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ABSTRACT

Drosophila melanogaster MTF-1 (dMTF-1) is a
copper-responsive transcriptional activator that
mediates resistance to Cu, as well as Zn and Cd.
Here, we characterize a novel cysteine-rich domain
which is crucial for sensing excess intracellular
copper by dMTF-1. Transgenic flies expressing
mutant dMTF-1 containing alanine substitutions of
two, four or six cysteine residues within the
sequence 547CNCTNCKCDQTKSCHGGDC565 are
significantly or completely impaired in their ability
to protect flies from copper toxicity and fail to
up-regulate MtnA (metallothionein) expression in
response to excess Cu. In contrast, these flies
exhibit wild-type survival in response to copper
deprivation thus revealing that the cysteine cluster
domain is required only for sensing Cu load by
dMTF-1. Parallel studies show that the isolated
cysteine cluster domain is required to protect a
copper-sensitive S. cerevisiae ace1" strain from
copper toxicity. Cu(I) ligation by a Cys-rich domain
peptide fragment drives the cooperative assembly
of a polydentate [Cu4-S6] cage structure, character-
ized by a core of trigonally S3 coordinated Cu(I) ions
bound by bridging thiolate ligands. While reminis-
cent of Cu4-L6 (L = ligand) tetranuclear clusters in
copper regulatory transcription factors of yeast, the
absence of significant sequence homology is

consistent with convergent evolution of a sensing
strategy particularly well suited for Cu(I).

INTRODUCTION

Metal ions play myriad essential roles in all of biology.
As a result, all cell types have evolved the ability to extract
specific metal ions from their environment and ultimately
maintain the intracellular concentrations of each in a
range compatible with cellular needs (1). This is critical for
the survival of the organism since even essential transition
metal ions, e.g. Fe, Cu and Zn are toxic in excess (2). The
same is true for Ni (3) and Mn (4), although acquisition of
these ions ensures that specialized microorganisms are
capable of surviving in a strongly acidic or potently
oxidizing environment, respectively. Cu and Fe are
particularly toxic since their reduced forms, Cu(I) and
Fe(II), when weakly chelated in an aerobic environment,
will catalyze the production of damaging hydroxyl
radicals via redox cycling; as a result, the ‘free’ or
bioavailable concentrations of these ions, as well as Zn,
may likely be vanishingly small (5,6). The control of metal
homeostasis is mediated by the balancing of uptake, efflux
and intracellular sequestration or compartmentalization
of essential metal ions, and is largely regulated transcrip-
tionally by gene regulatory proteins, collectively coined
metal sensor proteins (2). Metal sensor proteins directly
bind a particular metal ion, or groups of metal ions that
form similar coordination complexes, to the exclusion of
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all others (7); this, in turn, allows an organism to turn on
or turn off the expression of specific genes in order to
mount a metabolic response to either deprivation or excess
of a particular metal ion in the cell.

Metal-responsive transcription factor-1 (MTF-1) is a
heavy metal sensing transcriptional activator that up-
regulates the expression of genes that allow an organism
to mitigate zinc, cadmium and copper toxicity (8)
(for reviews, see (9–13)). MTF-1 has been identified and
at least partially characterized from human, mouse (14),
pufferfish Fugu rubripes (15), zebrafish Danio rerio (16,17)
and Drosophila (18). Human and mouse MTF-1 as well
as the Drosophila homolog, termed dMTF-1, contain
multiple functional domains, including a highly conserved
zinc-finger domain that recognizes the cognate DNA
sequence termed metal response element (MRE) (8).
MTF-1 also harbors multiple domains for transcriptional
activation (19), and short sequences that mediate intra-
cellular trafficking into and out of the nucleus (20).

How a particular metal ion mediates MTF-1-dependent
metalloregulation of gene expression is the subject of
current debate (13,21); however, multiple levels of regula-
tion clearly exist (20,22,23). Zn(II) binding to the zinc-
finger domains clearly stabilizes an MRE-MTF-1 complex
(8), particularly in chromatin (24). Biochemical studies of
the finger domain fragment (25–27) have revealed that at
least part of the zinc-sensing mechanism is mediated by
the zinc-finger domain itself (21). However, MTF-1 also
senses other cell stress conditions including Cd(II) (28),
oxidative stress (29), hypoxia (30), and the synergistic
influence of heavy metal load and heat shock (31). It seems
unlikely that such inducers would act directly on the finger
domain. For example, it is known that Cd(II) does not
bind to the finger domain in a way that preserves the
canonical bba-structure for DNA binding (26). However,
substantial data support an indirect sensing model,
in which MTF-1 senses Zn(II) that is mobilized by
other inducers from intracellular stores of cytoplasmic
Zn(II) (29).

Previous functional studies of mammalian MTF-1
reveal that a 13-amino acid domain containing four
conserved cysteines just C-terminal to a transcriptional
activation domain is required for Zn(II)/Cd(II)-induced
transcriptional activation in transiently transfected mouse
MTF-1�/� cells (23). The mechanistic role of this domain
in metalloregulation is not yet clear. However, it functions
downstream of nuclear translocation and MRE-binding,
perhaps activating transcription via a metal-dependent
protein-protein interaction at the promoter. Indeed, when
Drosophila S2 cells are stimulated with exogenous copper
salts, dMTF-1 recruits TFIID to the MtnA (metallothio-
nein A) promoter (32).

Drosophila MTF-1 differs from mammalian MTF-1 in
two crucial respects. First, MRE- and MTF-1-dependent
expression of metallothionein genes (mtnA-D) is strongly
induced by Cu and Cd, relative to Zn, whereas Zn and Cd
are the most potent inducers of mammalian metallothio-
neins (18). Second, disruption of the MTF-1 gene by
targeted insertional mutagenesis (MTF-1 KO flies) results
in a strong sensitivity to not only Cu, Cd and Zn toxicity
but also to Cu depletion (33,34). The requirement for

dMTF-1 to mitigate the effects of Cu deprivation is unique
to dMTF-1, and originates with the ability of dMTF-1 to
activate expression of a high affinity Cu importer Ctr1B
under normal or low-Cu growth conditions. As a result,
dMTF-1 plays a central role in copper homeostasis in the
fly by regulating both import and sequestration of this
essential yet toxic metal (34,35).
We reasoned that some aspect of copper-dependent

metalloregulation of dMTF-1 requires the direct binding
of Cu(I), analogous to the direct binding of Zn(II) to the
zinc fingers of hMTF-1. Such a Cu(I)-sensing mechanism
is however unlikely to function through the zinc finger
domain itself, which is predicted to have a low affinity
for Cu(I); thus, some other Cu(I)-binding domain would
have to be present in dMTF-1. Inspection of the amino
acid sequence reveals two candidate cysteine-rich Cu(I)-
binding domains, both located in the C-terminal one-third
of the protein (9). Here, we present evidence that the six
cysteine residues from residues 547-565 are necessary for
dMTF-1 to sense copper load. When challenged with
copper stress, flies harboring Cys-to-Ala substitutions are
unable to up-regulate the transcription of metallothionein
MtnA, the major effector of copper-resistance (36,37).
We also show that a peptide harboring this Cys-rich
domain protects a Cu-sensitive S. cerevisiae strain (38)
from Cu-toxicity, presumably by mediating intracellular
storage/chelation of the metal. Binding studies show that
the Cu-sensing domain of dMTF-1 binds four Cu(I) ions
tightly and highly cooperatively to form a Cu4-Cys6
polynuclear cluster. This cluster is reminiscent of known
Cu-sensing domains of S. cerevisiae Mac1 and Ace1 and
paralogs in other organisms (39–41). The mechanistic
implications of these findings are discussed.

MATERIALS AND METHODS

Plasmids and fly transformation

Cys-to-Ala mutations were generated using pUAST-
dMTF-1 as a template by a quick change mutagenesis
technique. pUAST-dMTF-14C-4A, pUAST-dMTF-12C-2A

and pUAST-dMTF-16C-6A constructs were used to
generate transgenic flies with P-element mediated
transformation as described earlier (37).

Fly food, fly stocks and genetics

One liter of standard fly food was composed of 55 g corn,
10 g wheat, 100 g yeast, 75 g glucose, 8 g agar and 15ml
anti-fungal agent nipagin (15% in ethanol). For toxicity
experiments, food was supplemented with CuSO4 or
CdCl2 or bathocuproinedisulfonate (BCS) disodium salt
hydrate (Sigma-Aldrich No. 14,662-5) to the indicated
concentrations. BCS is a specific copper chelator used to
deplete copper in the food. Flies were raised at 258C and
65% humidity. UAS-dMTF-1, UAS-dMTF-14CA, UAS-
dMTF-12CA, and UAS-dMTF-16CA transgenes were
crossed into dMTF-1140-1R (dMTF-1 null allele) back-
ground respectively. The expression of the transgenes was
induced by a ubiquitous Gal4 transactivator (actin-Gal4).
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Drosophila toxicity experiments

The flies that were homozygous for dMTF-1140-1R and
UAS-dMTF-1 (or its derivatives) were crossed with y w;;
dMTF-1140-1R, actin-Gal4/TM6B,y+ flies on standard
food or food containing copper or BCS. From the cross,
two types of progeny could be obtained: Progeny (A) flies
that were expressing the transgene and were dMTF-1
null mutant. Progeny (B) flies that were not expressing
the transgene and contained endogenous dMTF-1.
The survival index (Is) was calculated as follows:
Is=2A/(A+B).

Quantitation ofMtnA and dMTF-1 transcripts
in transgenic flies

To determine the level of MtnA transcripts, larvae were
raised on either standard food or food containing 100 mM
CuSO4. Only third instar stage larvae were collected for
analysis. Total RNA was extracted using the TRIzol
reagent (Life Technologies) and nuclease S1 mapping of
transcripts (100 mg of total RNA) was performed as
described previously (42). The gels were developed using
FLA-7000 system and bands were quantified using
ImageGauge software (Fuji Film). The transcripts of the
endogenous actin5c gene were measured and used for
normalization of MtnA transcript levels. To monitor
dMTF-1 expression levels, the gut tissue was dissected
from the third instar stage larvae raised on standard food.
Total RNA was extracted using TRizol and first-strand
cDNA synthesis was performed with 5 mg total RNA using
reverse transcriptase (RT). mRNA levels were measured
by quantitative (q) PCR using a SybrGreen Q-PCR
reagent kit (Sigma) in combination with the MX3000P
light cycler (Stratagene, Amsterdam, The Netherlands).
Initial template concentrations of each sample were
calculated by comparison with serial dilutions of a
calibrated standard. To verify RNA integrity and equal
input levels, actin mRNA was used as a reference.

Cu(I) binding experiments by absorption
and luminescence spectroscopies

All Cu(I) titration samples of C-dMTF_81 were prepared
anaerobically in a glovebox ([O2] < 2 ppm) with deox-
ygenated buffers and solvents in 10mM MES, 0.1M
NaCl, pH 6.3, 258C. The samples were kept in sealed
containers, including during transfer from the glovebox
for characterization. Then, 500mM Cu(I) was titrated into
800mL of 20 mM apo-protein in anaerobic environment
and the absorption was monitored over the wavelength
range 200–500 nm on a Hewlett-Packard model 8452A
spectrophotometer. In magfura-2 competition experi-
ments, Zn(II) was titrated into the mixture of 15.8 mM
C-dMTF_131 and 16.3mM magfura-2 (43). For the
competition experiments with BCS, 282 mM C-dMTF_81
was titrated into a mixture of 100 mM BCS and 30 mM
Cu(I) and the absorption spectra recorded from 250 to
600 nm. Luminescence spectra were recorded on an ISS
PC1 Photon Counting spectrofluorometer. Also, 1.0mM
Cu(I) was titrated into 1700 mL of 20 mM apo-C-dMTF_81
and the full emission spectra were collected from

400 to 800 nm with excitation at 300 nm essentially as
described (44).

RESULTS

Domain structure of DrosophilaMTF-1

The domain structure of D. melanogaster MTF-1
(dMTF-1) is shown in Figure 1 (18). The functional
domains of dMTF-1 have not yet been extensively
mapped and the amino acid sequence has diverged con-
siderably from mammalian MTF-1 outside of the DNA-
binding zinc finger domain (18). However, dMTF-1
contains a cluster of six cysteines within 19 consecutive
amino acids (residues 547-565) that bears some
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Figure 1. The cysteine-rich region plays a critical role in protecting
Drosophila from copper toxicity. (A) Domain structure of Drosophila
melanogaster (dMTF-1) highlighting the short Cys-cluster region
(residues 547-565) and dMTF-1 Cys-to-Ala substitution alleles char-
acterized in transgenic flies. In addition to the zinc-finger DNA-binding
domain, a putative nuclear localization signal (NLS) and two nuclear
export signals (NES1 and NES2) are also indicated (V. Günther and
W.S., unpublished). 131- (C-dMTF_131), 81- (C-dMTF_81) and
51- (C-dMTF_51) residue constructs of dMTF-1 characterized here
correspond to amino acid residues 499-629, 499-579 and 529-579,
respectively. Two C-terminal domain deletion mutants of dMTF-1,
DMT and D(C+MT) characterized in S. cerevisiae (see Figure 3) are
also shown. MT, metallothionein-like segment (residues 642-791);
C, Cys-rich domain (residues 479-641). (B) Survival of dMTF-1 null
flies and flies expressing dMTF-12C-2A, dMTF-14C-4A or dMTF-16C-6A

on a standard food source (NF), or on food supplemented with 400 mM
CuSO4 (Cu) or 160 mM bathocuprione disulfonate (BCS).
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resemblance to the Cys4 cluster that has been functionally
characterized in hMTF-1 (23). This cluster is followed by
a Thr/Ser-rich domain (13 Thr/Ser in 19 residues), which
is connected via a seryl-glycyl linker to a C-terminal
metallothionein (MT)-like domain, which also contains
several cysteines (residues 641-791). This C-terminal MT-
domain bears strong resemblance to domain IV of
S. pombe Pccs, a copper chaperone for copper-zinc
superoxide dismutase (SOD1) which have been shown to
protect S. pombe and a S. cerevisiae ace1� mutant strain
from copper toxicity (45). To probe the copper-binding
ability of the cysteine cluster (residues 547-565), we
performed a functional analysis of this region of dMTF-1
both in Drosophila and in S. cerevisiae.

Transgenic flies expressing wild-type and
mutant dMTF-1 genes

To investigate whether the Cys-cluster in Drosophila
MTF-1 plays any role in copper homeostasis, we
generated transgenic flies with constructs in which subsets
of cysteines, or all six of them, are substituted by alanines
(Figure 1A). As mentioned, dMTF-1 mutant flies are
sensitive not only to excess copper but also to copper
depletion (34). This is due to the fact that dMTF-1
activates two sets of genes that are working in opposing
conditions, namely, metallothioneins at high copper, and
the copper importer Ctr1B at times of copper deprivation
(35). The sensitivity of dMTF-1 mutants can be rescued by
co-expression of wild-type dMTF-1 transgene. To examine
the role of the cysteine-rich domain, we introduced the
mutant constructs dMTF-12C-2A, dMTF-14C-4A or dMTF-
16C-6A encoding double (C560A/C565A), quadruple
(C547A/C549A/C552A/C554A) or complete (C547A/
C549A/C552A/C554A/C560A/C565A) alanine substitu-
tions (Figure 1A), into dMTF-1 mutant flies lacking
endogenous dMTF-1 and tested whether these constructs
could rescue the sensitivity to either copper supplementa-
tion or copper depletion. All of the three dMTF-1
derivatives are able to rescue the sensitivity to copper
starvation as well as the wild-type dMTF-1 transgene
(Figure 1B). This result demonstrates that the wild-type
and mutant forms of dMTF-1 are expressed to
similar levels since a functional dMTF-1 is required
for this.

In contrast, dMTF-12C-2A and dMTF-14C-4A could only
partially rescue the sensitivity to copper while dMTF-1
mutant flies expressing dMTF-16C-6A failed to survive to
adulthood in copper supplemented food (Figure 1B).
To further understand the molecular mechanism of the
copper sensitivity phenotype, we examined the expression
of metallothionein A (MtnA) in flies expressing either the
wild-type or mutant alleles of dMTF-1 (Figure 2A). MtnA
transcript abundance was measured by quantitative S1
nuclease mapping experiments. These data show that
under copper stress (100 mM), the wild-type dMTF-1
transgene strongly activates the transcription of MtnA
while dMTF-16C-6A transgene is completely unable to
induce MtnA transcription. Interestingly, dMTF-14C-4A

and dMTF-12C-2A transgenes mediate some Cu(I)-
induced MtnA expression, but to a lesser extent than

wild-type dMTF-1. Control experiments reveal that the
wild-type and mutant dMTF-1 transgenes are expressed to
similar levels in the larval gut, with the expression of the
mutant dMTF-1 alleles perhaps even slightly (�2-fold)
higher; this and the fact that all transgenes equally confer
resistance to copper starvation (see Figure 1B) render
unlikely the possibility that the observed phenotypes could
be due to insufficient expression of mutant alleles
(Figure 2B). Taken together, these data show that the
cysteine-rich domain of dMTF-1 is critical for copper-
induced transcriptional activation but is clearly dispen-
sable for sensing copper scarcity.

MtnA

Actin

6

5

4

3

2

1

0

7

8

NF NF

10
0 m

M C
u

10
0 m

M C
u

WT 4C–4A

9

10

NF NF

10
0 m

M C
u

10
0 m

M C
u

2C–2A 6C–6A

0.0000

0.0001

0.0002

0.0003

0.0004

d
M

T
F

-1
/a

ct
in

WT 4C–4A 2C–2A 6C–6AdMTF-1−/−Endogenous
dMTF-1

A

B

re
l. 

si
gn

al
 in

te
ns

ity
M

tn
A

/a
ct

in

Figure 2. The Cys-rich domain of dMTF-1 is required to activate
MtnA expression in transgenic flies. (A) Total RNA was isolated from
transgenic Drosophila at the third instar larval stage expressing either a
wild-type dMTF-1, dMTF-14A-4A, dMTF-12C-2A or dMTF-16C-6A allele
raised on normal food (NF) or on 100 mM CuSO4 (Cu). MtnA and
actin5c-specific transcripts were measured by S1 nuclease mapping and
are shown as a ratio of transcript abundance. (B) Drosophila with
indicated genotypes was allowed to develop on standard food until
third instar larval stage. Total RNA was isolated from larval gut and
analyzed by quantitative RT-PCR to quantify transcripts of dMTF-1.
Actin-5c transcripts served as a normalization reference.
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The cysteine-rich region protects S. cerevisiae
against copper toxicity

The above results indicate that the cysteine-rich domain
plays an essential role in protecting Drosophila from
copper toxicity by mediating up-regulation of metallothio-
nein genes. In order to assess the importance of this
domain relative to other domains in dMTF-1, we have
carried out a parallel experiment in a Cu-sensitive
S. cerevisiae strain, Dace1, which lacks the gene for the
Cu-dependent activator of CUP1, the Cu-binding yeast
metallothionein (Figure 3) (38). This strain exhibits
severely attenuated survival on Cu-supplemented growth
media (first two rows, Figure 3). Expression of dMTF-1
reverses some of this sensitivity in a manner that
absolutely requires the Cys-rich domain (rows 3–5,
Figure 3). Interestingly, expression of the entire
C-terminal domain of dMTF-1 (C+MT) induces resis-
tance to Cu-toxicity equivalent to that of the MT-like
domain of the Cu-chaperone pccS of S. pombe (45), with
most of the protection mediated by the Cys-rich domain
itself (rows 6–8, Figure 3).

The cysteine-rich region of dMTF-1 binds four
mol�equiv of Cu(I)

We hypothesized that the direct binding of Cu(I) by the
sequence encompassing residues 547-565 in dMTF-1 is the
basis for copper sensing in cells. To test this, we purified
three recombinant dMTF-1 fragments of 131, 81 and 51
amino acids each of which contains the Cys-rich motif,
encompassing residues 499-629 (denoted C-dMTF_131),
499-579 (C-dMTF_81) and 529-579 (C-dMTF_51).
C-dMTF_81 was chosen for detailed study. Cu(I) titration
of C-dMTF_81 (carried out at pH 6.0, 228C) exhibits
intense metal-to-ligand charge transfer absorption
(Figure 4A), indicative of coordination to Cys thiolates
(44). Similar spectra were obtained for C-dMTF_131 and
C-dMTF_51 as well (data not shown). The absorption
spectra for C-dMTF_81 saturate at 4mol�equiv of Cu(I)

and the binding is stoichiometric (tight) under these
conditions (Figure 4A). Further examination of the
absorption spectra at subsaturating amounts of Cu(I)
added are consistent with the formation of a single
molecular species throughout the course of the titration
since molar (per bound Cu(I)) absorptivity spectra of the
species formed at 1:1, 2:1, 3:1 and 4:1 Cu(I):C-dMTF_81
molar ratios are identical (Figure 4B) (vide infra). These
spectra are virtually identical to previously published
spectra of Cu4-Ace1 (46), and are consistent with highly
cooperative assembly of Cu(I)4 polynuclear cluster in
C-dMTF_81.

C-dMTF_81 also binds Zn(II) (KZn>1010M�1) and
Cd(II) (KCd�3� 106M�1) to form saturating 1:1 com-
plexes under the same solution conditions (Supplementary
Figure S1). However, preincubation of C-dMTF_81 with
4mol�equiv of Zn(II) has virtually no influence on the

Figure 3. The Cys-rich domain of dMTF-1 protects a Cu-sensitive
strain of baker’s yeast from the effects of Cu toxicity. S. cerevisiae
strain DTY59 (ace1�) was transformed with a plasmid expressing
either intact dMTF-1 (dMTF) or the indicated domain fragments of
dMTF-1 and spotted onto agar plates in a defined medium containing
the indicated concentration of CuSO4. A fragment encoding domain IV
of the copper chaperone for SOD1 in S. pombe Pccs (labeled pccs-IV) is
a positive control for this experiment. –, empty vector control; ACE1,
isogenic wild-type strain DTY7 transformed with empty vector.

Figure 4. Representative anaerobic titration of C-dMTF_81 with Cu(I).
(A) Full absorption spectra are shown corrected for dilution, with the
apoprotein contribution (gray curve) not subtracted. Inset, apoprotein-
subtracted absorbance at 265 nm from the main body of
the figure plotted as a function of Cu(I)/C-d-MTF-1 ratio.
(B) Apoprotein-subtracted corrected molar absorptivity spectra of
Cu(I):C-dMTF_81 mixtures at 1 : 1 (red) 2 : 1 (blue), 3 : 1 (green) and
4 : 1 (black) molar ratios. Conditions: 20 mM apo C-dMTF_81,
with Cu(I) concentrations ranging from 0.3 to 6.0 molar equivalents,
pH 6.0, 228C.
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Cu(I) binding titration; i.e., Cu(I) still binds stoichiome-
trically (Supplementary Figure S2A). This suggests that
the Cu4 complex is far more thermodynamically stable
than other metallated complexes of C-dMTF_81.
Consistent with this, 30 mM C-dMTF_81 is capable of
stripping >80% of the Cu(I) from 30 mM Cu(I)-(BCS)2,
the latter of which forms with an affinity constant
KCu�1019M�1(Supplementary Figure S2B). This suggests
that the affinity constants for BCS and C-dMTF_81 may
be comparable.

Anaerobic titrations like those shown in Figure 4 were
also acquired using luminescence spectroscopy
(�ex=300 nm). The results of a representative titration
are shown in Figure 5, with full luminescence emission
spectra (Figure 5A) and a plot of the �em, 600 vs. Cu(I):C-
dMTF_81 molar ratio (Figure 5B) shown. These spectra
reveal an intensely luminescent species that shows max-
imum intensity at a molar ratio of 4:1, after which point
the intensity sharply decreases. These data reveal that the
Cu(I) ions in the Cu4 polynuclear cluster are significantly
shielded from solvent, as has been previously observed
for other polynuclear metalloregulatory clusters in
S. cerevisiae Mac1 and Ace1 (47). Further titration
beyond four mol�equiv of Cu(I) results in significant
bleaching of the luminescence intensity, which is not
observed in an anaerobic optical titration (Figure 2). This
suggests that Cu(I) ions that are added beyond saturation
induce significant reorganization in the structure, which
leads to a less solvent-shielded average environment for
the Cu(I) ions. Addition of greater than 4mol�equiv
of Cu(I) to apo-C-dMTF_81 also leads to significant
degradation of the 1H-15N HSQC spectrum (data not
shown) consistent with conformational exchange broad-
ening at greater than saturating Cu(I). These complexes
may well by oligomeric in nature.

X-ray absorption spectroscopy reveals a Cu4-S6

polynuclear cluster

X-ray absorption spectroscopy was carried out to
structurally characterize the copper binding to
C-dMTF_81. Figure 6A shows that the Cu K-edge near-
edge spectra from Cu(I)-C-dMTF_81 complex prepared
with 1.0 and 3.5mol�equiv of Cu(I) are essentially
identical. The peak centered at around 8983 eV, is a
1s!4p transition that is commonly used as a fingerprint
for determining the coordination environment of Cu(I)
compounds (48). The spectra of the Cu(I)-peptide com-
plexes are very similar to trigonally-coordinated
[Cu4(SPh)6]

2- and distinct from digonally-coordinated
[Cu(SC10H12)2]

2- (48,49) (Figure 6A), suggesting the
former coordination environment in the peptide.

More structural detail is available from analysis of the
Cu K-edge extended X-ray absorption fine structure
(EXAFS) spectra. Figure 6B and C show the EXAFS,
and corresponding Fourier transforms of the Cu(I)-C-
dMTF_81 complexes with both 1 : 1 and 3.5 : 1 Cu:pe-
ptides, together with best fits. EXAFS curve-fitting
parameters are listed in Table SI (Supplementary Mate-
rial). As with the near-edge spectra, the EXAFS of the two
stoichiometries are essentially identical, and gave curve

fitting analysis (discussed below) that were also very
similar. Two major Fourier transform peaks are observed
at �2.3 and �2.7 Å, and are attributable to Cu—S and
Cu ���Cu interactions, respectively. In agreement with the
near-edge spectra (Figure 6A), EXAFS curve fitting
indicates three Cu—S at 2.26 Å. Inclusion of lighter
scatterers such as N or O resulted in unreasonably small
Debye-Waller factors for Cu—S, indicating a sulfur-only
Cu(SR)3 coordination. The 2.7 Å Fourier transform peak is
best fitted by including two different types of Cu ���Cu
interactions, with two short and one long Cu ���Cu
interactions at 2.70 Å and 2.82 Å, respectively, for 1:1
Cu(I):C-dMTF_81; similar fitted parameters characterize
3.5 : 1 Cu(I):C-dMTF_81 sample as well. The overall
similarity of the XAS for both Cu(I):C-dMTF_81 stoichio-
metries suggests the same Cu center structure and provides
direct evidence that C-dMTF-1 binds to Cu(I) coopera-
tively. Based on the XAS results a Cu4S6 polynuclear
cluster is proposed to form in Cu(I)-C-dMTF_81, as shown
in inset of Figure 6C. MALDI-TOF mass spectroscopy

Figure 5. Representative anaerobic titration of apo C-dMTF_81 with
Cu(I) as monitored by luminescence spectroscopy. (A) Full lumines-
cence spectra (�ex=300 nm) acquired as a function of Cu(I):C-
dMTF_81 ratio, as indicated. (B) Luminescence emission intensity at
600 nm (from panel A) plotted a s function of Cu(I):C-dMTF_81 ratio.
Conditions: pH 6.0, 258C.
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of a 1:1 Cu(I):C-dMTF_81 mixture, i.e. identical to the
1:1 sample probed by XAS, as well as a 2:1 Cu(I):
C-dMTF_131 mixture, is consistent with this picture, and
further suggests that an intramolecular (monomolecular)
polynuclear cluster is the dominant conformer in solution
(see Supplementary Figure S3).

C-dMTF_81 binds Cu(I) in an all-or-none manner

We first performed a preliminary NMR analysis of 131, 81
and 51 residue fragments of dMTF-1 encompassing
residues 499-629 (C-dMTF_131), 499-579 (C-dMTF_81)
and 529-579 (C-dMTF_51) by acquiring 1H-15N HSQC
and 1H-{15N}heteronuclear NOE (ssNOE) spectra in the
presence and absence of Cu(I). The latter experiment
carried out with C-dMTF_81 revealed that only �27
crosspeaks were characterized by positive 1H-{15N}
ssNOE values and were significantly shifted following
the addition of 4.0mol�equiv of Cu(I). This finding is
consistent with the idea that Cu(I) folds the region
immediately around the Cys cluster with little
additional long-range folding evident in these spectra
(Supplementary Figures S4-S5); in the absence of Cu(I),
all resolvable crosspeaks have strongly negative ssNOE
values revealing little or no stable structure in the absence
of Cu(I) (spectra not shown). Further evidence for limited
and localized Cu-dependent folding is that amide reso-
nances that shift upon addition of Cu(I) have virtually
identical chemical shifts in the context of a fusion
protein in which 27-residues of dMTF-1 (542-568) are
C-terminally appended to protein G B1 domain (GB1)
(spectra not shown) (50).

We next used NMR spectroscopy to investigate the
cooperativity of Cu4 cluster formation by acquiring
1H-15N HSQC spectra as a function of Cu(I):C-
dMTF_81 molar ratio (Figure 7). These spectra reveal
that at subsaturating Cu(I), the spectrum corresponds
to a superposition of apo- and Cu4 conformers with no
evidence of a non-native structural intermediate.
Quantitation of the crosspeak intensities of selected
resonances (Supplementary Figure S6) as a function of
Cu(I) loading is fully compatible with scenario, i.e. the
intensity of apo-C-dMTF_81 crosspeaks decrease mono-
tonically as Cu4 crosspeak areas increase. The assembly of
the Cu4 cluster is therefore highly cooperative, a result
consistent with the findings by XAS and mass spectro-
metry, which reveal significant Cu4 polynuclear cluster
upon addition of sub-stoichiometric Cu(I). Despite the
highly cooperative Cu-binding by C_dMTF_81, the pep-
tide is characterized by a high degree of internal dynamics,
a characteristic not unprecedented from previous studies
of Cu- and Zn/Cd-loaded metallothioneins (51).
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Figure 6. X-ray absorption spectroscopy (XAS) of Cu(I)- C-dMTF_81
complex. (A) Cu K-edge near-edge comparison of Cu(I)- C-dMTF_81
complex with two model Cu(I) thiolate compounds. In the upper panel
are the trigonal Cu(I) thiolate model [Cu4(SPh)6]

2- (or [Cu4(SR)6]
2-,

black solid line) forming a four-Cu(I) cluster, and the diagonal Cu(I)
thiolate model [Cu(SC10H12)2]

2- (or [Cu(SR)2]
2-, red dash line) contain-

ing a single Cu(I) ion. The lower panel shows Cu(I)- C-dMTF_81
complex with metal stoichiometries of 1.0 (black solid line) and 4.0
(red dash line), respectively. (B) Copper K-edge EXAFS spectra and C)

Cu-S phase-corrected EXAFS Fourier Transforms of Cu(I)-C-
dMTF_81 complex mixing with 1mol�equiv. Cu (upper panel) and
4mol�equiv. Cu (lower panel), respectively. Black solid curves represent
the experimental data, while the red dash curves are for best fits with
the parameters listed in Supplementary Table S1. The inset shows a
structural model representing the proposed metal coordination of the
Cu(I)- C-dMTF_81 complex based on the XAS data. The red balls
represent copper atoms, while the yellow ones are for sulfur atoms.
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DISCUSSION

MTF-1 of Drosophila is capable of activating the
transcription of distinct metallothionein genes (MtnA-D)
in response to several metal ions, including Cu(I), Cd(II)
and Zn(II). A recent characterization of transgenic flies
carrying deletions of one of the four Mtn genes reveals
that MtnA (the expression of which is studied here) is
primarily responsible for protecting flies against exogen-
ous copper load, while MtnB�/� flies are most sensitive to
cadmium toxicity. The biological roles of MtnC and
MtnD, which are closely related to MtnB, remain
enigmatic since flies harboring a deletion of one or both
of these genes exhibit near wild-type resistance against Cu
and Cd toxicity (37). Binding studies revealed that MtnA
is most strongly stabilized by Cu(I) binding, while MtnB
binds Cd(II) preferentially over Zn(II) and Cu(I). These
findings are generally consistent with the characteristics of
flies harboring a metallothionein gene family knockout;
these flies are viable and develop normally on standard
food, but are highly sensitive to copper and cadmium
toxicity. In particular, these experiments establish that
MtnA and its regulator MTF-1 are responsible for the
intense orange copper-mediated luminescence (when
excited in the ultraviolet; see Figure 5) associated with
specialized cells from the intestinal tract, termed midgut
‘copper cells’ (36). These cells likely function as storage
depots for excess Cu(I), essentially protecting the organ-
ism against the effects of Cu(I)-mediated oxidative stress
as well as a source of intracellular copper under conditions
of copper deprivation (35). Interestingly, in contrast to
mammalian MTF-1, Drosophila metallothioneins appear
to play only a minor role against zinc toxicity (36). On the

other hand, the expression of the zinc efflux transporter
ZnT35C, thought to be analogous to the mammalian zinc
exporter ZnT1, is strongly induced by Zn in an MTF-1-
dependent manner (52).
How a single transcriptional activator, dMTF-1, is

capable of up-regulating the expression of specific genes in
response to distinct metal ions is unclear. One plausible
scenario is that the metal selectivity of gene expression is
dictated by the promoter-specific nature of the protein
complex containing MTF-1 that mediates a specific
transcriptional response. There is some evidence in
support of this idea, since when MREs are excised from
their context in the Ctr1B promoter (which is induced by
Cu-scarcity) and placed in a non-native, mini-promoter
context, they simply function as activating elements in
response to copper overload, just like those derived from
metallothionein genes (which are activated upon Cu-
overload) (34). Along this vein of thought, MTF-1 might
function as a promoter-specific adaptor molecule, in
which the Zn(II)-bound zinc fingers mediate a direct
interaction with the MRE, and another domain of the
molecule mediates a Cu- or Cd- or Zn-specific complex
with a putative co-activator or co-repressor. The founda-
tional tenet of this hypothesis is that MTF-1 should be
capable of forming complexes with Cu or Cd/Zn, with the
distinct structures of each coordination complex (Cu vs.
Zn/Cd) required to mediate metal-specific protein-protein
interactions.
In the work presented here, we show that a C-terminal

Cys-cluster of dMTF-1 encompassing six closely spaced
cysteines forms a very stable, highly cooperative brightly
luminescent Cu4-S6 polynuclear cluster. This cluster is
essential for dMTF-1 to drive the expression of its target

Figure 7. Substoichiometric addition of Cu(I) to apo-C-dMTF_81 results in cooperative assembly of a Cu4 cluster from the apoprotein. A subregion
of 1H-15N HSQC spectrum is shown as a function of Cu(I): C-dMTF_81 molar ratio indicated. Select resonances within the Cys cluster domain are
italicized, while those outside this region (G524, G577) do not shift upon Cu(I) binding. The three remaining crosspeaks are unassigned apoprotein
crosspeaks.
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gene MtnA, because a complete Cys substitution (6C-6A)
in dMTF-1 abolishes its activity under copper stress and
keeps the MtnA gene uninduced. Such a defect at
molecular level results in a copper sensitive phenotype of
mutant Drosophila. Partial alanine substitution of two
(2C-2A) or four (4C-4A) of the Cu(I)-liganding cysteines
also results in a severely attenuated survival index; this
suggests that formation of the Cu4-L6 (L= ligand)
complex optimally protects flies against copper toxicity
by inducing MtnA expression. This short 19-amino acid
domain is necessary and sufficient to bind four mol�equiv
of Cu tightly and stoichiometrically in vitro and in vivo, the
latter measured by examining the viability of Cu-sensitive
S. cerevisiae strain on Cu-supplemented media.
Strikingly, the cysteine-rich domain of dMTF-1 is

reminiscent of Cu-sensing domains of other Cu-regulators
from lower eukaryotes, including Mac1 and Ace 1 from
S. cerevisiae, Cuf1 from the fission yeast S. pombe (40),
GRISEA from Podospora anserina (39), and Amt1 from
Candida glabrata (41), in the complete absence of amino
acid sequence homology. Spectroscopic studies of Amt1,
Mac and Ace1 reveal that each forms intensely lumines-
cent tetranuclear Cu4�L6 ‘cage-like’ clusters containing
trigonally coordinated solvent-shielded Cu(I) ions, with
significant Cu���Cu interactions, that either stimulate
(Ace1, Amt1) or inhibit (Mac1) promoter DNA binding
and/or transcriptional activation (41,47). A characteristic
feature of the Cu complexes formed by Amt1, Ace and
Mac1 is a short 2.7 Å Cu-Cu distance, also found here for
dMTF-1 (41,47). Extensive molecular genetic studies have
been carried out on S. cerevisiae Mac1, and these
experiments are consistent with a model in which the
Cu-binding domain forms a direct intramolecular protein–
protein interaction with the N-terminal DNA-binding and
nearby transactivation domain that allosterically blocks
Mac1 function at multiple levels (53–55). Since Mac1
regulates the expression of the two high affinity Cu-
importers CTR1 and CTR3, Cu-replete cells turn off the
transcriptional activity of Mac1 in a Cu-dependent
manner. In contrast, Cu-binding to both Ace1 and Amt1
strongly activates binding to the CuREs (copper response
elements) positioned upstream of the genes encoding two
metallothioneins, CUP1 and CRS5, and superoxide
dismutase SOD1. It seems plausible that Cu-binding to
the C-terminal domain in dMTF-1 might unmask a
critical transcription activation domain that allows the
recruitment of TFIID to the promoter (32) or perhaps the
chromatin remodeling enzymes, Swi5/Snf and Gcn5, as
has been demonstrated for C. glabrata Amt1 (56).
The Cu-regulatory complexes formed by dMTF-1 and

yeast transcriptional activators contrast sharply with those
found in known copper metalloregulatory proteins in
prokaryotes, which form either digonal (57), mononuclear
trigonal planar (44), or binuclear Cu2�S4 coordination
complexes (2,58). Unlike each of these systems which are
highly specific for Cu(I) (and its structural surrogate
Ag(I)) (46), the intrinsic metal specificity of the metal
sensing domain of dMTF-1 may well be relaxed since
dMTF-1 has to bind and metalloregulate gene expression
from a variety of promoters in response to a number of
different metal ions, including Cd(II) and Zn(II). A direct

role of the Cys-cluster in sensing both Cd(II) and Zn(II)
would require that the Cys-cluster of dMTF-1 bind these
metal ions as well. In fact, the Cys cluster in dMTF-1
forms stoichiometric 1:1 complexes with both Cd(II) and
Zn(II), rather than a polynuclear cluster; however, Cu(I)
easily outcompetes Zn(II), with Zn(II) binding consider-
ably more tightly than Cd(II) (Supplementary Figure S1).
It seems likely then that Cu(I) is the ‘cognate’ metal and
others may have to be recruited under specialized
intracellular conditions at specific promoters. It will be
interesting to determine the degree to which inactivation
of the Cys-cluster by mutagenesis influences the metal-
selectivity and inducibility at other promoters, in parti-
cular those that respond to other metal ions. In any case,
under the chelator conditions tested, the cysteine mutants
of dMTF-1 were no more sensitive to copper starvation
than wild-type flies (Figure 1B). This likely indicates that
the regulation of the Ctr1B copper importer gene by
dMTF-1 (34) involves protein domain(s) other than the
cysteine cluster characterized here.

In conclusion, we have identified a novel Cu-binding
domain in dMTF-1 derived from a cluster of six cysteines
that is required to regulate metallothionein expression in
transgenic flies in response to toxic intracellular levels of
Cu(I). The structural features of this Cu-sensing domain
while reminiscent of those previously identified in a
number of fungal copper regulators, occurs in the absence
of significant sequence homology and is therefore con-
sistent with convergent evolution (Figure 8). These
findings reveal a functional conservation of Cu home-
ostasis and detoxification from fungi to flies, with the
added twist that just one transcription factor, dMTF-1,
which must have evolved independently of the fungal
regulators, handles both the uptake and detoxification
arms of the Cu homeostasis system in Drosophila (34).

Mac1_C1 ...QCSCEDESCPCVNCLIHR...
Mac1_C2 ....CICPPDNCTCTGCFSH....
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DpsMTF-1...ICNCTNCKCDQSKSCHGDDCG...
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Figure 8. Cysteine clusters of metalloregulatory transcription factors.
(A) Conservation of the Cys-rich region in MTF-1 of Drosophilidae and
a mosquito. Dm, Drosophila melanogaster; Dps, Drosophila pseudoobs-
cura; Dmo, Drosophila mojavensis; Dgr, Drosophila grimshawi; An,
Anopheles gambiae (23). (B) Cys-rich domains of yeasts and a
filamentous fungus (39,40,47). Mac1 and Cuf1, copper-regulated
transcription factors of baker’s yeast (S. cerevisiae) and fission yeast
(S. pombe), respectively. Grisea, copper-responsive transcription factor
of the fungus Podospora anserina. (C) Tetracysteine cluster of human
and mouse MTF-1, required for transcriptional response to zinc and
cadmium load (9,23).
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Ongoing studies in our laboratories are directed toward
understanding the molecular mechanism of differential
sensing and regulation performed by MTF-1 in response
to a variety of inducers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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