflexive Banach space, \mathcal{T} say, with monotone unconditional basis, which is of type 2 and of cotype $2 + \varepsilon$ for all $\varepsilon > 0$, and which has the property that every subspace of each of its quotients has a basis but fails to be isomorphic to l_2 . \mathcal{T} belongs to the class of "Tsirelson-like" Banach spaces; detailed information on these spaces may be found in the forthcoming lecture notes [3] by P. G. Casazza and T. J. Shura.

By the preceding two propositions, \mathcal{T} satisfies $\mathfrak{X}(\mathcal{T}, l_2) = \prod_1(\mathcal{T}, l_2)$ and is not isomorphic to a quotient of any L_{∞} -space.

EXAMPLE 2. A variant of Johnson's construction appears as Example 5.3 in [4]. The spaces $\tilde{X} = \tilde{X}(q, \eta)$ $(2 \le q < \infty, \eta > 1)$ constructed there have again a monotone unconditional basis, are of type 2 and of cotype $q + \varepsilon$ for all $\varepsilon > 0$, and have the property that no quotient of \tilde{X} (in fact, of any subspace of \tilde{X}) can contain a copy of l_q . I am grateful to P.

HANS JARCHOW

G. Casazza for pointing out to me this latter fact. Again the preceding two propositions show that $\mathfrak{X}(\tilde{X}, l_2) = \prod_1 (\tilde{X}, l_2)$ holds but \tilde{X} cannot be the range of any L_{∞} -operator.

REMARK. We take this opportunity to point out that each of the above spaces \bar{X} and \mathcal{T} provides a negative answer to the following question raised by T. Kühn [10]. Let X be a Banach space of type 2 such that $\prod_{\gamma}(l_2, X) = \prod_r(l_2, X)$ for $2 < r < \infty$. Is X then isomorphic to a subspace of L_r ? Certainly $X = \tilde{X}(q, \eta)$ cannot be a subspace of any L_r , for $q < r < \infty$, but we have $S \in \prod_{\gamma}(l_2, X) \Leftrightarrow S^* \in \prod_1(X^*, l_2) \Leftrightarrow S^* \in \Gamma_1(X^*, l_2) \Leftrightarrow S \in \Gamma_{\infty}(l_2, X)$.

EXAMPLE 3. Recently G. Pisier [20] has shown that the classical James space \mathscr{J} (of codimension one in \mathscr{J}^{**} , cf. R. C. James [7]) has the properties discussed in Proposition 1: \mathscr{J}^* has cotype 2 and the property GL. Actually the same holds for the analogously defined spaces v_p^0 , $2 \le p < \infty$, obtained from completing $\mathbb{R}^{(\mathbb{N})}$ (or $\mathbb{C}^{(\mathbb{N})}$) with respect to the norm $||(x_i)|| = \sup(\sum_i |x_{n_i} - x_{n_{i-1}}|^p)^{1/p}$, the supremum being extended over all increasing sequences (n_i) of positive integers. \mathscr{J} is then just the space v_2^0 . By Proposition 1, we have $\mathfrak{X}(v_p^0, l_2) = \prod_1 (v_p^0, l_2)$. It is easy to see that $(v_p^0)^{**}$ does not contain a copy of c_0 . Hence it cannot appear as a quotient even of any C*-algebra since otherwise it would be reflexive [1] (and even super-reflexive [8]).

Of course, this last statement prompts us to ask the following questions.

QUESTION 1. Can any of the spaces \mathcal{T} or $\tilde{X}(q, \eta)$ $(2 \le q < \infty, \eta > 1)$ mentioned before be isomorphic to a quotient of a C*-algebra?

 \mathcal{T} is the first genuine example of what is now called a weak Hilbert space [19].

QUESTION 2. Suppose that X is a weak Hilbert space and isomorphic to a quotient of an L_{∞} -space (or a C^{*}-algebra). Is X isomorphic to a Hilbert space?

The spaces \mathcal{T} and $\tilde{X}(q, \eta)$ are super-reflexive, whereas the spaces v_p^0 are non-reflexive but quasi-reflexive of order one. This leads to our final question.

QUESTION 3. Are there Banach spaces X which are (a) reflexive but not superreflexive, or (b) not of finite codimension in X^{**} , such that $\mathfrak{X}(X, l_2) = \prod_1(X, l_2)$ and X^{**} is not isomorphic to a quotient of any L_{∞} -space?

ACKNOWLEDGEMENT. The author thanks the referee for the careful reading of the manuscript and several interesting comments.

REFERENCES

1. C. A. Akemann, P. G. Dodds, and J. L. B. Gamlen, Weak compactness in the dual space of a C*-algebra. J. Functional Analysis 10 (1972), 446-450.

2. D. Aldous, Subspaces of L^1 via random measures. Trans. Amer. Math. Soc. 258 (1981), 445-463.

3. P. G. Casazza and T. J. Shura, *Tsirelson's space*. Lecture Notes in Mathematics, to appear.

4. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies. Acta Math. 139 (1977), 53-94.

5. Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structure. Acta Math. 133 (1974), 27-48.

6. S. Guerre and M. Lévy, Espaces l^p dans les sous-espaces de L^1 . Trans. Amer. Math. Soc. 279 (1983), 611-616.

7. Ŕ. C. James, A non-reflexive Banach space isometric with its second conjugate space. Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.

8. H. Jarchow, On weakly compact operators on C*-algebras. Math. Ann. 273 (1986), 341-343.

9. W. B. Johnson, Banach spaces all of whose subspaces have the approximation property. *Special Topics of Applied Mathematics, Bonn 1979*; (North-Holland, 1980), 15-26. See also Séminaire d'Analyse Fonctionelle 79/80, Ecole Polytechn. Palaiseau, Exp. no 16.

10. T. Kühn, γ -summing operators in Banach spaces of type p, 1 , and cotype <math>q, $2 \le q < \infty$, Theory Prob. Appl. 26 (1981), 118-129.

11. W. Linde and A. Pietsch, Mappings of Gaussian measures of cylindrical sets in Banach spaces, *Theory Prob. Appl.* 19 (1974), 445-460.

12. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces (Springer-Verlag, 1977).

13. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces II. Function spaces* (Springer-Verlag, 1979).

14. B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés geométriques des espaces de Banach. Studia Math. 58 (1976), 45-90.

15. A. Pełczyński, Compactness of absolutely summing operators. Linear and Complex Analysis Problem Book; Lecture Notes in Mathematics 1043 (1984), 7–9.

16. A. Pietsch, Operator Ideals. (VEB Deutscher Verlag der Wissenschaften 1978/North-Holland 1980).

17. G. Pisier, Some results on Banach spaces without local unconditional structure. Compositio Math. 37 (1978), 3-19.

18. G. Pisier, Factorization of linear operators and geometry of Banach spaces, Amer. Math. Soc. CBMS 60 (1986).

19. G. Pisier, Weak Hilbert spaces, Proc. London Math. Soc. 56 (1988), 547-579.

20. G. Pisier, The dual J^* of the James space has cotype 2 and the Gordon-Lewis property. Preprint.

Mathematisches Institut Universität Zürich Rämistrasse 74 CH 8001 Zürich Switzerland

Downloaded from https://www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 07:17:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089500007643