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S U M M A R Y
Global electromagnetic (EM) induction studies have been the focus of increasing attention
during the past few years. A primary stimulus for this interest has been increased quality,
coverage and variety of the newly available data sets especially from recent low-Earth-orbiting
satellite missions. The combination of traditional ground-based data with satellite-borne mea-
surements presents intriguing opportunity to attack the most challenging problem of deep EM
studies: the recovery of 3-D variations of electrical conductivity in the Earth’s mantle. But the
reliable inference of deep-Earth electrical properties depends on the accuracy and efficiency
of the underlying forward modelling solutions used to model 3-D electromagnetic induction
in a heterogeneous sphere. Several 3-D forward solvers have been proposed over the last
decade, which are based on staggered-grid finite difference, integral equation, finite element
and spherical harmonic-finite element approaches. However, there has been no systematic
intercomparison amongst the solvers. The goal of this paper is to conduct such a study in
order to explore the relative merits of the different approaches when confronted with a set of
synthetic models designed to probe the numerical accuracy of each. The results of the inter-
comparison are presented along with performance metrics to help assess the computational
costs associated with each solution.

Key words: Numerical solutions; Numerical approximations and analysis; Non-linear
electromagnetics; Geomagnetic induction; Composition of the mantle.

1 I N T RO D U C T I O N

Numerical modelling of geophysical problems has experienced a
rapid boom in recent decades, fuelled by unprecedented increase of
computational resources, availability of new extensive data sets, as
well as new developments in theoretical concepts, algorithms and
programming languages and tools. The introduction of new meth-
ods and codes goes hand in hand with their mutual comparison,
benchmarking and testing. The geophysical communities have been
recently undertaking such activities in a wide spectrum of problems,
such as glacial isostatic adjustement (Spada et al. 2011), mantle con-
vection (Zhong et al. 2008), seismic tomography (Qin et al. 2008),
geodynamo simulations (Christensen et al. 2001) and forward and
inverse magnetotellurics (Miensopust et al. 2013). In this work, we
study the performance of seven different approaches to the forward
problem of global electromagnetic induction in spherical domain in
various model scenarios.

Accurate numerical modelling of Maxwell’s equations in a het-
erogenous spherical Earth is a critical milestone towards interpre-
tation of ground-based and satellite magnetic field measurements.
At the core of geoelectromagnetic inversion, a numerical solution
to Maxwell’s equations in the 3-D setting allows us to constrain
the variations of electrical conductivity of the Earth’s mantle. This
physical parameter of the Earth is highly sensitive to melts and
volatiles (e.g. Karato 1990; Yoshino et al. 2009; Karato 2011), and
therefore provides us with a valuable additional constraint on the
Earth’s structure.

Unfortunately, the inverse problem of geoelectromagnetic induc-
tion is ill-posed, and the uncertainties in the electrical conductivity
models are very hard to constrain. The ill-posedness of the prob-
lem is further amplified by sparsity of the available data sets, poor
constraints on the external sources, and the numerical errors caused
by the discrete computation of Earth’s electromagnetic fields. Here,
we focus on the issue of numerical errors, which are introduced at

C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 785

mailto:anya@coas.oregonstate.edu


786 A. Kelbert et al.

various points in the numerical modelling procedure through fac-
tors such as model discretization, simplifying assumptions on the
physics, and truncation. We address the problem of numerical in-
accuracy by taking advantage of the range of numerical methods
and modelling codes (Martinec 1999; Uyeshima & Schultz 2000;
Velı́mský & Martinec 2005; Koyama et al. 2006; Kuvshinov 2008;
Ribaudo et al. 2012; Sun & Egbert 2012) that have emerged in
the last decade or two for a thorough cross-validation, and show
that a systematic benchmarking exercise is valuable in constraining
modelling errors which are otherwise very hard to pinpoint.

Besides the above mentioned modelling codes, we are aware of
several other approaches that are not included in the present bench-
mark, either due to limited availability of their respective authors, or
due to unresolved issues in the codes. Starting with the frequency-
domain approaches, Everett & Schultz (1996) and Yoshimura &
Oshiman (2002) implemented finite-element (FE) solvers based
respectively on Lagrangian nodal, and Nédélec edge elements. Tar-
its & Mandéa (2010) used spherical-harmonic decomposition, and
Runge–Kutta integration of the set of ordinary differential equations
in the radial coordinate. Weiss (2010) used unstructured triangular
finite-difference scheme that avoids spatial aliasing of the warped
Cartesian grid and the topological significance of the pole nodes.
Finally, Hamano (2002) introduced the first time-domain approach
based on combination of spherical harmonics and 1-D finitexbrk
differences.

We use Section 2 to introduce the numerical methods used in this
benchmark. We proceed to design a suite of simple synthetic models
for intercomparison of the existing numerical modelling codes for
global geoelectromagnetic induction. Throughout this exercise, we
focus on a set of numerically challenging model configurations
that are easy to visualize, while also providing enough breadth to
showcase the strong sides of each of the algorithms.

In a general 3-D environment, Maxwell’s equations cannot be
solved analytically and demand a numerical approach. The few
semi-analytic solutions that exist are applicable to very specific 3-
D model configurations: a heterogeneous infinitely thin layer (see
Kuvshinov et al. 1999, and references therein) and eccentrically
nested spheres (Everett & Schultz 1995; Martinec 1998). We have
designed our benchmark models 1, 2and 3to correspond to simple,
high contrast examples of these configurations. Sections 3 and 4
provide an intercomparison of a range of numerical approaches for
computing the electromagnetic fields at the surface for a thin sheet
of two variably conducting hemispheres: respectively, north/south
(NS; model 1) and west/east (model 2). A nested sphere example is
explored in Section 5. Section 6 contains a rectangular block model
4, in which a large conducting block is embedded in an otherwise
layered Earth. The nested block model is intended to provide a
counterpart to a nested sphere, however in this case sharp edges
also need to be modelled, presenting an additional difficulty for

approaches based in spectral model representation. On the other
hand, models discussed in Section 7 are ideally suited to spectral
modelling: this is a suite of three spherical harmonic models of
variable degrees and orders. While providing a checkpoint similar
to a checkerboard commonly used in seismic resolution testing,
this set of models also serves as an example of smoothly varying
electrical conductivity perturbation. Finally, Section 8 addresses
the more intricate example of 3-D realistic surface conductance
map overlaying a layered Earth. This is a variant on a thin sheet
model that provides the complex pattern of conductivity contrasts
expected to be found in the Earth’s crust. Resolution, convergence
criteria, and other settings of individual codes for each model are
summarized in Section 9. The final Section 10 summarizes our
findings and provides a comprehensive discussion of the strengths
and drawbacks of each of the methods that have been analysed.

To simplify analysis and presentation, we have confined the mod-
elling discussed in this paper to the more traditional P0

1 source
approximation, which has been historically applied to long period
global EM studies. A suite of recent publications have challenged
the use of this approximation at periods of ≈20 d and below (Fujii
& Schultz 2002; Kelbert et al. 2009; Semenov & Kuvshinov 2012):
the spatial structure of ionospheric sources, particularly at auroral
latitudes, has a major effect on geomagnetic data. However, we have
chosen to keep the source complexity issue outside of the scope of
this benchmark intercomparison.

Traditionally, global electromagnetic induction had been per-
formed using C-responses: scaled ratios of magnetic field com-
ponents. These ratios cancelled the magnitude of the source, thus
simplifying the analysis, however they also drastically reduced the
amount of available data. In today’s fully 3-D computational world,
global EM tends to drift away from these historic simplifications.
Therefore, in this intercomparison exercise we choose to work with
full magnetic fields directly. To allow for this, the amplitude of the
P0

1 source is chosen in such a way that radial component of the
external magnetic field at the North pole is equal to 100 nT. The
four periods employed for this benchmark comparison are 6 hr, 1 d,
4 d and 16 d. The results are for the surface of the Earth (magnetic
field components in nT). Time dependence is exp(iωt).

2 S U M M A RY O F S O LU T I O N M E T H O D S

Numerical methods employed in this study have been previously
validated and published in a suite of independent publications. For
the sake of self-sufficiency, we introduce these methods here, and
refer an interested reader to the relevant publications for additional
details.

For ease of presentation, the numerical codes we evaluate in
this text, and the corresponding abbreviations are summarized in
Table 1. Note that with the exception of Velı́mský & Martinec

Table 1. List of numerical codes for global geoelectromagnetic induction modelling that are evaluated in this paper.

Abbrev. References Method

KEL Uyeshima & Schultz (2000); Kelbert et al. (2008) 3D staggered-grid finite differences
KOY Koyama et al. (2006) 3D integral equations
KUV Kuvshinov (2008) 3D integral equations
MAR Martinec (1999) 3D spherical harmonic-finite elements
RIB Ribaudo et al. (2012) 3D finite elements
SUN Sun & Egbert (2012) 1D + surface thin-sheet integral equations
VEL Velı́mský & Martinec (2005) 3D spherical harmonic-finite elements in the time domain
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(2005, VEL), which is a time-domain solver, and Ribaudo et al.
(2012, RIB), which has frequency and time domain capabilities, all
other codes are implemented in the frequency domain. The methods
fall, broadly, into four distinct categories: finite differences (KEL);
finite elements (RIB); spherical harmonic-finite elements (MAR;
VEL) and integral equations (KOY; KUV; SUN). Here, we discuss
these general methods in just enough detail for the reader to follow
the specifics of the model setup details discussed later.

2.1 Finite differences (FD)

Staggered-grid finite difference method was first implemented for
the global EM induction problem by Uyeshima & Schultz (2000),
following the Cartesian formulation of Mackie et al. (1994). This
solves the vector Helmholtz equation for the magnetic field H,
assuming harmonic time dependence of the form eiωt ,

∇ × (ρ∇ × H) + iωμ0H = 0 (1)

in a computational domain that includes the resistive air and con-
ductive Earth’s oceans, crust and mantle. Upper and lower bound-
ary conditions are specified at the top of the air domain and at
the CMB, respectively. Here, H denotes the magnetic field, ρ is
the electrical resistivity (in � m), ω is frequency and μ0 is the vac-
uum magnetic permeability. The code uses a stabilized bi-conjugate
gradient method, and a divergence correction procedure is periodi-
cally applied to eliminate spurious solutions. The numerical code of
Uyeshima & Schultz (2000) was carefully validated against a buried
shell model (Kuvshinov et al. 1999) and the semi-analytic nested
spheres solution of Martinec (1998; see also Sections 3 and 5 of this
paper). Since then, the code has been modified in several substantial
ways. The first (and critical) modification was made to allow for an
arbitrary RHS, thus extending the solution to internal sources. This
allowed a linearized global EM inversion to be performed (Kelbert
et al. 2008, 2009). Further, yet unpublished, modifications include
implementation of a secondary field formulation based on an ana-
lytic solution for a layered Earth similar to Sun & Egbert (2012).
Specifically, for any perturbation δρ in the Earth’s electrical resis-
tivity structure, the full 3-D equation may be written as

∇ × (ρ + δρ)(∇ × δH) + iωμ0δH = −∇ × δρ(∇ × H). (2)

We define the primary field as the solution of the analytic 1-D
problem, and ρ as the corresponding layered resistivity structure.
The 3-D deviations from this layered structure define δρ. To com-
pute the total magnetic field, we first solve for the primary field
H and compute the RHS forcing for (2). We then run the general-
ized forward solver with the full 3-D electrical resistivity structure
to compute the secondary magnetic fields δH; H + δH is the total
magnetic field in the computational domain.

This method of solution is independent of the approximation em-
ployed in the original code that the magnetic field decay to zero at
the CMB, and should therefore provide a somewhat more accurate
solution method, while also allowing us to consider a smaller model
domain that does not extend very deep into the lower mantle. It also
allows to naturally extend the forward solution to an arbitrary ex-
ternal source model without further modifications to the core of the
forward solver: indeed, only the primary (1-D) field is affected by
the external source structure and merely provides a forcing for the
perturbed (3-D) system. Throughout the exercises outlined in this
paper, we have found that the differences in accuracy and compu-
tations costs for the two methods—brute-force forward modelling

(FWD) and secondary field formulation (SFF)—are mostly not sig-
nificant enough to warrant presentation. Any significant differences
between the solutions are discussed explicitly.

Finally, the modified forward code (denoted by KEL throughout
this manuscript) has been included into the modular system for
electromagnetic induction (ModEM; Egbert & Kelbert 2012) and
is now available to use with a suite of parallelized inverse solvers.
These developments are viewed as a step towards joint inversion
for conductivity and external sources. Discussion of these inversion
strategies, however, is beyond the scope of this paper and will be
presented elsewhere.

The method of staggered-grid finite differences is a structured
grid numerical approach that is typically considered one of the
most straightforward in implementation. As an added bonus, the
discrete approximation to Maxwell’s equations on a finite differ-
ence grid can always be written in a symmetric form (e.g. Egbert &
Kelbert 2012) and convergence is easily achieved. The drawbacks
of this structured, non-local approach include grid inflexibility: res-
olution cannot be easily increased locally in a region of high model
contrasts without affecting the rest of the grid and significantly in-
creasing computational expenses. It is also important to note that in
global spherical coordinates, the North and South poles represent
singularities in the structured grid and require special care. In this
setup, major inaccuracies are introduced at the poles and propagate
all the way to mid-latitudes if the convergence criteria are relaxed.

2.2 Finite elements (FE)

In this study, a FE solution for global EM induction (RIB) has been
implemented with a commercially available, general-purpose FE
method software program called FlexPDE. It allows the user to de-
sign and implement detailed simulations with a scripting language,
leaving the mechanics of the solution of the partial differential
equations to be managed by the program.

The use of a general purpose, commercial, FE package presents
its own advantages and disadvantages. The primary advantage is
ease of use—it is possible to quickly produce and run a fairly
complex model via a short script, bypassing the time-consuming
development and testing of source code. Such a model can be easily
modified to create variations in both the model and the governing
equations.

The convenience of general-purpose modelling software is bal-
anced by its lack of optimization for a given problem. For example,
the governing equations must be specified in a way that respects
the constraints of the scripting language. In the case of global ge-
omagnetic induction, this means that the magnetic vector potential
must be used everywhere in the model, including in non-conductive
regions where it would be more economical to substitute the mag-
netic scalar potential. Such a substitution would reduce the number
of variables, allowing for a faster and likely more accurate solution,
with less computational expense. Another example is modelling sur-
face currents in the oceans and continents. These can be included
in the model with creative use of boundary conditions at the Earth–
space interface, but those boundary conditions must be specified
in terms of the value of the electric or magnetic potentials, or in
terms of the outward normal flux of those variables. This constraint
can make it difficult to model electrical currents that have a radial
component at the boundary between the mantle and the oceans.

In the frequency domain, the modelled induction equations are
supplied in terms of the complex vector magnetic and scalar electric
potentials, in a secondary field formulation. Models with thin shell
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surface conductances include another solution variable, the complex
scalar current function, that provides a boundary condition for the
magnetic field at the Earth-space interface. The modelling domain
includes the Earth’s crust, mantle, and conductive core, as well
as 10 Earth radii of resistive vacuum, which allows the secondary
potentials to attenuate to zero at the model boundary.

Although there is nothing that prohibits an FE code from being
used as the core compute engine for inversion, the FlexPDE package
used here does not allow for low-level integration of forward and
inverse computation. Nonetheless, an array of unique capabilities
of this package make it potentially extremely valuable for forward
modelling experiments. Advantages of FlexPDE compared to most
other numerical approaches we discuss include the use of adap-
tive mesh refinement, time-domain capability, relative simplicity
of coding and great flexibility in modelling, especially the ability
to incorporate Earth rotation in the simulations within an arbitrary
primary field structure.

This development has been particularly motivated by the need
to re-evaluate the traditional external source approximations. The
solution of Ribaudo et al. (2012) allows to directly consider Earth’s
rotation and the motions of satellites in time domain and thus to
investigate the effects of source complexities on both the ground
observatory and satellite data.

Like the finite difference solutions discussed earlier, the RIB code
has also been independently validated for a range of special cases
in Ribaudo et al. (2012).

2.3 Spherical harmonic-finite element method (SHFE)

The SHFE approach to the problem of EM induction in a sphere has
been developed by Martinec (1999, MAR) in the frequency domain,
and later implemented by Velı́mský & Martinec (2005, VEL) in the
time domain. This approach offers two basic advantages over lo-
cal methods. First, expanding the solution into spherical harmonics
greatly simplifies the solution for a reduced complexity case of 1-D,
depth-dependent conductivity. The problem is then decoupled into
ordinary differential equations in the radial coordinate, and depend-
ing on the spherical harmonic degree j. Although this property is lost
in the general 3-D case, where all spherical modes are coupled, the
fast 1-D solution provides a natural pre-conditioner for iterative so-
lution of the full problem in the frequency domain (Martinec 1999),
or allows for an implementation of a semi-implicit scheme in the
time-domain integration (Velı́mský & Martinec 2005). Secondly,
the solution in the conductive Earth, even in the 3-D case, is easily
coupled to the analytical solution for scalar magnetic potential in
the surrounding insulating atmosphere.

In the frequency-domain approach (Martinec 1999), the spatial
resolution of the solver is governed by the truncation degree of
spherical harmonics, jmax, and number of radial layers, kmax. The
finite-dimensional solution space is spanned by orthogonal, com-
plex, vector spherical harmonic functions of colatitude and longi-
tude, combined with 1-D, piecewise linear FEs in radial direction.
The solenoidality of magnetic field is constrained by Lagrange mul-
tipliers, and the linear system is solved iteratively using precondi-
tioned biconjugate gradient method. The iterative scheme avoids
storage of the full system matrix. Only its left- or right-hand prod-
ucts with vectors are required, and these in turn contain coupling
integrals of products of spherical harmonics and conductivity. For
efficient evaluation fast Fourier transform in longitude, and Gauss–
Legendre quadrature formula in colatitude are employed (Martinec
1989).

The choice of spherical harmonic basis is responsible also for
the two main disadvantages of the method. The lateral resolution
cannot be increased locally. Sharp lateral discontinuities in conduc-
tivity cannot be accurately approximated by polynomials, and will
therefore lead to ringing artifacts that cannot be mitigated by simple
increase of lateral resolution.

The original version of the method (Martinec 1999) used mathe-
matically correct, but rather cumbersome boundary condition spec-
ifying the toroidal electrical field at the Earth’s surface, which in
turn can be derived from observations of the vertical magnetic
field. The modified code presented in this benchmark incorporates
the more traditional external magnetic field condition: the Gaussian
coefficients of external magnetic field, either dipolar or with more
complicated spatial structure are prescribed, and all magnetic field
components are predicted at arbitrary position at the surface.

The time-domain variant of the SHFE method (Velı́mský & Mar-
tinec 2005, VEL) aims at the exploitation of low-orbit satellite
measurements. Separation of spatial and temporal variations in data
recorded along the vehicle’s track represents an additional challenge
that is mitigated by solving the EM induction by time-domain inte-
gration. The spatial discretization based on combination of vector
spherical harmonics, and 1-D FEs is very similar to the one used
in the frequency domain. The time integration uses a semi-implicit
scheme: the dominant term based on radially varying average con-
ductivity model is treated implicitly for stability, while the effect of
lateral conductivity variations is evaluated using the known solution
from the previous time step. This avoids the need to store a large sys-
tem matrix, and again allows to use an efficient matrix-vector mul-
tiplication based on the fast Fourier transform and Gauss–Legendre
formula. In addition to the spherical harmonic truncation degree
jmax, and number of radial layers kmax, the choice of the time step
�t also influences the numerical accuracy of the solution.

In order to treat the benchmark examples excited by time-
harmonic signals with period T (angular frequency ω = 2π/T),
the integration is started from zero initial magnetic field every-
where in the Earth, and excited by external field with sin (ωt) time
dependence. This avoids large transient signal at the start of the in-
tegration, but implies an additional phase shift of π/2 in the Fourier
transform of the results. The system is evolved for at least 10 peri-
ods, and the spectral signals are obtained by simple integration over
the last period,

B̂(ω) = e
iπ
2

1

T

10T∫

9T

B(t)e−iωt dt. (3)

In Section 5, we also present the semi-analytic approach applica-
ble only to the special 3-D models of multiple eccentrically nested
spheres (Martinec 1998). For the sake of completeness, we quickly
mention its basic features here. The solution of the EM induction
equation in each of the homogeneous spheres is expanded into se-
ries of vector spherical harmonics and spherical Bessel functions
in local coordinate system. Translation formulas are then used to
transform all series into one common coordinate system. The conti-
nuity of magnetic field across internal interfaces leads to a system of
linear equations for the expansion coefficients that is solved directly
by Gaussian elimination.

2.4 Integral Equations (IE)

The results from three ‘global’ numerical solutions which are based
on an integral equation with contracting kernel [hereinafter denoted
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as contracting integral equation (CIE)] are discussed in the paper.
What follows is a summary of the evolution of the CIE concept with
a special emphasis on the results relevant to global quasi-3-D (thin
sheet) and fully 3-D EM modelling.

The concept was first introduced by Fainberg & Zinger (1980),
who obtained an IE of a specific form and proved that this equation
can be solved using a simple iterative scheme that always converges
to the equation solution. The authors called this technique iterative
dissipative method (IDM) and showed that the optimal convergence
rate of the IDM iterates is inversely proportional to the lateral con-
trast of the conductivity distribution. Using IDM Fainberg et al.
(1990) developed a numerical solution which allowed for calculat-
ing EM field in a spherical Earth’s model with surface conducting
thin sheet and 1-D section underneath.

Singer (1995) derived a new CIE and showed that the optimal
convergence rate of simple iterates as applied to new integral equa-
tion is inversely proportional to the square root of the lateral contrast
of the conductivity distribution. He called this technique modified
iterative dissipative method (MIDM). Two remarks are relevant at
this point: (i) originally in both methods displacement currents are
ignored and only isotropic conductivities are considered; (ii) in both
methods optimal convergence rate is achieved by specific choice of
the ‘reference’ 1-D media which does not have to always coincide
with the background 1-D section.

Pankratov et al. (1995, 1997) [and independently Singer &
Fainberg (1995, 1997)] generalized the technique to media with
complex-valued conductivities (to account for displacement cur-
rents and polarization effects), and to media with tensor-valued
conductivities (to account for conductivity anisotropy). In addition,
Pankratov et al. (1995) proposed a general scheme to construct
reference 1-D media which delivers optimal convergence rate, irre-
spective of whether the conductivity is a real- or complex-valued
function. Also Pankratov et al. (1995) observed that the simple iter-
ative scheme applied to solve CIE equation can be considered as a
partial sum of convergent Neumann series for this equation. In their
nomenclature the technique has been named a modified Neumann
series (MNS). Kuvshinov et al. (1999) implemented the MIDM-
MNS concept to ‘spherical surface thin sheet’ numerical solution
and reported—as it was theoretically predicted—the significant im-
provement in the solution’s efficiency.

With regards to the spherical (global) EM modelling using CIE,
the next step forward has been done independently by Koyama
et al. (2002) and Kuvshinov et al. (2002) who presented MIDM-
MNS numerical solutions which allowed for calculating EM field
in fully 3-D earth models. Note that their solutions differ in many
aspects: for example, they exploit different strategies for computing
the dyad Green’s functions. Unfortunately both publications paid
little attention to the details of the methods employed to derive and
calculate Green’s tensors, which are cornerstone components of
any IE solution. Only recently Kuvshinov & Semenov (2012) and
Koyama et al. (2013) published the omitted technical details for
their respective solutions (see appendices in these papers).

Further development of CIE approach was made by Avdeev et al.
(2000), who observed that the integral operator of CIE is well condi-
tioned irrespective of the physically feasible conductivity contrasts,
and suggested that Krylov subspace iterates are used to replace the
Neumann series summation in the solution of the CIE. Later it was
widely reported (Avdeev et al. 2002; Kuvshinov et al. 2005; Singer
2008) that the implementation of Krylov subspace iterates further
reduces a number of iterations needed to obtain the CIE solution.
Although it was not proved theoretically, the common observation
was that the rate of convergence—if Krylov subspace iterates are

implemented—becomes inversely proportional to the ‘natural log-
arithm of the lateral contrast’ of the conductivity distribution (see
e.g. Singer 2008). Now all codes based on CIE—either working
in spherical (Koyama et al. 2006; Kuvshinov 2008; Sun & Eg-
bert 2012) or Cartesian (Avdeev et al. 2002; Hursan & Zhdanov
2002; Koyama et al. 2008; Singer 2008; Avdeev & Knizhnik 2009)
geometries—exploit Krylov subspace iterates. In this paper the re-
sults from the CIE codes by Koyama et al. (2006, KOY), Kuvshinov
(2008, KUV) and Sun & Egbert (2012, SUN) are discussed. The
first two codes (referred to later in the text as KOY and KUV codes,
respectively) are fully 3-D, whilst the code by Sun & Egbert (2012,
SUN) deals with the surface thin sheet model which is very similar
to the model considered by Fainberg et al. (1990) and Kuvshinov
et al. (1999).

3 M O D E L 1 : T H I N S H E L L
C O N D U C TA N C E C O N T R A S T N S

3.1 Model description and setup

A NS surface or nested hemisphere model has been previously
employed to assess computational accuracy (e.g. Kuvshinov et al.
1999; Uyeshima & Schultz 2000; Koyama et al. 2002; Yoshimura
& Oshiman 2002; Sun & Egbert 2012) and is therefore a convenient
starting point for numerical comparison in our benchmark exercise.
Its sharp discontinuity at the equator allows us to assess the effect of
numerical approximations and truncation on the modelling of sharp
contrasts. Because of the azimuthal symmetry of both the model
and P0

1 source, the EM response is purely inductive, with no gal-
vanic effects and induced currents aligned parallel to conductivity
boundaries. This results in Bφ = 0 for all azimuths φ.

The surface NS Hemisphere model consists of a radially sym-
metric Earth with a (nominally) infinitely thin sheet of non-uniform
conductance located at the Earth’s surface. The radial conductivity
distribution beneath the thin sheet is presented in Table 2.

The shell conductance is 20 000 S in the Northern Hemisphere
(colatitudes 0–90◦) and 20 S in the Southern Hemisphere (co-
latitudes 90–180◦). The model is longitudinally symmetric. Nu-
merical discretization of this model requires a thin but finite layer
of grid cells, typically of the order of 10–50 km thick.

3.2 Results

We obtained results for the NS Hemisphere model from all solvers.
Since the models and results are longitudinally symmetric, we
present a single profile through zero longitude at the periods of
6 hr and at 4 d in Figs 1 and 2, respectively.

It is notable that there is overall a remarkable agreement between
these disparate methods. As expected, SHFE methods [VEL and
MAR] exhibit some oscillatory behaviour known as Gibbs phe-
nomenon (also known as ringing, e.g. Figs 1a and b), particularly
as the fields approach the sharp NS discontinuity. These meth-
ods are also having a harder time resolving the discontinuity itself

Table 2. Radial background conductivity model used as
a base for models 1 and 2.

Depths (km) Conductivities (S m−1)

0–100 0.0001
100–400 0.01
400–650 0.1

650–6371.2 2
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Figure 1. A subset of magnetic field profiles for benchmark case 1: North/South Hemispheres at period T = 6 hr. Solid lines are utilized for real components
of the magnetic fields; dashed lines are the imaginary components.

(e.g. close-ups in Figs 1c and d). Other methods resolve the NS
discontinuity well.

4 M O D E L 2 : T H I N S H E L L
C O N D U C TA N C E C O N T R A S T
W E S T / E A S T

4.1 Model description and setup

It is useful to consider a setup very similar to that discussed in the
previous section, with the discontinuity passing through the poles,
rather than aligned with the Earth’s equator. The P0

1 source approx-
imation, adopted by us for this benchmark comparison (common
also in the majority of global induction studies to date) favours a
longitudinally symmetric geometry. This benchmark case is there-
fore quite distinct from the one discussed in the previous section.
Moreover, many spherical forward solvers have singularities at the
Earth’s poles, which could be an additional source of numerical
errors.

Just like the North/South Hemispheres, the surface West/East
(WE) Hemisphere model consists of a radially symmetric Earth
with an infinitely thin sheet of non-uniform conductance located
at the Earth’s surface. The radial conductivity distribution is as

in Table 2. The shell conductance is 20 S at longitudes 0–90◦,
20 000 S at longitudes 90–270◦ and again 20 S at longitudes 270–
360◦. The model of latitudinally symmetric. This setup has also
been previously employed for assessing numerical accuracy of 3-D
solutions (e.g. Kuvshinov et al. 2005; Sun & Egbert 2012).

4.2 Results

Similarly to Section 3, we obtained the results for the WE hemi-
sphere model at four periods (6 hr, 1, 4 and 16 d) using the solvers
KEL, KOY, KUV, MAR, RIB, SUN and VEL. While the model is
defined in the same way across all latitudes, the spherical nature of
the model and a P0

1 source makes the results fully 3-D. Therefore,
we try to present them as thoroughly as possible.

Like model 1, model 2 is also a native setup for IE solvers KOY,
KUV and SUN. As expected, these solvers perform very consis-
tently, with variations of no more than a few nT located in just a few
grid cells contouring the corners of the embedded thinsheet con-
ductor. At a relatively high computational expense (see Section 9),
the FD solver KEL is able to perform just as accurately as the IE
solvers for this modelling setup.

Like in Section 3, an oscillatory behaviour of SHFE methods
[VEL and MAR] is again a striking feature of the solutions (Figs 3
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Figure 2. A subset of magnetic field profiles for benchmark case 1: North/South Hemispheres at period T = 4 d. Solid lines are utilized for real components
of the magnetic fields; dashed lines are the imaginary components.

Figure 3. A subset of magnetic field profiles for benchmark case 2: West/East Hemispheres at T = 6 hr. These latitudinal profiles consistently resolve the
boundaries of the conductive anomaly. Solid lines are utilized for real components of the magnetic fields; dashed lines are the imaginary components.
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Figure 4. A subset of magnetic field profiles for benchmark case 2: West/East Hemispheres at T = 4 d, plotted at the first grid cells after 90◦ and 180◦ longitude
for error analysis. Solid lines are utilized for real components of the magnetic fields; dashed lines are the imaginary components.

and 4). However, other features also appear, particularly the errors at
the corners and extending all along the boundaries of the conductive
anomaly (Figs 5–7). These are most notable in the SHFE solvers
MAR and VEL and the FE solver RIB, sometimes reaching the
magnitudes comparable to the amplitudes of the solutions. However,
all solvers exhibit reasonable consistency at the poles (Fig. 4) and
in the large-scale structure (Figs 5–7).

5 M O D E L 3 : E C C E N T R I C A L LY N E S T E D
S P H E R E

5.1 Model description and setup

An axially asymmetric, eccentrically nested sphere embedded
deep in the Earth’s mantle is a particularly interesting benchmark
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Figure 5. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 2 at a single period (4 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.

example, as the curvilinear contrast presents much difficulty for nu-
merical modelling, particularly when a structured grid is employed.
It is also one of the most useful test cases, since it is arguably the
most complicated example for which a semi-analytic solution exists
(Martinec 1998).

The setup of this model is as described in Fig. 8. The background
sphere K1 (which models the Earth) has radius 6731 km and conduc-
tivity 0.01 S m−1. The spherical inclusion K2 has radius 1200 km
and conductivity 1.00 S m−1. The centre O2 of the inclusion is
shifted with respect of the centre O1 of the sphere K1 by distance of
d1 = 4921 km in the direction of colatitude ϑ1 = 40◦ and longitude
ϕ1 = 35◦. In terms of depths, the smaller spherical inclusion spans
from 250 to 2650 km depth with centre 1450 km deep.

5.2 Results

Six solvers attempted this model setup: KEL, KOY, KUV, MAR,
RIB and VEL (Figs 9–12). In addition, a semi-analytic solution
based on Martinec (1998) is also shown.

All models are able to reproduce the semi-analytic curves in Fig. 9
with various precision. At the relatively high accuracy level and the
related computational costs employed by KEL for this model (see

Section 9), it is able to very accurately reproduce the semi-analytic
peaks/troughs caused by the embedded spherical anomaly (see also
Figs 10–12). This illustrates the inherent ability of even a structured
finite difference grid to model any complicated geometry. However,
the real part of the Bθ component is somewhat underestimated by
KEL, and the imaginary part overestimated (see Fig. 11). Interest-
ingly, this bias is inherent to KEL FWD modelling. Our numerical
experiments show that this bias disappears completely when sec-
ondary field formulation is employed. We speculate that the bottom
boundary conditions are affecting the magnitude of Bθ .

Although there is general agreement in the character of the Bφ

response, results are consistent to within a few nT. The modelling
of RIB gives rise to non-local instabilities and perhaps requires
additional stabilization.

6 M O D E L 4 : B U R I E D B L O C K

6.1 Model description and setup

Here, we consider a somewhat more complicated example which
incorporates the sharp edges of Models 1 and 2 and the fully 3-
D nature of Model 3. Specifically, we define a conductive buried
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Figure 6. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 2 at a single period (4 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/image parts but they are shifted to be centred around zero.

block in a radially symmetric mantle, at approximately transition
zone depths (Table 3). The 30◦ × 30◦ anomaly is placed in the
second host layer (in equatorial region) and has conductivity of 1 S
m−1 as described in Table 4. The P0

1 source excitation and periods
are as in Sections 3–5.

6.2 Results

Five solvers attempted the solution: KEL, KOY, KUV, MAR and
VEL. The results are presented in Figs 13–16. In the Bθ compo-
nents, the FD solver KEL and the IE solver KOY exhibit most
similarity between themselves, with only minor differences (2 nT
in the real part and 0.5 nT in the imaginary part) localized in the area
of the nested block anomaly. Source dominated differences of up to
±5 nT in the real part and up to ±1 nT in the imaginary part are ob-
served between this cluster, and the KUV, MAR and VEL solutions.
In the radial component Br, all solutions exhibit great similarity,
with most notable deviations up to ±4 nT in the real part and ±2 nT
in the imaginary part arising at the upper and lower boundaries
of the embedded block. The only exception is KOY solver, which
exhibits a minor source dependent deviation from the other solu-
tions in Br. All Bφ solutions are similar in character but exhibit

local variations in the magnitudes of the solutions of the order of
up to ±1 nT.

7 M O D E L 5 : S P H E R I C A L H A R M O N I C S
O F VA R I E D D E G R E E S A N D O R D E R S

7.1 Model description and setup

Spherical harmonic model representations come naturally to tech-
niques like SHFE methods. However, they are expected to present
the most technical difficulties to integral equation methods which
are most naturally suited to localized anomalies and sharp discon-
tinuities.

Here, we define three spherical harmonic perturbation settings:

(i) l = 2 m = +2 coefficient set to +1.2
(ii) l = 6 m = +4 coefficient set to +1.7
(iii) l = 12 m = +8 coefficient set to +2.2,

where the values are expressed as log10(σ ), σ being the electri-
cal conductivity in S m−1. We have chosen the Schmidt semi-
normalized spherical harmonic parametrization, and the coefficients
are such that when the spherical harmonic perturbations are mapped
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Figure 7. Real and imaginary parts of the radial component of the magnetic field for benchmark case 2 at a single period (4 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 8. Nested sphere model setup. Schematic adapted from Martinec
(1998).

to a grid, the peaks correspond to just over ±1 (log10 scale) (see
Fig. 17). So the total variations are ∼two orders of magnitude.
These perturbations are defined in the layer 400–650 km, replacing
the relevant layer in the 1-D host as in Table 2. The P0

1 source
excitation and periods are as in Sections 3–6.

The rationale for making the three examples so distinctly dif-
ferent is as follows. Degree 2 example is a basic test of mod-
elling with smooth conductivity variations; this example is con-
ceptually comparable to 3-D nested spheres or a blocky anomaly.
Degree 6 variations should be easily visible in the magnetic fields,
and clearly resolvable with a reasonable synthetic data distribu-
tion, making it an ideal case study for possible future synthetic
inversion benchmark and tests. Finally, degree 12 is a great ex-
ample for exploring our spatial limitations. The diameter of de-
gree 12 order 8 anomalies is approximately 20◦, and this is where
our resolution restrictions start making a difference (for exam-
ple, a 5◦ × 5◦ grid would produce a misleading representation
of these anomalies). Anomalies at this scale should be at the verge
of our spatial resolution with existing global data sets, and present
computational resources. In addition, this model set is explored
as groundwork for a global EM inversion benchmark study (in
preparation). To this end, we anticipate degree 12 to provide a
good test case to assess spatial resolution and adequacy of lateral
regularization.
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Figure 9. A subset of magnetic field profiles for benchmark case 3: embedded sphere at T = 1 d. Solid lines are utilized for real components of the magnetic
fields; dashed lines are the imaginary components.

7.2 Results

Five solvers attempted the solution: KEL, KOY, KUV, MAR and
VEL. Sample cross-comparisons of the results are presented in
Figs 18–26. Geomagnetic induction occurs in the presence of inter-
connected conductors. Thus, the spherical harmonic checkerboard

patterns present an especially difficult exercise for electromagnetic
modelling. Here, we show the cross-comparison between the radial,
θ and φ components of the magnetic field at a sample period of 4
d, for all three spherical harmonic models.

Large scale structure allow for greater similarities between
the solutions. For example, for the simplest l = 2 m = 2



Global EM benchmark 797

Figure 10. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 3 at a single period (1 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 11. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 3 at a single period (1 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 12. Real and imaginary parts of the radial component of the magnetic field for benchmark case 3 at a single period (1 day). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.

Table 3. Radial background conductivity model used as
a base for model 4.

Depths (km) Conductivities (S m−1)

0–400 0.004
400–800 0.04

800–6371.2 2

Table 4. Definition of model 4.

Colatitudes Longitudes Conductivity

0–75◦ 0–360◦ 0.04 S m−1

75–105◦ 0–165◦ 0.04 S m−1

75–105◦ 165–195◦ 1 S m−1

75–105◦ 195–360◦ 0.04 S m−1

105–180◦ 0–360◦ 0.04 S m−1

model, the differences in Br never exceed ±0.8 nT. In Bθ , the
absolute differences are bigger in the real part, reaching up
to ±4 nT, versus less than ±0.5 nT in the imaginary part.
Those in Bφ are of the order of ±0.1–0.2 nT (amounting to

up to 8 per cent in the real and 20 per cent in the imaginary
part).

The consistency between the solutions is reduced when finer scale
structures are introduced. In the extreme case of l = 12 m = 8, the
differences in the Br component go up to ±1.5 nT, amounting to ∼3
to 6 per cent in the real part and 5–20 per cent in the imaginary
part. Similarly, the differences in the imaginary part of Bθ range
from 7 to 26 per cent of the field component, while the errors in the
real part of Bθ never exceed 3 per cent. The biggest inconsistencies
are encountered in the Bφ . Maximum differences range from 1
to 15 per cent in the real part of the component; however, in the
imaginary component this deviation sometimes amounts to 20–
80 per cent of the component value. In both the real and imaginary
components of the field, the maximum differences vary from 0.1
to 1 nT; KEL and KOY are more consistent between themselves,
with maximum differences being no more than 2 per cent in the real
and 20 per cent in the imaginary components. While the absolute
differences are not dramatically increased compared to the simpler l
= 2 m = 2 and l = 6 m = 4 models, the relative errors increase very
substantially. We suggest that this is mostly due to the magnitude of
the response being diminished when smaller scale conductors are
considered. The blueberry–raspberry pie appearance of these plots
brings out consistent inaccuracies in our formulations that give us
an upper limit on the numerical errors we might encounter.



Global EM benchmark 799

Figure 13. A subset of magnetic field profiles for benchmark case 4: buried block, plotted at the edge of the block (φ = 195◦) and across the centre (θ = 90◦)
for T = 1 d. Solid lines are utilized for real components of the magnetic fields; dashed lines are the imaginary components.

8 M O D E L 6 : G L O B A L C O N D U C TA N C E
M A P

8.1 Model description and setup

To conclude our study, we compare performance of our solvers on
a realistic 3-D surface conductance map (Everett et al. 2003) over

a radial conductivity model adapted from Medin et al. (2007) and
described by Table 5. Numerical methods which model the near-
surface conductance map explicitly have assumed this conductance
to be distributed over 50 km as in Everett et al. (2003). As with
previous models, all computations were performed in the coordinate
system defined by the dipolar geometry of the external field, that
is in geomagnetic coordinates. Therefore, the surface conductance
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Figure 14. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 4 at a single period (1 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 15. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 4 at a single period (1 d). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 16. Real and imaginary parts of the radial component of the magnetic field for benchmark case 4 at a single period (1 day). The first (vertical) column
corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part. The
colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper triangle
are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same ranges
as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 17. Synthetic model 5: spherical harmonic perturbations. Adapted from Kelbert et al. (2008).

map was also rotated into geomagnetic coordinates, and the field
components presented here are also expressed in the geomagnetic
system.

8.2 Results

All seven solvers attempted the computations for this model. The
comparison of the solutions in native geomagnetic coordinates is

presented in Figs 27–29. The deviations between the KEL, KOY,
KUV and SUN solutions, sometimes reaching ±10–20 nT, are local-
ized in thin stripes around the conductive/resistive boundaries (con-
tinent contours). The differences between these codes and MAR and
VEL are about twice as big and result from the ‘ripple-like’ effect
of SHFE methods. These are concentrated in the ‘conductors’—the
oceans. Finally, the deviations of the order of several hundreds of
nT of an FE code RIB from the cluster of IE and FD solutions are
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Figure 18. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 5 l = 2 m = 2 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 19. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 5 l = 2 m = 2 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 20. Real and imaginary parts of the radial component of the magnetic field for benchmark case 5 l = 2 m = 2 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 21. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 5 l = 6 m = 4 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 22. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 5 l = 6 m = 4 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 23. Real and imaginary parts of the radial component of the magnetic field for benchmark case 5 l = 6 m = 4 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 24. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 5 l = 12 m = 8 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 25. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 5 l = 12 m = 8 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 26. Real and imaginary parts of the radial component of the magnetic field for benchmark case 5 l = 12 m = 8 at a single period (4 d). The first (vertical)
column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is the imaginary part.
The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different codes. The upper
triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences have the same
ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Table 5. Radial background conductivity model used as
a base for model 6.

Depths (km) Conductivities (S m−1)

0–400 0.01
400–650 0.1

650–2871 2.0
2871–6371 500 000

again mostly focused around continent edges. These errors seem to
have a latitudinal dependence.

In conclusion of our discussion, we also present these same results
rotated back to geographic coordinates. These are illustrated in
Figs 30–32. We can see that upon rotation, the effect of the P0

1 source
is dominant in the real parts of the tangential field components.
However, the relative errors in the solutions are not significantly
affected by rotation.

9 T E C H N I C A L D E TA I L S F O R A L L
S O LU T I O N S

Table 6 summarizes the contribution of each solution to different
models.

It is worth noting that for all synthetic special cases presented
in this study, the methods based on integral equation formulation
(IE; KUV, KOY, and SUN) require significantly shorter CPU times
than those of the full-Earth FE scheme (FE; RIB), full-Earth finite
difference scheme (FD; KEL) and of the SHFE methods (SHFE;
MAR, VEL). The CPU times of the FD method are comparable
to those of SHFE schemes at similar accuracy levels (here, they
are higher due to enhanced FD accuracy and resolution presented
in this paper). On the other hand, the IE methods tend to require
significantly more resources as the heterogeneous model domain
is expanded to include all of Earth’s mantle, while the computa-
tional requirements of the FD scheme are determined based on the
numerical grid and will never exceed those presented in this pa-
per even for a fully heterogeneous Earth. A major advantage of
SHFE is a very modest memory requirement compared to the other
methods.

By design of this study, all authors, independently, chose to stop
their codes at the tolerance that they found appropriate to pro-
duce a sufficiently accurate solution. Since higher tolerance typ-
ically corresponds to higher accuracy and longer run times, this
setting needs to be taken into account when model solutions and
run times are compared. For this reason, we include information
about the tolerance settings, where relevant, into the technical detail
Tables 7–13.



Global EM benchmark 807

Figure 27. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 6 at a single period (6 hr) in geomagnetic coordinates.
The first (vertical) column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal)
row is the imaginary part. The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from
different codes. The upper triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the
differences have the same ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 28. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 6 at a single period (6 hr) in geomagnetic coordinates.
The first (vertical) column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal)
row is the imaginary part. The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from
different codes. The upper triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the
differences have the same ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 29. Real and imaginary parts of the radial component of the magnetic field for benchmark case 6 at a single period (6 hr) in geomagnetic coordinates.
The first (vertical) column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal)
row is the imaginary part. The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from
different codes. The upper triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the
differences have the same ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 30. Real and imaginary parts of the φ-component of the magnetic field for benchmark case 6 at a single period (6 hr) in geographic coordinates. The
first (vertical) column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is
the imaginary part. The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different
codes. The upper triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences
have the same ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Figure 31. Real and imaginary parts of the θ -component of the magnetic field for benchmark case 6 at a single period (6 hr) in geographic coordinates. The
first (vertical) column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal) row is
the imaginary part. The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from different
codes. The upper triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the differences
have the same ranges as the corresponding real/imag parts but they are shifted to be centred around zero.

Figure 32. Real and imaginary parts of the radial component of the magnetic field for benchmark case 6 at a single period (6 hr) in geographic coordinates.
The first (vertical) column corresponds to the real part of the magnetic fields. The colourbar at the top corresponds to the real part. The first (horizontal)
row is the imaginary part. The colourbar at the bottom corresponds to the imaginary part. The lower triangle are the differences between the real parts from
different codes. The upper triangle are the differences between the imaginary parts from different codes. The diagonal is empty. The colour scales used for the
differences have the same ranges as the corresponding real/imag parts but they are shifted to be centred around zero.
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Table 6. Contributions of individual codes to the benchmark.

Abbrev. References Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

KEL Uyeshima & Schultz (2000); Kelbert et al. (2008) Yes Yes Yes Yes Yes Yes
KOY Koyama et al. (2006) Yes Yes Yes Yes Yes Yes
KUV Kuvshinov (2008) Yes Yes Yes Yes Yes Yes
MAR Martinec (1999) Yes Yes Yes Yes Yes Yes
RIB Ribaudo et al. (2012) Yes Yes Yes — — Yes
SUN Sun & Egbert (2012) Yes Yes — — — Yes
VEL Velı́mský & Martinec (2005) Yes Yes Yes Yes Yes Yes

Table 7. Summary of technical details for finite difference solution by Uyeshima & Schultz (2000) (as modified by Kelbert et al. 2008) for different models.
Numerical grid (in the form of Nφ × Nθ × Nr) stands for a number of volume cells used to obtain the solution. This number includes 17 air layers of
the computational grid, and 8 layers representing the ‘thinsheet’. CPU time is the maximum over the four frequencies, given for a single 2.6 GHz AMD
Opteron(TM) 6238 processor. However, in practice the code is run in parallel (parallelized by frequency with MPI). The Fortran 90 code is compiled by
Portland Group 12.2 64-bit compiler with options ‘-O3 -fastsse -mp -tp=istanbul-64’. Note that the achieved solution tolerance is very different depending
on whether or not the secondary field formulation (SFF) or the full 3-D forward computation (FWD) was performed. This is because the 1-D structure is not
included in the iterative scheme for SFF. Here, we include both values, where appropriate. Nevertheless, the accuracies of the resultant solutions are so similar,
that this paper only presents one or the other—typically, SFF, if computed; run times are also similar between these two methods. The convergence criterion
(used to control the iterative scheme) is less strongly dependent on the method we employ. The number of iterations stated in this table is the number of calls to
divergence correction, averaged between the four frequencies. For Model 5, all values are representative for this class of models, averaged between the three
model configurations.

Model Numerical grid CPU time Tolerance Convergence criterion N of div. corr. Memory requirements
(SFF/FWD) (SFF/FWD) (Mb)

Model 1 360 × 180 × 98 7 hr 10−3/10−29 10−6/10−7 45 8516
Model 2 360 × 180 × 98 6 hr 10−3/10−27 10−6/10−7 32 8516
Model 3 360 × 180 × 119 7 hr –/10−30 –/10−8 25 9290
Model 4 360 × 180 × 119 6.5 hr –/10−30 –/10−8 21 9290
Model 5 360 × 180 × 98 1.5 hr 10−3/– 10−6/– 10 8516
Model 6 360 × 180 × 98 7.5 hr 10−4/– 10−7/– 23 8516

Table 8. Summary of technical details for CIE solution by Kuvshinov (2008) for different models. Numerical grid (in a form of Nφ × Nθ × Nr) stands for a
number of volume cells used to obtain the solution. CPU time is for a single frequency for a single core processor on dual-core 2.8 GHz AMD Opteron 2220
processor. The code is written in Fortran 77 and compiled by Intel 13.0 compiler with no optimization flags. The resulting system of equations Ax = b is solved
by Krylov subspace iterations. Tolerance defines the threshold to stop the iterations; in other words it is assumed that the approximation to the solution, x(n), is
obtained once the following inequality holds: ||Ax(n) − b||/||b|| < ε.

Model Numerical grid Overall CPU time CPU time CPU time Tolerance No. of iterations Memory requirements
(CIE) (Green’s fn) (Mb)

Model 1 360 × 180 × 1 2 min 2 s 9 s 1 min 47 s 10−4 11 355
Model 2 360 × 180 × 1 2 min 2 s 9 s 1 min 47 s 10−4 11 355
Model 3 180 × 90 × 12 56 min 9 min 43 min 10−4 17 14 400
Model 4 360 × 180 × 4 45 min 6 min 37 min 10−4 9 6400
Model 5 360 × 180 × 2 13 min 10 s 11 min 10−4 11 1600
Model 6 360 × 180 × 1 2 min 2 s 9 s 1 min 47 s 10−4 11 355

Table 9. Summary of technical details for CIE solution by Koyama et al. (2006) for different models. Numerical grid (in a form of Nφ × Nθ × Nr) stands for
a number of volume cells used to obtain the solution. SPH degree is a truncation degree of spherical harmonic expansion. The code is written in Fortran 77
and compiled by gfortran compiler with no optimization flags. CPU time is for a single processor core on the laptop PC with a 2.6GHz Dual-Core Intel Core
i5 processor in the 6 hr period case.

Model Numerical grid SPH degree Overall CPU time CPU time CPU time Tolerance No. of iterations Memory requirements
(CIE) (Green’s fn) (Mb)

Model 1 360 × 180 × 1 230 6 min 4.5 min 1.5 min 10−7 26 2300
Model 2 360 × 180 × 1 230 9 min 7.5 min 1.5 min 10−7 48 2300
Model 3 360 × 180 × 24 135 68 min 67 min 1 min 10−7 31 3240
Model 4 360 × 180 × 20 120 65 min 64 min 1 min 10−7 40 2740
Model 5 360 × 180 × 5 100 7 min 6.5 min 0.5 min 10−7 19 1320
Model 6 360 × 180 × 1 150 2 min 1.5 min 0.5 min 10−7 13 1420

9.1 Finite difference solution (KEL)

At the core of the code, which is written in Fortran 90, is the
efficient finite difference forward solver written by Uyeshima &
Schultz (2000). While the code has been in general heavily mod-

ified for inversion by Kelbert et al. (2008), the forward solver
is functionally identical to the Uyeshima & Schultz (2000) orig-
inal code, modified by Toh et al. (2002). The system Ax = b
is solved with a stabilized version of the biconjugate gradient
method [BiCGStab; Toh et al. (2002)], with periodic ‘divergence
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Table 10. Summary of technical details for CIE solution by Sun & Egbert (2012) for different models. Numerical grid (in a form of Nφ × Nθ × Nr) stands for
numbers of surface cells used to obtain the solution. The system matrix equation Ax = b is solved with Krylov subspace iterations. The Krylov iteration stops
when ||Ax̂ − b||/||b|| < ε, where x̂ is the approximate solution, and ε is the stopping tolerance. The code is written in MATLAB. The CPU time is measured
under MATLAB R2012a for a single processor core on an Apple iMac desktop with a 2.8 GHz Quad-Core Intel Core i5 processor.

Model Numerical grid Overall CPU time CPU time CPU time Tolerance No. of iterations Memory requirements
(CIE) (Green’s fn) (Mb)

Model 1 360 × 180 × 1 30 min 10 s 30 min 10−6 25 358
Model 2 360 × 180 × 1 30 min 10 s 30 min 10−6 25 358
Model 6 360 × 180 × 1 30 min 11 s 30 min 10−6 25 358

Table 11. Summary of technical details for SHFE-FD solution by Martinec (1999) for different models. Spatial
resolution is given by spherical harmonic truncation degree jmax, and number of layers kmax. CPU time is reported
for a single 2.0 GHz x86-64 processor. The Fortran 77 code was compiled by Intel Fortran Compiler v 13.0.1
with default optimization. The number of iterations was fixed, and the resulting tolerance (relative error of the
right-hand side of the linear system) was always 10−4 or less.

Model jmax kmax CPU time N of iterations Memory requirements (Mb)

Model 1 40 132 2 hr 101 940
Model 2 40 132 2 hr 101 940
Model 3 40 151 2.5 hr 101 1230
Model 4 40 96 1.5 hr 101 500
Model 5 40 123 2 hr 101 820
Model 6 40 148 2.5 hr 101 1190

Table 12. Summary of technical details for SHFE-TD solution by Velı́mský & Martinec (2005) for different
models. Spatial resolution is given by spherical harmonic truncation degree jmax, and number of layers kmax. The
time-step �t is selected according to the period T. CPU time is reported for a single 2.0 GHz x86-64 processor,
and post-processing (in particular, Fourier transform of the results) is excluded. The Fortran 90 code was compiled
by Intel Fortran Compiler v 13.0.1 with default optimization, and using Intel Math Kernel Library v 11.0 for
LAPACK subroutines.

Model jmax kmax �t No. of time steps CPU time Memory requirements (Mb)

Model 1 40 132 T/6000 60 000 1.7 hr 140
Model 2 40 132 T/6000 60 000 1.7 hr 140
Model 3 40 151 T/6000 60 000 2.3 hr 180
Model 4 40 96 T/6000 60 000 1.2 hr 75
Model 5 40 123 T/6000 60 000 1.7 hr 120
Model 6 40 148 T/6000 60 000 2.3 hr 170

Table 13. Summary of technical details for FE solution by Ribaudo et al. (2012) for different models. Number
of nodes and cells reflects cumulative adaptive refinements for all four frequencies. Reported runtime is wall
clocktime, not charged CPU time, for all frequencies run sequentially, including mesh generation and refinement.
Tolerance refers to maximum allowed relative error in each cell for potentials, not fields. It is defined by the
program setting ‘errlim’, which is set at 0.003 for this study. This means that, in every cell of the mesh, each
variable has an error less than 0.3 per cent of the value of that variable within the cell. Errors higher than this will
trigger adaptive refinement of the mesh. All models are run with four simultaneous CPU threads, using the default
parallelization of FlexPDE 6.19 package on a MacPro running Windows Vista with two 2.80 GHz x64 quad-core
processors.

Model Nodes Cells Runtime Tolerance Memory requirements (MB)

Model 1 473 058 348 181 3.8 hr 10−3 4 108 812
Model 2 726 394 534 065 142 hr 10−3 25 810 521
Model 3 124 207 91 698 17.9 hr 10−3 3 262 615
Model 6 471 328 344 337 169 hr 10−3 18 054 692

corrections’ [see Uyeshima & Schultz (2000)]. The divergence cor-
rection procedure is called at least once every 60 BiCGStab itera-
tions. The stopping criterion requires that one of the two conditions
of either 1) the convergence criterion

√
||x (n) − x (n−1)||/||x (n)|| < δ,

or 2) tolerance ||Ax(n) − b||/||b|| < ε are achieved. In practice, ε =
1e-30 to protect against numerical saturation, and the convergence

criterion δ is used to tighten or relax the accuracy of the solution,
as shown in Table 7.

Finite difference methods do not have an inherent preference for
smooth models over sharp model contrasts, or vice versa, however
the numerical solution converges faster for smooth models. Ac-
curate representation of complicated geometries with a structured
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finite difference grid requires high resolution and cranks up the
computational requirements. For a regular latitude/longitude grid,
accuracy increases as we get away from the poles, where conver-
gence is worst.

Any remaining artifacts (e.g. see Fig. 2b at the North pole) may
be eliminated completely if the solution is allowed to converge
further. They are amplified if the convergence criteria are relaxed.
We are not certain that this is an inherent feature of staggered-grid
finite difference approach, since the South pole—which is also a
singularity—does not seem to exhibit this behaviour. Whether a
feature or a bug, this issue does not seem to affect mid-latitude
results. Instead, the solutions at the mid-latitudes (and specifically
at the conductive/resistive interfaces) are essentially unaffected by
the convergence criteria, if these are varied within a reasonable
range.

9.2 Integral equation solutions (KUV, KOY, and SUN)

Table 8 lists the gridding, convergence and computational loads of
IE code by Kuvshinov (2008) for different models.

Table 9 lists the gridding, convergence and computational loads
of integral equation solution by Koyama et al. (2006) for different
models. SPH degree is the truncation degree of spherical harmonic
expansions to be used in the code for the mode expansions (de-
tails in Koyama et al. 2013). The maximum degree of the spherical
harmonics as well as the spherical Bessel functions depends on the
arguments to be calculated numerically, that is, the background con-
ductivity structure and the frequency. Thus the SPH degree differs
in each model.

Table 10 lists the gridding, convergence and computational loads
of integral equation solution by Sun & Egbert (2012) for different
models.

Methods based on integral equation with a contracting kernel
allow for an efficient and accurate simulation of EM fields both
in smooth models, and models with sharp contrasts. The conver-
gence to the solution is very fast irrespectively of the conductivity
contrasts, and run times are from small to moderate. The solvers
based on this approach work equally well for models with simple
and complicated geometries.

9.3 SHFE solutions (MAR, VEL)

Tables 11–12 list the respective gridding, convergence and com-
putational loads of the frequency-domain and time-domain SHFE
solutions by Martinec (1999) and Velı́mský & Martinec (2005) for
different models.

SHFE methods are good at representing smooth model variations
with a handful of basis functions, but dealing with sharp contrasts
(such as the ocean/continent interfaces) is problematic. We have ex-
perimented with various techniques to suppress the ringing artifacts
in the scenarios with sharp conductivity contrasts. These included
linear and cosine tapering of conductivities across the interfaces, or
a least-squares projections of the (logarithm of) conductivity into
the space spanned by spherical harmonics. However, while ringing
was ameliorated, these changes lead to increased systematic shifts of
the solutions compared to other techniques. Therefore, we decided
to leave the ringing untreated in all presented results.

The semi-analytical solution for the nested-sphere model 3 pre-
sented in Section 5 was obtained at truncation degree jmax = 24.

9.4 Finite element solution (RIB)

Table 13 lists the gridding, convergence and computational loads
of the FE solution by Ribaudo et al. (2012) for different models.
Each model is staged in order of decreasing period, because higher
frequencies usually require finer mesh. The FE mesh is adaptively
refined for each frequency and then passed on for use in the fol-
lowing stage. The numbers in the table reflect the cumulative totals
from all four frequencies.

FE methods provide an unprecedented degree of geometric flex-
ibility, including grid adaptation, and are therefore good at repre-
senting complicated structures and sharp contrasts; however, con-
vergence is slow for complicated geometries and requires large run
times for accuracy.

1 0 C O N C LU S I O N S

We have presented a careful benchmark exercise for a very hetero-
geneous set of seven global electromagnetic induction modelling
codes, including three CIE formulations, two SHFE solutions, a
regular staggered-grid FD method and an adaptive grid FE solu-
tion. We have employed a set of synthetic examples of varying
complexity to assess their performance and relative consistency.

The three codes based on CIE concept are shown to be highly ef-
ficient for all synthetic examples, and compare well between them-
selves as well as to the other solvers in all regions of the globe
including poles. The two key components of any CIE formulation
are the computation of the Green’s tensor and the numerical so-
lution of CIE, respectively. In the code of Koyama et al. (2006,
KOY), the main computational load goes to the numerical solution
of CIE, whereas in the codes by Kuvshinov (2008, KUV) and Sun
& Egbert (2012, SUN) the Green’s tensor computation is the most
time-consuming part of the codes. This feature puts the latter two
codes at a computational advantage when repeated numerical solu-
tions are required, such as for solving source and/or conductivity
inverse problems. Indeed, as long as the background model remains
unchanged, Green’s tensors only need to be computed once, and
may be reused for multiple sources, as well as for varying electrical
conductivity distributions.

In contrast to FD and FE formulations that solve sparse matrix
systems, the CIE codes work with dense matrices (with all entries
filled), but these matrices are much more compact than matrices
used in FD and FE codes. The reason for compactness is that in
the CIE codes the modelling region is confined only to the spheri-
cal layers that contain the inhomogeneities, whereas in the FD and
FE codes one has to discretize a much larger volume in the ra-
dial direction in order to enable the decay (or stabilization) of the
fields at the upper and lower boundaries of the domain. Also note
that the CIE matrices do not require preconditioning irrespective of
discretization, frequency and contrasts of conductivity. Because of
this, for local geometries, FD code by Kelbert et al. (2008, KEL)
and FE code by Ribaudo et al. (2012, RIB) are much more com-
putationally demanding than CIE formulations. This is no longer
true when the computational domain is expanded to include a fully
heterogeneous Earth’s mantle. The computational requirements of
CIE surge rapidly with the expanded size of the model domain, re-
sulting in run times more comparable to Kelbert et al. (2008, KEL)
and in very demanding memory requirements for Green’s tensor
computation and storage in Kuvshinov (2008, KUV). Note that the
3-D CIE code of Koyama et al. (2006, KOY) is not as demanding
in terms of memory requirements.
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FD code by Kelbert et al. (2008, KEL) based on Uyeshima &
Schultz (2000) is equally efficient with local and globally distributed
contrasts, but requires high grid resolution to resolve sharp contrasts
and complicated geometries. At the resolution and accuracy levels
considered in this manuscript, the FD results compare well to those
of the other solvers and do not exhibit any noticeable artifacts. At
lower accuracy levels, convergence is poorest at the poles, however
the solutions at the model contrasts are not affected, and computa-
tional requirements drop significantly.

The FE solution of Ribaudo et al. (2012, RIB) tends to intro-
duce significant errors where structures are present, and noise away
from the heterogeneities. It is also one of the most computation-
ally demanding approaches out of those considered in this paper.
While adaptive grid FE approach provides an unprecedented degree
of geometric flexibility, the use of general-purpose modelling soft-
ware presents its challenges. Even though the modelling algorithm
can be guided by user-adjustable settings, the ability to optimize
the algorithm for solving the induction equation in particular is not
available, resulting in longer run times than would be necessary with
purpose-built code. In particular, the run times for the computations
presented in the paper have been insufficient to provide adequately
accurate solutions.

SHFE methods Martinec (1999, MAR) and Velı́mský & Mar-
tinec (2005, VEL) tend to be most accurate away from sharp con-
trasts, which also introduce global ringing effects in SHFE solu-
tions, but are otherwise equally efficient with all model types. Like
CIE codes and Ribaudo et al. (2012, RIB), they do not suffer from
discretization problems at the poles. They are tailored to scenar-
ios where both the source field and the observed induced field are
parametrized globally by spherical harmonic functions. Such base
is a natural choice for processing of satellite observations recorded
along low-altitude polar orbits. On the other hand, interpretation of
coastal observatory data by global SHFE modelling could be bi-
ased by significant modelling errors. The single-frequency periodic
regime is not a typical scenario for the deployment of the time-
domain method, as its run times scale linearly with the length of
the time series. Nevertheless, it provides results comparable to the
frequency-domain method using the same spatial discretization.

Our analysis has provided an overview of the magnitude of nu-
merical errors in these global electromagnetic modelling codes that
are otherwise very difficult to constrain. These findings should be
taken into account when these codes are used in practice.

Overall, we conclude that even though these methods are all
very different in their numerical approaches and implementation, all
modelling results are reasonably consistent with each other, suggest-
ing that (with reservations discussed above) these solutions are all
equally valid in approaching the problem of global electromagnetic
induction, and may be employed for practical global geomagnetic
inversion.
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