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S

This note investigates the sense in which saddlepoint approximations act as smoothers of discrete
distributions. The discrete problem is embedded in a continuous model that closely matches it on
the discrete sample space, with saddlepoint approximation yielding an inference that is almost
exact for the continuous model. The same applies to conditional distributions. An example is given
and implications for inference are discussed.
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1. I

Consider a logistic regression model in which the jth of n independent binary variables X
j
has

success probability {1+exp (−vT
j
l−z

j
y)}−1, where v

j
is a p×1 vector of covariates and l is a

vector of unknown nuisance parameters. It is natural to base inference for the scalar parameter y
of interest on the conditional distribution of U=W z

j
X
j
given A=W v

j
X
j
, which is free of l. The

main obstacle to doing so is enumeration of the conditional sample space, which sometimes has
very few support points. This restricts the conditional significance levels for tests on y, resulting
in a loss of power that has generated a protracted debate on the merits and demerits of conditional
inference, particularly for the 2×2 table (Yates, 1984; Agresti, 1992). Moreover the inferences can
be unstable, as a slight change to the observed value of A can have a large effect on the conditional
significance levels available. This is irritating in practice and objectionable in principle: why should
a well-defined and apparently sensible procedure behave thus? Saddlepoint approximation to the
conditional distribution of U given A gives more stable inferences, suggesting that some form of
smoothing is implicitly being performed. Indeed, Pierce & Peters (1999) argue that use of averaged
exact conditional significance levels is not only appropriate in discrete models but is essentially
performed by using procedures based on saddlepoint approximations but devised for continuous
problems.
The purpose of this paper is to investigate the sense in which the saddlepoint approximation
without adjustment for discreteness acts as a smoother of discrete probability models. Our con-
clusion is that the probability mass function for a discrete random variable T , possibly multivariate,
is approximated by the density of a continuous random variable whose support is the interior of
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the convex hull of the support of T ; often this is infinite. The mass function and density differ at
the support points of T , but with relative error O(n−1 ), where n is the sample size. The same is
true when saddlepoint approximation is applied directly to a conditional distribution, with inference
based on a continuous approximation to the exact conditional density. Thus one may think of the
discrete problem as being embedded in a continuous model that closely matches it on the discrete
sample space, with saddlepoint approximation yielding an inference that is almost exact for the
continuous model.
Conditional densities associated with the continuous model do not have a limited set of sig-
nificance levels and they are not unstable with respect to changes in the conditioning event.
Hence the continuous model does not share the drawbacks associated with conditioning in the
discrete case. On the other hand continuity correction is needed for accurate approximation of the
underlying discrete distribution.
Section 2 contains our argument, with discussion in § 3 and an example in § 4.

2. S 

Let g
n
(w) be the probability mass function of a random variable W

n
taking values on a lattice

with step c
n
. Assume that W

n
is standardised so that c−1

n
g
n
(w) has a nondegenerate limit density

as n�2 and c
n
�0; note that the ratio c−1

n
g
n
(w) could be considered to be the derivative of the

distribution function of W
n
at w. The simplest example and the case we consider below is when W

n
is the standardised average n1/2(X9 −m) of a random sample of integer random variables X1 , . . . , Xn
with mean m. Then E(W

n
)=0 and c

n
=n−1/2.

Denote the cumulant generating function of X
i
by K(t), assumed to exist in an open interval

containing the origin. Then the probability mass function ofW
n
at a support value w has saddlepoint

approximation (Daniels, 1954)

h
n
(w)={2pnK◊(t

w
)}−1/2enK(t

w
)−n1/2wt

w
, (1)

where t
w
is the unique solution to K∞(t)=n−1/2w. Typically this nonnegative function extends

smoothly to all values of w inside the support ofW
n
, because (1) depends smoothly on the cumulant

generating function K(t) and its derivatives, all of which are very well behaved for models of
practical interest.
The cumulative distribution function G

n
(w) of W

n
has a Lugannani–Rice-type saddlepoint

approximation (Daniels, 1987)

H
n
(w)=qW(rw+)+w(rw+) (r−1w+−s−1w+ ), if w

+
N0,

1
2
+1
6
(2pn)−1/2K(3)(0)/{K◊(0)}3/2−1

2
{2pnK◊(0)}−1/2, if w

+
=0,

(2)

where w and W are the standard normal density and distribution functions and

w
+
=w+c

n
, r
w
=sgn (t

w
)[2n{n−1/2t

w
w−K(t

w
)}]1/2, s

w
= (1−e−t

w
){nK◊(t

w
)}1/2.

Approximations (1) and (2) have relative error O(n−1 ) if w lies in the support of W
n
.

If we pretend that the X
i
are continuous, we can compute the continuous version of the

saddlepoint approximation for the distribution function of W
n
, that is

HB
n
(w)=qW(rw )+w(r2 ) (r−1w −sA−1w ), if wN0,

1
2
+1
6
(2pn)−1/2K(3)(0)/{K◊(0)}3/2, if w=0,

where sAw=tw{nK◊(tw )}1/2. In the continuous case w can take any value inside the convex hull of
the support of W

n
. In fact HB

n
(w) differs from G

n
(w) by a relative error of O(n−1/2 ) in a normal

deviation region. We discuss below the use of HB
n
(w) in discrete data problems and particularly for

approximate conditional inference.
We write the distribution function of W

n
as

G
n
(w)= ∑

b

i=a
g
n
(w
i
),
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where {w
i
} contains the support of W

n
in increasing order as i runs from a to 2, a may be finite

or −2, and w
b
=w. By (1), G

n
(w) may be approximated by

GC
n
(w)= ∑

b

i=a
h
n
(w
i
)=c
n
∑
b

i=a
f
n
(w
i
) (3)

with relative error O(n−1 ), where f
n
(w)=c−1

n
h
n
(w) is a smooth function on the interior of the convex

hull of the support of W
n
with a nondegenerate normal density as its limit as n�2.

We apply the Euler–Maclaurin formula (Barndorff-Nielsen & Cox, 1989, pp. 68–71) to the right-
most summation in (3), giving

GC
n
(w)=c

n qc−1n P w
w
a

f
n
(u) du+1

2
f
n
(w)+O(c

n
)r

= P w+cn/2
w
a

f
n
(u) du− P w+cn/2

w
f
n
(u) du+1

2
c
n
f
n
(w)+O(c2

n
)

= P wc
w
a

f
n
(u) du+O(n−1 ), (4)

where w
c
=w+c

n
/2 and here we have taken c

n
=n−1/2. The first equality uses the fact that, as its

limit is a normal density, f
n
(w
a
) goes to zero in exponential order since w

a
is either−2 or converges

to −2 at rate n1/2. Thus f
n
(w
a
)=O(n−1/2 ). Equations (3) and (4) indicate that, apart from an

O(n−1 ) error, the discrete distribution function of W
n
may be approximated at its support points

by the smooth function GC
n
(w), which behaves like a distribution function. Moreover, the integral

in (4) can be further approximated with a relative error of O(n−1 ) by the r* formula (Barndorff-
Nielsen & Cox, 1994, p. 211)

GB
n
(w
c
)=W{r*(w

c
)}, (5)

where r*(w)=r
w
+r−1
w
log (sAw/rw ) with sAw and rw given after (2). Hence GB n (wc ) approximates Gn (w)

with a relative error of O(n−1 ) in a normal deviation region. In the large deviation situation with
w=O(n1/2 ), the error rate is not relative, because of (4), but the relative error is generally bounded;
it is O(1). This is readily seen in the application of the Euler–Maclaurin formula with f

n
(w) equal

to the standard normal density function, for which f ∞
n
(w)=−wf

n
(w), f ◊

n
(w)= (w2−1) f

n
(w) so that

the absolute error is

n−1/2O{n−1/2 f ∞
n
(w)+n−1 f ◊

n
(w)}=O{n−1/2 f

n
(w)},

which is the same order as G
n
(w) when w=O(n1/2 )�−2; a similar argument applies to the

upper tail probability. Furthermore, for a moderately large deviation region with w=O(np ) for
0<p<1

2
, the relative error is O(n2p−1 ).

An alternative to the development above leading to (5) starts with the discrete version (2)
of the Lugannani–Rice formula. In a normal deviation region with w=O(1), 1−e−t

w
=

t
w
−t2
w
/2+O(t3

w
). Moreover, provided w

+
N0,

GB
n
(w
+
)=W(r

w
+

)+w(r
w
+

) (r−1
w
+

−sA−1w
+

)+O(n−1 )

=H
n
(w)+w(r

w
+

) (s−1
w
+

−sA−1w
+

)+O(n−1 )

=H
n
(w)+1

2
{nK◊(t

w
)}−1/2w(r

w
+

)+O(n−1 ). (6)

On the other hand, using the facts that

w
+
=w
c
+1
2
n−1/2, dr

w
/dw={K◊(t

w
)}−1/2+O(n−1/2 ),

we have

GB
n
(w
+
)=W{r*(w

c
)}+1
2
{nK◊(t

w
)}−1/2w(r

w
+

)+O(n−1 ).

This and (6) give the desired result (5). Detailed derivations may be obtained from the authors.
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3. C

Several comments spring to mind. First, we have shown that (5) approximates the distribution
function G

n
(w) of the discrete W

n
at each of its support points with error O(n−1 ), but is continuous

inside the convex hull of the support. In fact this involves two approximations, the first arising
when the mass function g

n
(w) is replaced by the saddlepoint quantity (1) at the points w=w

i
,

and the second occurring when the integral of (1) over w is approximated by (5). For a related
application of saddlepoint smoothing in bootstrap distributions, see Wang (1990).
Secondly, continuity correction is needed only if the original discrete model is regarded as the
target to which approximation is sought. The usual use of r*(w) as a continuous approximation
to a discrete problem is first-order correct, having error O(n−1/2 ). If a continuity correction 1

2
c
n
is

added to w, then r*(w
c
) and (5) give a second-order correct approximation for the discrete distri-

bution, with error O(n−1 ). One could argue that it is more appropriate to regard the continuous
distribution arising from integrating (1) as the baseline. One might assert that this continuous
version of the problem is more nearly ideal, in the sense that there is no theoretical restriction on
the achievable significance levels, although in practice only a subset of them can be observed
because of the discreteness of W

n
; this embedding plays a more central role in the conditional

situations discussed below. This discussion reinforces the recommendation of Pierce & Peters (1999)
that continuity correction not be used, but from the viewpoint that one should not attempt to
reproduce results from a discrete model in which restricted significance levels depend heavily on a
conditioning event.
Thirdly, our argument easily extends to conditional distributions, simply by taking G

n
(w) to be

the conditional distribution of a discrete variable. If a saddlepoint approximation is available for
the corresponding conditional density, then the orders of error in (1) and (2) continue to hold,
and our argument goes through, with (5) a smooth approximation to the discrete conditional
distribution. In many exponential family models, however, the resulting approximation arises from
or is equivalent to a double saddlepoint approximation, and it is then the result of a smoothing
on the original unconditional sample space. Double saddlepoint approximation to the conditional
mass function of a discrete random variable W

n
conditional on another discrete variable A

n
uses

the ratio h
n
(w, a)/h

n
(a), where the joint and marginal density approximations h

n
(w, a) and h

n
(a) have

formulae similar to (1) and arise from essentially the same argument. Now h
n
(w, a) differs from the

exact joint mass function of (W
n
, A
n
) by O(n−1 ) at its support points, but is defined for any (w, a)

inside the convex hull of the support of (W
n
, A
n
). Division by h

n
(a) renormalises h

n
(w, a) to have

integral 1+O(n−1 ) over w for each fixed a within the support of A
n
. Thus the smoothing takes

place before conditioning in the sense that the joint mass function of (W
n
, A
n
) is replaced by a

smooth density-like function defined on the interior of the convex hull of the support of (W
n
, A
n
).

Rescaled slices of this smooth function provide density approximations for W
n
conditional on A

n
,

and integrals of those rescaled slices provide distribution function approximations. Thus here
smoothing takes place before conditioning.
By contrast, when the saddlepoint approximation is applied directly to a conditional distribution,
so that conditioning takes place before smoothing, the argument in § 2 is in effect applied directly
to the conditional distribution. In this case saddlepoint approximation need not produce tail
probabilities that are stable across values of A

n
, because the conditional distributions obtained for

adjacent values of A
n
are not necessarily constrained to be related.

4. E

We illustrate our argument by a constructed example in which independent binary variables
X1 , . . . , X9 depend on a covariate z taking values 0, 1, 2, 3, 5, 7, 11, 13 and 17 respectively through
a logistic regression with linear predictor l+yz. As mentioned in § 1, a standard argument leads
us to consider the conditional distribution of U=W z

j
X
j
given the sum A=WX

j
of the responses;

here the nuisance parameter l is scalar. Figure 1 shows these conditional distributions for a=3
and a=4 when y=0, together with their saddlepoint approximations W{r*(u)} from (5) evaluated
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for continuous u. They differ from the distributions of the corresponding W
n
only because U is a

weighted sum of X
j
and the horizontal axis has not been centred at zero and rescaled. The approxi-

mations appear excellent, but close inspection suggests that the approximation is not always
improved by continuity correction; see the inset, which shows the right-most functions around
u=30.

Fig. 1. Exact and appropriate conditional distributions,  ’s,
of U given A=a=3 and 4. The exact conditional cumulative
distribution functions are step functions, and the approximations
for a=3 and a=4 are respectively dotted and solid. Shown also
are continuous distribution functions when a=2·5 (dashes) and
a=3·5 ( large dashes). The inset shows a close-up of the cumulative
distribution function for a=4 and its approximation around

u=30.

The two dashed smooth curves standing alone show the continuous saddlepoint approximation
to the conditional distribution when a=2·5 and a=3·5; of course in this case the discrete distri-
butions do not exist. The continuous curve is readily constructed, however, by creating a set of
‘binary’ responses summing to a and for which u has whatever value is desired; quantities such as
r*(u) are then straightforwardly obtained using output from a routine such as glm in S-Plus
(Davison, 1988; Brazzale, 1999). When a=3·5, for instance, we take

z=d(1, 1, 1, 0·5, 0, 0, 0, 0, 0)T+ (1−d ) (0, 0, 0, 0, 0, 0·5, 1, 1, 1)T,

and allow d to vary in the range (0, 1). Then a=Wx
j
=3·5, while any value of U=W z

j
x
j
in the

interval (4·5, 44·5) can be produced by an appropriate choice of d. Saddlepoint approximation then
yields the ‘conditional distribution’ corresponding to this a. Such curves could be produced for
any a in the interval (0, 9), thereby giving a smooth joint density for (U, A). There is a heuristic
analogy with quasilikelihood models: one can imagine the model with a=3·5 as corresponding to
90 notional observations in which 35 responses were positive, these observations however being
so overdispersed that they correspond to a mere nine ‘ordinary’ binary responses.
A numerical problem arises with binary logistic response models, for the following reason. The
statistic r*(u)=r

u
+r−1
u
log (sAu/ru ) depends on the signed root ru of the likelihood ratio statistic and

on sAu ; both have the same sign. The loglikelihood for a logistic model has the property that, as u
approaches the limits of its conditional range, u

−
(a) and u

+
(a), say, |r

u
| becomes large, but |sAu |

decreases to zero; see Hauck & Donner (1977). The result is that |r*(u) | decreases as u continuously
approaches either limit, so W{r*(u)} is not a strictly increasing function. Fortunately this seems not
to affect applications. In the present case, for example, when a=4 we have u

−
(a)=6 and u

+
(a)=

48, and trouble erupts only when u is within about 0·2 of the limits of its range. Continuity-
corrected approximations to the limiting probabilities would involve evaluating W{r*(u)} for
u=6·5 and 47·5, and hence would not fail; Fig. 1 suggests that these approximations would be
adequate.
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