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Aims Collagen degradation in atherosclerotic plaques with thin fibrous caps renders them more prone to rupture. Fibro-
blast activation protein (FAP) plays a role in arthritis and tumour formation through its collagenase activity. However,
the significance of FAP in thin-cap human fibroatheromata remains unknown.

Methods
and results

We detected enhanced FAP expression in type IV–V human aortic atheromata (n ¼ 12), compared with type II–III lesions
(n ¼ 9; P , 0.01) and healthy aortae (n ¼ 8; P , 0.01) by immunostaining and western blot analyses. Fibroblast activation
protein was also increased in thin-cap (,65 mm) vs. thick-cap (≥65 mm) human coronary fibroatheromata (n ¼ 12;
P , 0.01). Fibroblast activation protein was expressed by human aortic smooth muscle cells (HASMC) as shown by colo-
calization on immunofluorescent aortic plaque stainings (n ¼ 10; P , 0.01) and by flow cytometry in cell culture. Although
macrophages did not express FAP, macrophage burden in human aortic plaques correlated with FAP expression (n ¼ 12;
R2¼ 0.763; P , 0.05). Enzyme-linked immunosorbent assays showed a time- and dose-dependent up-regulation of FAP in
response to human tumour necrosis factora (TNFa) in HASMC (n ¼ 6; P , 0.01). Moreover, supernatants from periph-
eral blood-derived macrophages induced FAP expression in cultured HASMC (n ¼ 6; P , 0.01), an effect abolished by
blocking TNFa (n ¼ 6; P , 0.01). Fibroblast activation protein associated with collagen-poor regions in human coronary
fibrous caps and digested type I collagen and gelatin in vitro (n ¼ 6; P , 0.01). Zymography revealed that FAP-mediated
collagenase activity was neutralized by an antibody directed against the FAP catalytic domain both in HASMC (n ¼ 6;
P , 0.01) and in fibrous caps of atherosclerotic plaques (n ¼ 10; P , 0.01).

Conclusion Fibroblast activation protein expression in HASMC is induced by macrophage-derived TNFa. Fibroblast activation protein
associates with thin-cap human coronary fibroatheromata and contributes to type I collagen breakdown in fibrous caps.
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Introduction
Rupture of the fibrous cap in advanced atherosclerotic plaques is a
critical trigger of acute coronary syndromes (ACS) that may lead to
myocardial infarction and sudden cardiac death. One of the key
events in promoting plaque instability is the degradation of the
fibrous cap, which exposes the underlying thrombogenic plaque
core to the bloodstream, thereby causing thrombosis and sub-
sequent vessel occlusion.1– 3 Fibrous cap rupture is facilitated by
proteases which cleave type I collagen, the primary load-bearing
molecule in fibrous caps, leading to fibrous cap thinning and desta-
bilization.4– 7 Therefore, activated proteases, which localize to thin
fibrous caps, have attracted attention as potential diagnostic and
therapeutic targets.

Candidate targets include matrix metalloproteinase (MMP)-2
and -9 and the cysteine protease cathepsin K each of which are
enhanced in both stable and unstable lesions.8 –11 Matrix
metalloproteinase-2 and cathepsin K staining reveal diffuse localiz-
ation throughout the plaque, whereas MMP-9 has been shown to
colocalize with macrophages beneath the fibrous cap.12–14

Although these proteases have shown potential as markers of

atherosclerotic plaques, their diffuse expression in all lesions
-warrant careful assessment of their targeting potential towards
clinically relevant unstable plaques. An ideal protease target
would be specific to the rupture-prone fibrous cap; a site
perhaps more easily accessible by intravenously injected targeting
agents. Although MMPs and cysteine proteases have been well
characterized as protease targets, the role of serine proteases in
this context has not been investigated.

Fibroblast activation protein (FAP) is a membrane-bound, con-
stitutively active serine protease expressed by activated fibro-
blasts in epithelial tumour stroma, arthritis, and wound healing,
but remains virtually undetectable in healthy tissues.15 – 17

Fibroblast activation protein is an enzyme that exhibits dipeptidyl
peptidase IV activity, prolyl endopeptidase activity, and specificity
for type I collagen.17 – 19 However, the role of FAP in athero-
sclerosis is unknown. The aim of this study was to characterize
FAP expression in human atherosclerosis and examine its
association with features of plaque instability. Moreover, we
sought to determine the mechanism of FAP induction, its down-
stream effects, and the capacity of a neutralizing FAP-specific
antibody.

Figure 1 Fibroblast activation protein expression is enhanced in human atherosclerotic aortic plaques. (A) Movat and fibroblast activation
protein stainings show cross-sections of representative plaque-free aortae and type IV aortic atherosclerotic plaques (L, lumen; M, media; P,
atherosclerotic plaque; bar ¼ 400 mm). Dotted boxes indicate regions of interest in adjacent sections at high magnification (bar ¼ 50 mm).
(B) Western blot analysis of fibroblast activation protein normalized to a-smooth muscle actin in plaque-free aortae (n ¼ 8), type II– III
plaques (n ¼ 8), and type IV–V plaques (n ¼ 7) shows a significant increase in fibroblast activation protein in advanced type IV–V plaques
by immunoblot densitometry. (C) Immunofluorescent stainings in representative tissue sections of plaque-free aortae, type II– III plaque, and
type IV plaque show fibroblast activation protein expression in red (DAPI in blue; bar ¼ 50 mm). (D) The graph reveals a significant increase
in fibroblast activation protein expression in type II– III aortic plaques (n ¼ 9) and in type IV–V plaques (n ¼ 12) compared with plaque-free
aortae (n ¼ 8).
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Methods
For the detailed Methods section, see Supplementary material online.

Characterization of atherosclerotic plaques
Biopsies of normal and plaque-bearing ascending aortae were obtained
from patients undergoing surgical aortic valve replacement secondary
to aortic stenosis [n ¼ 20, age (years): 63+14.5, body mass index:
27.8+5.4, diabetes mellitus 3/20, C-reactive protein (mg/L): 2.1+
1.8, triglycerides (mmol/L): 2.2+ 1.6, lactate dehydrogenase (IU/L):
218.9+37.8]. Aortic plaques were sectioned and graded according
to the American Heart Association (AHA) criteria20,21 using Movat
pentachrome, Oil-Red-O, anti-CD68, and von Kossa staining (data
not shown). Coronary arteries were obtained from patients who
died after an acute myocardial infarction and embedded in paraffin
for sectioning. Collagen in coronary artery plaques was characterized
by Masson staining. Fibrous caps were identified as the collagen-rich
tissue separating the lumen and the necrotic core.2 Plaques with a
minimum fibrous cap thickness of ,65 mm were classified as
thin-cap, whereas plaques with a fibrous cap thickness ≥65 mm were
classified as thick-cap atheromata.2

Immunofluorescence and
immunohistochemistry
Cross-sections from human ascending aortae (10 mm thickness) and
paraffin-embedded sections of coronary plaques (4 mm thickness)

were mounted on glass slides. Tissue sections were labelled against
FAP and cell-specific markers with purchased antibodies directed
against CD68, von Willebrand factor (vWF), a-smooth muscle actin
(aSMA), or type I collagen and visualization with either fluorescence-
labelled secondary antibodies or biotin-labelled secondaries for immu-
nostaining using an ABC staining kit for diaminobenzidine (Vector Labs,
Burlingame, CA, USA).

Image analysis
For low-power imaging at spatial resolutions above 1 mm/pixel, a fluor-
escent microscope (DM60000B; Leica, Wetzlar, Germany) equipped
with a fluorescent camera (DFC350 FX; Leica) was used. Colocaliza-
tion analyses were performed at higher magnifications using a multi-
channel confocal microscope (TCS SP2; Leica) on a single optical
plane.

Cells
Human aortic endothelial cells (HAEC) were isolated from biopsies of
ascending aortae without macroscopic lesions obtained from patients
undergoing operations for valve repair, human aortic smooth muscle
cells (HASMC) were purchased (Promocell), and peripheral blood-
derived monocytes were isolated from healthy subjects. Foam cells
were generated by stimulating macrophages with 100 mg/mL of oxi-
dized LDL (BT-910; BioConcept, Allschwil, Switzerland) for 48 h in
serum-free macrophage medium (SFM; Gibco). Lipid uptake was
assessed by Oil-red-O staining (O0624; Sigma-Aldrich).

Figure 2 Fibroblast activation protein expression in human aortic plaques colocalizes with smooth muscle cells, but not with macrophages or
endothelial cells. (A) Overlays of confocal images of fibroblast activation protein (red) and DAPI (blue) with cell-specific stainings of a-smooth
muscle actin, CD68, and von Willebrand factor (green) in representative sections illustrate fibroblast activation protein colocalization (arrows)
with smooth muscle cells (bar ¼ 20 mm). (B) The graph quantifies an increased colocalization of fibroblast activation protein with smooth
muscle cells (a-smooth muscle actin), compared with endothelial cells (von Willebrand factor) and macrophages (CD68) in type IV–V athero-
sclerotic plaques (n ¼ 10).
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Fibroblast activation protein induction assays
Quiescent HASMC were treated with starvation media supplemented
with 3, 5, 10, 20, and 40% macrophage-conditioned SFM for 48 h. To

determine the effects of tumour necrosis factor a (TNFa) on FAP
expression, quiescent HASMC were treated with starvation media
supplemented with 20% macrophage-conditioned SFM and a TNFa-
neutralizing antibody (Ab6671; Abcam) or an IgG isotype control
(Ab27478; Abcam) antibody. Recombinant human TNFa (300-01A;
Peprotech) was used to induce FAP expression in quiescent HASMC
in a dose- and time-dependent manner. Fibroblast activation protein
levels were quantified by cell membrane enzyme-linked immunosor-
bent assay (see Supplementary material online, Figure S1).

Fibroblast activation protein-mediated type I
collagen degradation assays
In situ zymography was performed on 5 mm cryosections of human
aortic atherosclerotic plaques, which had been stained for FAP using
a non-inhibitory antibody (F19). Sections were then incubated with
an inhibitory antibody (A246) or isotype control (50 nM) overnight
at 48C. Subsequently, sections were mounted in warm 1% Agarose
in phosphate-buffered saline (PBS) supplemented with 10% direct-
quenched type I collagen from bovine skin (D12060; Invitrogen) and
imaged after 2 h at 378C using confocal microscopy. Image Quantifi-
cation was performed as described in the Supplemental material
online.

To evaluate the FAP-mediated type I collagen-specific cleavage, full-
length native human type I collagen isolated from human placenta
(purity . 90%) was used (288; Yo Proteins). Type I collagen
(100 ng/mL) was treated with recombinant human FAP (rhuFAP;
200 nM) for 18 h at 378C in PBS (pH ¼ 7.2) and compared with an
untreated collagen control. A246 (50 ng/mL) was added to the sol-
ution and compared with an isotype control antibody IgG (Ab27478;
Abcam) to validate the neutralizing capacity of A246. Samples were
separated by electrophoresis and visualized by silver staining (Proteo-
Silver Silver Stain Kit, Sigma).

Statistical analyses
Histological and cell culture results were compared using one-way
ANOVA and associations calculated by Pearson’s correlation coeffi-
cient. Student’s t-test was used for comparisons of zymography. All
statistical analyses were performed using MatLab (Version, R2007b).
Data are presented as mean+ SD. Significance was accepted at the
level of P , 0.05.

Results

Fibroblast activation protein is expressed
by smooth muscle cells, but not
macrophages in advanced human
aortic plaques
Immunofluorescent stainings for FAP in adjacent cryosections
revealed enhanced expression of FAP in fibroatheromata vs.
plaque-free aortae (Figure 1A). Positive staining for FAP was vir-
tually absent in healthy ascending aortae, whereas a step-wise
increase was observed in type II– III and type IV–V plaques by
western blot analyses (Figure 1B; see Supplementary material
online, Figure S2) and quantitative image analysis (Figure 1C and D).

To characterize FAP-expressing cell types in human athero-
sclerotic plaques, we performed immunofluorescent co-stainings
of FAP in macrophages (identified as CD68-positive cells),
smooth muscle cells (aSMA-positive cells), and endothelial cells

Figure 3 Fibroblast activation protein is constitutively
expressed in cultured human aortic smooth muscle cells
(HASMC) and human aortic endothelial cells (HAEC), but not
in peripheral blood-derived monocytes (PBM), macrophages
(MF), or foam cells. FACS analyses and Oil-Red-O staining of
peripheral blood derived-macrophages laden with oxidized LDL
characterize cells populations (left) and their respective fibroblast
activation protein expression (right).
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(vWF-positive cells) (Figure 2A). Confocal image analyses revealed
that FAP expression by smooth muscle cells, but not by macro-
phages or endothelial cells (Figure 2B).

To validate FAP expression by vascular cells in vitro, we per-
formed FACS analyses of FAP in HASMC (aSMA-positive cells),
HAEC (vWF-positive cells), peripheral blood-derived monocytes
(CD64-positive), macrophages (CD68-positive), and foam cells
(Oil-Red-O-positive macrophages). FACS analyses revealed high
constitutive FAP expression in HASMC and slight expression in
HAEC, but no expression by peripheral blood-derived monocytes,
macrophages, or foam cells (Figure 3).

Fibroblast activation protein expression is
enhanced in thin-cap vs. thick-cap human
coronary atheromata
In order to determine the association of FAP with coronary fibrous
cap thickness, we stained collagen applying the Masson method
(stains collagen in blue) in rupture-prone human coronary arteries
obtained from patients who died after myocardial infarction. On
the basis of fibrous cap thickness, these specimens were character-
ized as thin-cap (,65 mm) or thick-cap (≥65 mm) fibroathero-
mata. Immunohistological and immunofluorescent stainings and
subsequent confocal image analyses in adjacent sections revealed

enhanced FAP expression in thin compared with thick fibrous
caps (Figure 4A and B).

Fibroblast activation protein expression
associates with the macrophage burden in
human aortic atherosclerotic plaques
Immunofluorescence stainings revealed FAP expression in medial
cells adjacent to macrophages in aortic fatty streaks (Figure 5A).
To characterize the relationship between FAP and inflammation,
we compared FAP and macrophage immunofluorescent signal
intensity in human aortic plaques (Figure 5B). We observed a posi-
tive correlation between macrophage burden and FAP expression
with plaque progression (R2¼ 0.763; n ¼ 12; Figure 5C).

Macrophage-derived tumour necrosis
factor a induces fibroblast activation
protein expression in cultured human
aortic smooth muscle cells
To elucidate a signalling mechanism between macrophages and
FAP-expressing HASMC, we exposed HASMC to macrophage-
conditioned media for 48 h to simulate conditions applicable to
plaque inflammation. Cultured HASMC showed a dose-

Figure 4 Fibroblast activation protein expression is enhanced in thin-cap vs. thick-cap human coronary fibroatheromata. (A) Masson staining
shows collagen-rich thick (658 mm) vs. thin (45 mm) fibrous caps (L, lumen; FC, fibrous cap; NC, necrotic core; bar ¼ 1 mm). Fibroblast acti-
vation protein immunohistochemistry and immunofluorescence (intensity scale; bar ¼ 50 mm) shows fibroblast activation protein expression in
representative thin vs. thick caps. Dotted boxes indicate regions of interest in adjacent sections at high magnification. (B) The graph reveals a
significant increase in fibroblast activation protein expression in thin vs. thick fibrous caps (n ¼ 12 each).
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dependent increase in FAP expression in response to the
macrophage-conditioned media with a maximal effect observed
at 20% media concentration (Figure 6A) after 48 h. This effect
was abolished when macrophage-conditioned media was sup-
plemented with a TNFa-neutralizing antibody (Figure 6B). To

confirm this paracrine effect of TNFa on FAP expression,
experiments were repeated using recombinant human
TNFa. Tumour necrosis factor a-mediated FAP expression
was observed in a dose- and time-dependent manner, with a
maximum response at 30 ng/mL after 48 h (Figure 6C and D).

Figure 5 Fibroblast activation protein expression correlates with macrophage burden in human aortic plaques. (A) Confocal immunofluor-
escent photomicrograph of an aortic fatty streak reveals fibroblast activation protein expression (red) adjacent to macrophages (CD68; green)
at low (phase-contrast, white; bar ¼ 100 mm) and high magnification (bar ¼ 25 mm). (B) Movat staining (bar ¼ 400 mm), fibroblast activation
protein, or macrophage (CD68) immunofluorescent stainings in plaque-free aortae, type II, and type V atherosclerotic plaques show enhanced
fibroblast activation protein expression with increasing macrophage burden (bar ¼ 50 mm). (C) Comparisons of fibroblast activation protein
and macrophage expression in serial adjacent sections from aortic plaques demonstrate a significant positive correlation (R2¼ 0.763;
n ¼ 12; P , 0.05); AU, arbitrary units.
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Fibroblast activation protein-mediated
type I collagenase activity in aortic fibrous
caps is inhibited by a fibroblast activation
protein-neutralizing antibody
Immunofluorescence analyses revealed enhanced FAP expression
in type I collagen-poor regions of aortic fibrous caps (Figure 7A).
Aortic fibrous caps treated with an IgG control antibody showed
a colocalization of FAP with cleaved DQ type I collagen,
whereas Ab246-treated plaques demonstrated a significantly
reduced colocalization of FAP with type I collagenase activity
(Figure 7B). Confocal image analyses revealed that A246-treated
fibrous caps exhibited decreased cleaved type I collagen at sites
of FAP expression (Figure 7C). Type I collagenase activity of
rhuFAP and the neutralizing capacity of A246 were demonstrated
by incubation of native human type I collagen with rhuFAP in the
presence of inhibiting antibody or isotype control (Figure 7D).

Discussion
The fibrous cap of an atherosclerotic plaque is essential for separ-
ating the bloodstream in the vessel lumen from its thrombogenic

necrotic core. The mechanical strength of the fibrous cap is pro-
vided primarily by type I collagen, which is degraded by MMPs
and cysteine proteases, both of which are associated with plaque
instability and the occurrence of acute thrombotic events.22 –26

This study links the constitutively active serine protease FAP to
plaque progression and fibrous cap thinning and provides evidence
that (i) FAP expression is enhanced in human aortic atheromata
and in fibrous caps of thin-cap coronary plaques, (ii) FAP is
expressed in HASMC and its expression correlates with macro-
phage burden, (iii) FAP expression is induced in HASMC by
macrophage-derived TNFa via paracrine signalling, (iv) FAP
cleaves collagen in fibrous caps of human atheromata, and (v)
FAP-mediated type I collagenase activity is inhibited by an
FAP-neutralizing antibody.

Numerous studies implicate matrix-degrading collagenases such
as MMP-1, -2, and -9 as well as cysteine proteases such as cathep-
sins S and K in vascular remodelling and plaque rupture.13,23,27 Our
findings provide evidence that FAP is the first known smooth
muscle cell-derived serine protease involved in collagen degra-
dation in human atherosclerosis. Fibroblast activation protein
expression was particularly enhanced in fibrous caps of thin-cap

Figure 6 Macrophage-derived tumour necrosis factor a induces fibroblast activation protein expression in human aortic smooth muscle cells.
(A) Macrophage-conditioned supernatant induces fibroblast activation protein in human aortic smooth muscle cells in a concentration-
dependent manner following 48 h exposure (n ¼ 6). (B) Using the same macrophage-conditioned medium, tumour necrosis factor a-blocking
antibody (Ab6671) decreases fibroblast activation protein expression by 40% in human aortic smooth muscle cells compared with an isotype
control antibody (n ¼ 6). (C) Recombinant human tumour necrosis factor a induces fibroblast activation protein in human aortic smooth
muscle cells in a dose-dependent manner after 48 h incubation (n ¼ 6). (D) Recombinant human tumour necrosis factor a induces fibroblast
activation protein in human aortic smooth muscle cells in a time-dependent manner (30 ng/mL). AU, arbitrary units (*P , 0.05, **P , 0.01).
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Figure 7 Type I collagenase activity is inhibited in human aortic fibrous caps by the fibroblast activation protein-blocking antibody A246. (A)
Movat staining of a fibrous cap in human aortic plaque. The region of interest (black box) is shown at higher magnification in an adjacent section
stained for fibroblast activation protein (red), type I collagen (green), and overlay (DAPI ¼ blue; bar ¼ 150 mm). (B) Confocal images of in situ
zymography show fibroblast activation protein (red) and cleaved DQ type I collagen (green) in fibrous caps shown by Movat (A) of aortic plaque
treated with a control IgG antibody or neutralizing antibody A246 (bar ¼ 10 mm). (C ) The graph reveals a significant reduction of cleaved type I
collagen colocalized with fibroblast activation protein expression by in situ zymography (n ¼ 10/group). (D) Type I collagenase activity of recom-
binant human fibroblast activation protein and the neutralizing capacity of A246 was demonstrated by incubation of native human type I collagen
with recombinant human fibroblast activation protein in the presence of inhibiting or isotype control antibodies (lanes: 1, rhuFAP; 2, collagen; 3,
rhuFAP + collagen; 4, rhuFAP + collagen + A246; 5, rhuFAP + collagen + isotype control antibody; 6, molecular weight marker).
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human coronary plaques isolated from patients who died after
myocardial infarction. Indeed, thin fibrous caps (,65 mm) have
been associated with sudden cardiac death.2,28 The type I collagen-
ase activity of FAP is demonstrated by both FAP-mediated collage-
nolysis in fibrous caps and the association of FAP with
collagen-poor fibrous cap tissue in image analyses. These obser-
vations underline the potential clinical relevance of FAP as a diag-
nostic and/or therapeutic target in patients with plaques prone to
rupture, i.e. patients at risk for ACS or stroke.

Inflammation constitutes a key feature of plaque vulnerability
and inflammatory processes have been shown to induce collagen-
ases in atherosclerotic plaques.4,29,30 Consistent with this para-
digm, we demonstrate that FAP expression in HASMC is
associated with macrophage burden in intermediate and advanced
human atherosclerotic plaques. Fibroblast activation protein was
not expressed by macrophages. However, macrophage-derived
TNFa induced a dose- and time-dependent increase in FAP
expression in cultured smooth muscle cells. These data indicate
that a paracrine inflammatory pathway can induce FAP expression
in smooth muscle cells. Thereby, our findings contribute to a
growing body of evidence that supports the notion of
inflammation-induced collagenase expression in atherosclero-
sis.6,11,22,31 Such findings could motivate future studies to investi-
gate putative atheroprotective interventions involving either key
anti-inflammatory mechanisms, such as the TNFa pathway,
collagen-degrading enzymes themselves such as FAP, or both.

In addition to its expression in smooth muscle cells, we detected
constitutive FAP expression in HAEC in vitro. Endothelial activation
is a critical step in atherogenesis.32 Activated endothelial cells
express fibrous cap-degrading collagenases and have also been
shown to act in concert with fibrous cap-degrading smooth
muscle cells.5,25,33 Indeed, the observed capacity of endothelial
cells to express FAP in vitro supports the notion of a coordinated
remodelling of the fibrous cap by both endothelial and smooth
muscle cells. Furthermore, by recruiting blood-borne inflammatory
cells to the plaque, activated endothelial cells may also enhance
macrophage-derived cytokine release, activate smooth muscle
cells, and thus induce FAP expression and/or activity.

Distinct from MMPs, FAP combines several unique properties:
MMPs exhibit diffuse expression throughout both intermediate
and advanced atherosclerotic plaques.14 In contrast, FAP
expression is associated specifically with thin-cap atheromata.
Moreover, MMP activity is modified by tissue inhibitors of metallo-
proteinases, whereas no natural inhibitors of the constitutively
active FAP are identified. It is therefore plausible that FAP
expression associates with its activity, rendering FAP a potential
diagnostic target. Furthermore, we demonstrate that FAP is
mainly expressed in activated smooth muscle cells in thin fibrous
caps of advanced atherosclerotic plaques. Given its localization in
the fibrous cap close to the bloodstream, FAP may be more acces-
sible than MMPs by circulating targeting agents.34

Taken together, we found that FAP expression is induced by
macrophage-derived TNFa in HASMC, associates with thin-cap
human coronary plaques, and contributes to type I collagen break-
down in fibrous caps. Thus, FAP expression in thin-cap coronary
plaques and endothelial cells renders this target attractive for
further investigation in patients with ACS. Along this line, we

plan to investigate whether soluble FAP may be a biomarker for
ACS. Moreover, our present findings demonstrate that FAP-
mediated collagenolysis is induced by inflammatory cues and may
be blocked by neutralizing antibodies. At the experimental level,
studies using genetic or pharmacological modulation of FAP will
shed light onto the causal role of FAP in atherogenesis and its
potential use as a target in atherosclerosis and other inflammatory
diseases such as rheumatoid arthritis and tumour formation.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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