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An analytic solution for weak-field Schwarzschild geodesics
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ABSTRACT
It is well known that the classical gravitational two-body problem can be transformed into a
spherical harmonic oscillator by regularization. We find that a modification of the regularization
transformation has a similar result to leading order in general relativity. In the resulting
harmonic oscillator, the leading-order relativistic perturbation is formally a negative centrifugal
force. The net centrifugal force changes sign at 3 Schwarzschild radii, which interestingly
mimics the innermost stable circular orbit of the full Schwarzschild problem. Transforming
the harmonic-oscillator solution back to spatial coordinates yields, for both time-like and null
weak-field Schwarzschild geodesics, a solution for t, r, φ in terms of elementary functions of a
variable that can be interpreted as a generalized eccentric anomaly. The textbook expressions
for relativistic precession and light deflection are easily recovered. We suggest how this
solution could be combined with additional perturbations into numerical methods suitable for
applications such as relativistic accretion or dynamics of the Galactic Centre stars.
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1 IN T RO D U C T I O N

When Schwarzschild geodesics appear in classic tests of general
relativity, the important result is an integral over the geodesic: or-
bital precession or deflection of light. Similarly, in modern tests of
relativity involving binary pulsars (for a review, see Will 2006), the
observable effects are also cumulative over many orbits.

In the case of the recently discovered S-stars near the Galactic
Centre, the cumulative effects of relativity are no longer the principal
quantity of interest. The highly eccentric examples from the S-stars
(Ghez et al. 2008; Gillessen et al. 2009), which experience a range
of gravitational regimes, motivate an interest in tracking relativistic
effects as they vary along an orbit. In particular, some recent work
has drawn attention to relativistic effects on redshifts near pericentre
passage (Zucker et al. 2006; Kannan & Saha 2009; Angélil & Saha
2010). These effects can be calculated numerically and some of
them also by post-Newtonian perturbation theory, but a simpler
method is desirable.

Such a method is suggested by the Levi-Civita or Kustaanheimo–
Stiefel (LC or KS) regularization, which are transformations of the
classical gravitational two-body problem to an equivalent harmonic
oscillator. This type of regularization was originally introduced in
two dimensions (Levi-Civita 1920) and much later extended to three
dimensions (Kustaanheimo 1964; Kustaanheimo & Stiefel 1965).
The KS regularization has an extensive literature, including appli-
cations to N-body simulations (Aarseth & Zare 1974a,b; Jernigan
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& Porter 1989; Mikkola & Aarseth 1993). The classical result sug-
gests that the LC or KS regularization could be used to transform
the general relativistic problem into a perturbed harmonic oscillator.
We find even better: a modification of the LC or KS transformation
acting on the geodesics of the leading-order Schwarzschild metric
in the isotropic or harmonic gauge (cf. section 8.2 of Weinberg
1972),

ds2 = −
(

1 − 2M

r
+ 2M2

r2
+ O

(
M3

r3

))
dt2

+
(

1 + 2M

r
+ O

(
M2

r2

))
dx2, (1)

yields an unperturbed circular/spherical harmonic oscillator. As a
result, the solution is analytic. The difference from the classical case
is a negative centrifugal-force term in the transformed space. This
term encodes the leading-order effects of precession, deflection of
light and the innermost stable orbit.

Because orbits in the Schwarzschild space–time do not leave the
orbital plane, in this paper we mainly consider the two-dimensional
or LC case. The three-dimensional or KS case is similar, but al-
gebraically more complicated, as it involves introducing a fourth
spatial dimension.

2 TR A N S F O R M AT I O N O F T H E G E O D E S I C
EQUATI ONS

Since regularization is formulated in the language of Hamiltonians,
we begin by expressing the geodesic equations in the Hamiltonian
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form. A convenient expression for the Hamiltonian is (e.g. equa-
tion 25.10 of Misner, Thorne & Wheeler 1973)

H = 1

2
gμνpμpν. (2)

Considering metric (1), we have

H = −1

2

(
1 + 2M

r
+ 2M2

r2

)
pt

2 +
(

1 − 2M

r

)
p2

2
. (3)

This retains the leading-order Newtonian corrections, which are
O(M/r) in the spatial part and O(M2/r2) in the temporal part, and
neglects higher orders. Note that the Hamiltonian (3) has 4 degrees
of freedom: time t being a coordinate and pt its conjugate momen-
tum, while the affine parameter λ is the independent variable. We
assume units with G/c2 = 1.

The Hamiltonian being independent of t, it follows that pt is a
constant and Hamilton’s equation for t reads as

dH

dpt

= dt

dλ
= −

(
1 + 2M

r
+ 2M2

r2

)
pt , (4)

where λ denotes the affine parameter. On choosing pt = −1 (which
we are free to do, as this amounts to choosing units for λ) and
discarding a constant, we arrive at the Hamiltonian

H = −1

2

(
2M

r
+ 2M2

r2

)
+

(
1 − 2M

r

)
p2

2
. (5)

As is well known from the spherical symmetry of the Schwarzschild
space–time, geodesics are confined to a plane. Without loss of gen-
erality we can choose a two-dimensional coordinate system in the
x, y plane. (Below, at the end of this section, we briefly indicate the
procedure without this simplification.)

We now apply a regularization transformation. In the x, y plane,
we introduce two new coordinates, given by the real and imaginary
parts of the complex number,

Q = √
x + iy. (6)

Hence, r = |Q|2. The conjugate momentum components are given
by the real and imaginary parts of a complex number P, which
satisfies

px + ipy = Q∗P
2|Q|2 . (7)

On multiplying the above equation by its complex conjugate, we
arrive at the transformation

p2 = |P |2
4|Q|2 . (8)

The P, Q are known as LC variables. A proof that they are in-
deed canonical appears in several sources (e.g. Saha 2009), and we
do not repeat it here. Transforming (5) and rearranging yield the
Hamiltonian in the LC variables

H = −1

2

(
2M

|Q|2 + 2M2

|Q|4
)

+
(

1

|Q|2 − 2M

|Q|4
) |P |2

8
. (9)

To complete the regularization, we invoke a Poincaré time transfor-
mation which involves introducing a scaled time variable related to
the affine parameter by

dλ = g(P , Q) ds, (10)

where g(P, Q) can be any function, and define a new Hamiltonian

� ≡ g (H − E) . (11)

The � Hamiltonian (11) preserves the Hamiltonian form of the
equations of motion, provided the constant E is the initial value of
the original Hamiltonian. We choose

g =
(

1

|Q|2 − 2M

|Q|4
)−1

= |Q|2
1 − 2M/|Q|2 , (12)

which approximates to |Q|2 + 2M for large |Q|. The time-
transformed Hamiltonian takes the form

� = |P |2
8

− E|Q|2 − 3
M2

|Q|2 − M(1 + 2E) + O(|Q|−4). (13)

We remark that the classical case uses g = |Q|2, and only the first
two terms in (13) are present in the � Hamiltonian, up to a constant.
However, as is evident from (13), the weak-field Schwarzschild
case also yields a harmonic oscillator under a regularization trans-
formation. The essential difference is in the extra 1/|Q|2 term which
encodes the leading-order effects of general relativity by altering
the classical angular momentum in (13). Thus, the key modification
from the classical case which allows the formulation of an analyt-
ically solvable, relativistic Hamiltonian is the choice of g(P, Q) in
equation (12).

If we do not restrict the coordinates to the plane, the LC transfor-
mation must be replaced with a KS transformation. Although the
transformation itself is far more complicated (involving four spatial
dimensions) the time transformation and � Hamiltonian (13) re-
main the same, except that |P| and |Q| are lengths in four Euclidean
dimensions. This is easily seen on comparing the above with the
KS regularization of the Kepler problem (see e.g. section 5 of Saha
2009).

3 SO L U T I O N S

Continuing in two dimensions, it is possible to put the � Hamilto-
nian in a more recognizable form by transforming to polar coordi-
nates (Qr, Qφ , Pr, Pφ):

� = P 2
r

8
+

(
P 2

φ − 6(2M)2
)

8Q2
r

− EQ2
r − M(1 + 2E) + O

(
Q−4

r

)
,

(14)

which for negative values of E is the Hamiltonian for a circular
classical harmonic oscillator with squared angular momentum de-
creased by 6(2M)2 from the equivalent Kepler problem.

We remark that the � Hamiltonian appears to depend only on
terms up to 1/r, and it would seem that by leaving out terms of
order |Q|−4 we have omitted relativistic effects. However, this is
not the case, since the time equation now hides a factor of r. Thus,
one should read terms of order |Q|−n as terms of order r−(n/2+1) for
n = 0, 1, 2 . . . . This provides some insight into why the Hamiltonian
now has soluble equations of motion: we have pushed a factor of r
into the time equation.

We introduce the constants

M ′ ≡ M(1 + 2E) and P ′2
φ ≡ P 2

φ − 6(2M)2. (15)

Dropping higher order terms, the Hamiltonian becomes

� = P 2
r

8
+ P ′2

φ

8Q2
r

− EQ2
r − M ′, (16)

which is identical to the transformed Hamiltonian of a particle with
angular momentum P′

φ in a central force potential of the form V(r) =
M′/r or equivalently to the Kepler problem where M is replaced by
M′ and P2

φ is replaced by P′2
φ .
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Hamilton’s equations of motion are

dQr

ds
= Pr

4

dPr

ds
= 2EQr + P ′2

φ

4

1

Q3
r

dQφ

ds
= Pφ

4

1

Q2
r

, (17)

where Pφ is a constant. On combining with the time transformation
(10), equation (4) for the time coordinate becomes

dt =
(

Q2
r + 2M + 2M2

Q2
r

)
ds

1 − 2M/Q2
r

�
[

4M + Q2
r + 6

M2

Q2
r

+ O
(
Q−4

r

)]
ds, (18)

where we have again used the approximation Q2
r � 2M.

We remark that Pφ = 2pφ , which is the weak-field relationship
between the LC angular momentum and angular momentum in stan-
dard coordinates. This can be seen from a comparison of the third
of equations (17) and the corresponding Hamilton equation applied
to (5) in the time variable s.

3.1 Bound orbits

For negative values of E, the solutions are bound orbits. We define
a ‘classical’ and a ‘relativistic’ semimajor axis

a ≡ M

2|E| , a′ ≡ M ′

2|E| , (19)

the eccentric anomaly

β =
√

2|E|s (20)

and the eccentricity

e =
√

1 + P ′2
φ E

2M ′2 (21)

in the standard way. Solving equation (18) gives an implicit equa-
tion for the coordinate time t in terms of β and solving equations (17)
via quadrature gives the following solutions for the LC variables in
terms of elementary functions of β:

Q2
r (β) = a′ [1 − e cos β]

Qφ(β) = Pφ

P ′
φ

tan−1

[√
1 + e

1 − e
tan

(
β

2

)]

t =
√

a′3

M ′ [β − e sin β] + 4M√
2|E|β + 6(2M)2

Pφ

Qφ, (22)

where we have chosen Qφ(0) = 0 and Q2
r (0) = a′(1 − e) = rmin.

The LC radial momentum Pr(β) is then generated from the first of
equations (17) and, with the above choice of Q2

r (0), the initial radial
momentum vanishes.

Note that in terms of the classical semimajor axis of the Kepler
problem, the quantity a′ = a−M. So it is simple to show that
equations (22) reduce to the Kepler LC equations of motion when
M is small.

3.2 Unbound trajectories

For the unbound case the Hamiltonian and thus the equations of
motion only change by the sign of E which appears in a′, e and β.

With this substitution, the unbound solutions become

Q2
r (β) = a′ [e cosh β − 1]

Qφ(β) = Pφ

P ′
φ

tan−1

[√
e + 1

e − 1
tanh

(
β

2

)]

t =
√

a′3

M ′ [e sinh β − β] + 4M√
2|E|β + 6(2M)2

Pφ

Qφ, (23)

where we have chosen Q2
r (0) = a′(e − 1), which in the unbound

case is the point of closest approach.

3.3 Light rays

Null geodesics are the solutions to Hamilton’s equations when H in
equation (3) is set to zero. Since we discarded a constant of −1/2
in the derivation of the LC Hamiltonian, the null solutions can be
found by assigning E in the unbound case the value of 1/2. This
amounts to redefining the constants a′, β and e in equations (23)
such that the null equations of motion become

Q2
r (s) = 2M [en cosh s − 1]

Qφ(s) = Pφ

P ′
φ

tan−1

[√
en + 1

en − 1
tanh

( s

2

)]

t = 2M [en sinh s − s] + 4Ms + 6(2M)2

Pφ

Qφ, (24)

with

en =
√

1 + P ′2
φ

16M2
(25)

and Q2
r (0) = 2M (en − 1).

4 PRO P E RT I E S O F T H E SO L U T I O N

Now that we have derived the bound, unbound and null equations
of motion we show that, to first order, they reproduce the predic-
tions for geodesics in a Schwarzschild space–time, namely those of
orbital precession, the deflection of light and the innermost stable
circular orbit (ISCO).

4.1 Orbital precession

The pre-factor of the middle line in (22) automatically gives the
precession rate of orbits and tells us that the precession is due to the
−6(2M)2 perturbation of the classical squared angular momentum.
This is equivalent to the conventional interpretation of precession
being caused by an additional centrifugal-force term. Substituting
for P′

φ , we have

Pφ

P ′
φ

=
[

1 − 6
(2M)2

P 2
φ

]−1/2

. (26)

Since P2
φ ∝ Q4

r , then P2
φ � (2M)2 and we may write[

1 − 6
(2M)2

P 2
φ

]−1/2

� 1 + 3
(2M)2

P 2
φ

. (27)

We note that, due to the complex square-root nature of the LC
transformation, Qφ = 1

2 φ. Thus, as the solution evolves through
one period Qφ will increase by

π + 3π
(2M)2

P 2
φ

rad, (28)
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giving an orbital precession rate of


Qφ = 3π
(2M)2

P 2
φ

rad

orbit
. (29)

Converting back to non-LC coordinates and expressing the previous
equation in terms of the semilatus rectum of the orbit α = a (1 − e),
where a is the classical semimajor axis, the precession rate becomes


φ = 6π
MG

c2α

rad

orbit
, (30)

as in the conventional treatment (e.g. Weinberg 1972).

4.2 Deflection of light

We may similarly derive the deflection angle of a light ray. Imagine
that the light ray starts infinitely far from the Schwarzschild mass
at t = −∞, approaches the point of closest approach at t = 0 and
continues on to t = ∞. If there is no deflection, Qφ will sweep out
π/2 rad since Qφ = 1

2 φ. If there is deflection, the total difference
in Qφ(−∞) and Qφ(∞) will be greater than π/2. To determine the
deflection angle, we compute


Qφ = 2[Qφ(∞) − Qφ(0)] − π

2

= 2
Pφ

P ′
φ

tan−1

[
en + 1√
e2
n − 1

]
− 0 − π

2
, (31)

where Qφ is the null solution for Qφ . Substituting for P′
φ and the

expression for en in equation (25), invoking the binomial approxi-
mation for P′2

φ � M2 and P2
φ � M2 and neglecting terms of order

M2 and greater, we find


Qφ = 2(1 + O(M2)) tan−1

[
1 + 4M

P ′
φ

+ O(M2)

]
+ 0 − π

2
.

(32)

Using the expansion

tan−1 (1 + x) = π

4
+ 1

2
x + O(x2), (33)

we obtain


Qφ = π

2
+ 2

[
2M

P ′
φ

− O(M2)

]
− π

2
. (34)

Converting back to non-LC coordinates, we gain a factor of 1/2
since the LC angular momentum P′

φ is twice the non-LC angu-
lar momentum P′

φ . We may treat P′
φ as the corrected (relativistic)

angular momentum, which is equal to the impact parameter b for
photons (with the speed of light set to unity). Thus we arrive at
the expression, to first order in M, for the angle by which light is
deflected due to a spherically symmetric mass distribution:


φlight = 4MG

b
� 4MG

r0
, (35)

where to this order the impact parameter can be replaced by r0, the
point of closest approach.

4.3 Innermost stable orbits

Due to the weak-field approximation used to derive the geodesic
equations of motion, the solutions do not exhibit an event horizon.
Remarkably though, the solutions do reproduce the phenomenon of
an ISCO. This is due to the centrifugal term 6(2M)2/Q2

r in the LC
Hamiltonian (14).

From the first two of Hamilton’s equations (17) for a bound orbit,
we find

d2Qr

ds2
= −|E|

2
Qr

[
1 − P ′2

φ

8|E|Q4
r

]
(36)

and note that equation (36) becomes a one-dimensional harmonic
oscillator in the radial coordinate (i.e. the condition for radial free
fall or equivalently e → 1) when P′2

φ = 0. Writing out P′
φ , the

condition becomes

P 2
φ = 6(2M)2. (37)

Dividing by |E| and using the definitions of the classical semimajor
(a) and semiminor (b) axes of the orbit, this condition becomes

b2 = 6aM, (38)

which in the case of a circular orbit (a = b) is precisely the ISCO
predicted by the conventional analysis of time-like geodesics in
a Schwarzschild metric. Note that although this relation has been
derived for the classical semimajor axis, one can convert to the
standard radial coordinate of the Schwarzschild metric and find an
identical result as follows. First, convert to the relativistic semimajor
axis, a′ = a − M which, for the above ISCO, gives a′ = 5M. Then
recall that the standard Schwarzschild radial coordinate R is given
in terms of the isotropic radial coordinate by (see e.g. section 8.2 of
Weinberg 1972)

R = r

(
1 + M

2r

)2

� r

(
1 + M

r

)
, (39)

where the approximation is made to be consistent with the derivation
of the equations of motion. For a′ = r = 5M, this gives R = 6M as
expected.

To interpret the ISCO derived here, we observe from equation (36)
that the condition for zero radial acceleration is

Q2
r =

√
P 2

φ − 6(2M)2

8|E| . (40)

Now consider a classical orbit with a fixed P2
φ and imagine ‘turn-

ing on’ relativity adiabatically keeping P2
φ constant. As relativity is

turned on, the negative centrifugal-force term increases and effec-
tively reduces P′2

φ . If P2
φ > 6(2M)2 to begin with, then the classical

orbit will shrink by the appropriate amount in the presence of rel-
ativistic effects. But if we originally had P2

φ ≤ 6(2M)2, then as
relativity is turned on equation (40) shows that Q2

r would shrink to
0 implying that all orbits for which P2

φ ≤ 6(2M)2 are unstable.
Also note that the standard coordinate singularity at R = 2M is

mapped to r = M in the approximate isotropic coordinates. This
yields the following interpretation for the LC equations of motion.
Substituting a′ = a − M in the first of equations (22) for the LC
radial coordinate and restricting to the circular case where e = 0,
we find

Q2
r (β) + M = a, (41)

which has the interpretation that the LC radial coordinate is mea-
sured not from the origin of the corresponding Kepler problem but
from the event horizon predicted by the Schwarzschild metric. This
does not carry the interpretation of a horizon since when e �= 0
orbits can still come arbitrarily close to r = 0 and continue outside
of r = M. However, it does add an interesting interpretation to the
regularization transformation. For circular orbits, the regularization
essentially cuts out the area inside the event horizon and stitches it
back together mapping a circle to the origin. For elliptical orbits,
one can imagine an analogous interpretation.
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Since these equations of motion predict the correct ISCO and ex-
hibit special behaviour at the Schwarzschild event horizon, perhaps
they could be particularly useful for simple approximate modelling
of relativistic accretion discs.

4.4 Error terms

Working backwards from the approximate Hamiltonian in the time
variable s (equation 13) by solving equation (11) for H, we can
recover the error terms in our approximate Hamiltonian. Solving

� = |Q|2
1 − 2M/|Q|2 (H − E) (42)

with no further approximations and converting to non-LC coordi-
nates yield what we may call a surrogate Hamiltonian:

Hsurr = −1

2

[
1 + 2M

r
+ 2M2

r2
−

(
12M3

r3

)]
pt

2

+
(

1 − 2M

r

)
p2

2
+ 4M2

r2
E (43)

for which the analytic solution is exact. For time-like geodesics E is
small and for null geodesics 1/r2 is a second-order correction. Thus,
to obtain a first-order expression for error in the metric components
we may neglect the term containing E.

If it is bothersome that the Hamiltonian in equation (43) is de-
pendent on E, one can eliminate it by a further modification. Let us
add an E/|Q|4 term to the � Hamiltonian:

�′ = � + 4M2

|Q|4 E, (44)

which makes only a higher order change to the solutions. Introduc-
ing H′

surr by

�′ = |Q|2(1 + 2M/|Q|2 + 4M2/|Q|4) (H ′
surr − E), (45)

one finds

H ′
surr = −1

2

[
1 + 4M/r + 10M2/r2

1 + 2M/r + 4M2/r2

]
pt

2

+
[

1

1 + 2M/r + 4M2/r2

]
p2

2
, (46)

which, when expanded in 1/r to the appropriate order, is identical
to (43) less the term dependent on E. The Hamiltonian (46) is then
the Hamiltonian for which equations (22), (23) and (24) are exact
solutions.

5 D ISCUSSION

We have derived time-like and null geodesics in the leading-order
Schwarzschild metric in terms of elementary functions. Expressions
(22) for bound orbits and (23) for unbound orbits, together with (24)
for light rays, are all simple generalizations of well-known expres-
sions in classical celestial mechanics. The usual formulae for rela-
tivistic orbital precession and light deflection are easily recovered.
A feature resembling the ISCO in the full Schwarzschild metric is
also present.

The technique we have used is a modification of the LC or KS
regularization transformation and transforms the geodesic equa-
tion into a spherical harmonic oscillator. The simplicity of the result,
notwithstanding the non-trivial route used to derive it, hints at some
underlying symmetry in the Schwarzschild problem. We speculate

that it is somehow related to the separability of the Hamilton–
Jacobi and other equations in the Schwarzschild and Kerr metrics
(cf. Chandrasekhar 1983) but have not attempted to investigate
this.

As mentioned in Section 1, the original motivation for this work
was to find useful formulae applicable to the highly eccentric Galac-
tic Centre stars, whose orbits pass through a large range of gravita-
tional regimes. Future observations of these stars aiming to detect
relativistic effects will require computation of relativistic effects on
both stellar orbits and light rays at many points along an orbit, for
many orbits, in order to fit the orbital parameters. The solutions in
this paper allow a simpler, more efficient method for carrying out
those computations. The analytic solutions will not be sufficient
on their own because the Galactic Centre stars also experience ad-
ditional Newtonian perturbations due to local matter (Mikkola &
Merritt 2008), but they can be incorporated into numerical meth-
ods, specifically generalized leapfrog integrators. Such algorithms
evolve alternately under two Hamiltonians, which are integrable
separately. The idea goes back to Wisdom & Holman (1991) and
Kinoshita, Yoshida & Nakai (1991). Some recent developments on
adaptive stepsizes appear in Emel’yanenko (2007) and are applied
to the specific problem of Galactic Centre stars in Preto & Saha
(2009). We note, however, that this work is limited to test particles
and hence will not be applicable for binary orbits or self-gravitating
disc simulations unless a generalization is found.

Another potential application may be the use of the solutions
in relativistic disc simulations as an alternative to the widely used
pseudo-Newtonian potentials (see especially Paczyński & Wiita
1980; Artemova, Bjoernsson & Novikov 1996; Abramowicz 2009),
an advantage being that the solutions in this paper are well-defined
approximations and include a more complete repertoire of general-
relativistic effects for the same computational budget.
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