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Introduction

The study of singular cubic surfaces is quite an old subject, since their
classification (over C) goes back to Schlafli [39] and Cay ley [8]. However, a
recent account by Bruce and Wall [6] has shown that modern singularity theory
can give much insight into this classification. One of the main themes of the
present paper is that this approach is also useful over an arbitrary perfect field k
for studying the fc-birational properties of singular cubic surfaces, and of certain
other singular surfaces which are defined below.

Recall that an absolutely irreducible algebraic variety V, defined over k, is said
to be k-rational (respectively, k-unirational) if its function field k(V) is
(respectively, is contained in) a purely transcendental extension of k. Throughout
this paper k denotes an algebraic closure of k, and V = Vxkk. We say that V is
rational if V is ^-rational, and we write P" for P£. Unless stated otherwise, the
notation V <= P£ implies that V is a projective sub variety of P£, defined over k. In
Part I we prove:

THEOREM A. Let V c P3
k be a singular cubic surface. Suppose V has precisely 6

isolated double points. Then <5 *s 4 and V is birationally equivalent (over k) to:
2ifd = lor 4;Pk

a smooth Del Pezzo surface of degree 4 with a k-point if 6 = 2;
a smooth Del Pezzo surface of degree 6 if 6 = 3.

In particular, V is k-unirational if V(k) =£ 0 .

Recall that a smooth Del Pezzo surface is a smooth projective surface V whose
anticanonical class is ample. Many arithmetic properties of these surfaces were
investigated by Manin (cf. [32]).

Theorem A is proved in § 1 with the methods of modern singularity theory (but
with a restriction on the characteristic of k). The most interesting feature of this
approach is that it provides a unified treatment of the two cases 6 = 2 and 6 = 3.
Actually, the theorem was already known for 6 = 1 or 4 (cf. [40]), and for 6 = 3
(cf. [17]). In all these cases one can produce an explicit birational equivalence,
and the proof (which does not depend on a preliminary classification of all
possible singularities) is valid in arbitrary characteristic. In § 2 we give a similar
argument for the case where 6 = 2. Although the presentation is completely
independent of §1, one must emphasize that the choice of the Cremona
transformation to be applied was suggested by the results of that section. Indeed,
one had to look for a transformation whose effect on V was as described in § 1.

A.M.S. (1980) subject classification: 11G35, 11G25, 14J17, 14J26.
Proc. London Math. Soc. (3) 57 (1988) 25-87.
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In fact, Theorem 2.2 is a more precise version of Theorem A. The reason is
that the treatment of § 2 not only yields explicit equations for the smooth model
of V, but also gives some further information on the transform (the action of
Ga\(k/k) over a particular set of lines, for instance). Thus we come to another
theme of this paper, which gives various applications and many examples of
concrete computations. We cannot describe them all in this introduction; the
reader is invited to browse through §§3 and 4. Particularly representative are
Example 3.3 (and the subsequent Remark, which is used again in §§ 4 and 7),
Proposition 3.4 (with its application to the Zariski Problem), Proposition 4.2
(showing that the situation is not trivial even over a finite field), Proposition 4.6
(which is related to the computation of the Chow group of a Chatelet surface
(Proposition 4.7)), and Corollary 4.9. See also Proposition 7.6.

The reader can also refer to the survey [33], which, for technical reasons,
appeared before the present paper, but includes many of its results (without
proof) and puts them into perspective (see especially §§2 and 7). Before
proceeding, we must recall some results and definitions, which will be used freely
in what follows.

PROPOSITION 0.1 (Artin). Let V be a normal, complete algebraic surface over
an algebraically closed field k. Let £ = E £, be a connected curve on V, with
irreducible components Eh and assume V is non-singular along E. Then the
following conditions are equivalent.

(a) The intersection matrix ||(£,.£,)|| is negative definite, and every component
E{ of E is a smooth rational curve with self-intersection (Ej) = — 2.

(b) E is contractible, i.e. there exists a morphism f: V'—>V which is an
isomorphism at every point ofV'\E and maps the curve E into a normal point P
of the surface V. Moreover, any canonical divisor KvofV is locally principal at P,
and the total transform Kv. =f*{Kv) is a canonical divisor on V.

Furthermore, if (a) or (b) holds, then the morphism f preserves the Euler
characteristic:

This is Theorem 2.7 of [1]. In this situation, P is called a rational double point.
(By definition (see [2]), x(V) = xiY) means that P is a rational singularity. Now
it follows from (a) that (Ei.Kv>) = 0; so the 'fundamental cycle' of E (as defined in
[2]), Z = E TiEt, verifies that (Z.Kv.) = 0. Hence (Z2) = - 2 and P is double, by
Corollary 6 of [2]. With the results of [2] this argument can be done backwards to
show that, conversely, a rational double point verifies Condition (a).)

If V is smooth then / : V-* V is the minimal desingularization of V (see [30,
Corollary 27.3]). Finally, if a normal surface V has only rational double points,
there is a Dynkin diagram A associated with its minimal desingularization. The
vertices, of weight —2, correspond to the Et. Two vertices are joined by an edge
if and only if the corresponding components Eh Ej meet, in which case
(Ej.Ej) = 1. Of course, the number of connected components of A is equal to the
number of singularities of V. We shall say that V has singularities of type A.

PROPOSITION 0.2 (Bruce and Wall [6]). Let V c P j be an irreducible cubic
surface having only isolated singularities. Then either

(a) V is a cone over a smooth plane cubic, the vertex being a simple elliptic



SINGULAR DEL PEZZO SURFACES 27

singularity of type E6,

o o

or
(b) V has only rational double points, and their type is a proper subgraph of the

extended Dynkin diagram E6.

See [6] for the list of all possibilities and the number of distinct lines on V in
each case. We have not defined the type of an elliptic singularity, for which we
refer to [31, Chapter 1, Example 5, and Chapter 7, no. 23]. Indeed only Case (b)
is of interest for our purposes. But Case (a) completes the picture nicely (cf.
[37, 34]).

In Part II we use the analogous result for the intersections of two quadrics:

PROPOSITION 0.3 (Pinkham [37], Knorrer [26], Wall [47]). Let V c P £ be an
irreducible intersection of two quadrics which has only isolated singularities. Then
either

(a) V is a cone over a smooth quartic of genus 1 in Pc, the vertex being a simple
elliptic singularity of type D5,

or
(b) V has only rational double points, and their type is a proper subgraph of the

extended Dynkin diagram D5.

Actually, for our arithmetic applications we shall need a slightly more precise
version of this proposition. Indeed, that the singularities are rational in Case (b)
follows easily from Proposition 0.2. Then one can use the results of Demazure
[19] to classify all possible Dynkin diagrams up to the action of the appropriate
Weyl group (Proposition 5.6). This approach goes back to Du Val [20] and
Coxeter [18], and the classification is valid over a field of arbitrary characteristic.
A brief sketch of this argument is included in § 5 to help the unfamiliar reader,
and also to fix notation. A remarkable feature of the classification, which was
already noticed by Du Val, is that there are two distinct equivalence classes of
subdiagrams of type 2AX (and the same thing happens for type A3). In one case,
the line joining the two double points lies on the surface; in the other case, it does
not. This situation does not arise with cubic surfaces, which have only one class
for each type. Moreover, the distinction between the two classes has arithmetic
significance. In § 7 a surface V a Pi of the second kind is called an Iskovskih
surface when the two double points are conjugate. Using the classification, we
show that, in some sense, the only arithmetically interesting objects are the
Iskovskih surfaces (Theorem 7.2):

THEOREM B. Let VczPi be a singular irreducible intersection of two quadrics
which has only rational double points. Suppose V is not an Iskovskih surface.
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Then the following assertions hold:

(TR) if V contains a smooth k-point, then V is k-rational;
(HP) if k is a number field and V contains a smooth kv-point, for every

completion k^ of k, then every proper model of V contains a k-point.

Neither assertion holds for the class of Iskovskih surfaces; but it is true that ifVis
an Iskovskih surface and V(k)i=0, then V is k-unirational.

Here we may point out an error in a widely quoted paper of Nagata [35]:
Proposition 10, on p. 368, simply denies the existence of Iskovskih surfaces! (It
asserts, as a special case, that the line joining two double points of an intersection
of two quadrics in P4 lies on the variety.)

When we analyse the arguments of Part II, we see that the essential ingredients
are certain results of Demazure, which hold for more general surfaces. Since it is
well known that the theory of smooth Del Pezzo surfaces becomes simpler as the
degree increases, it is natural to adopt this more general point of view in our
study.

DEFINITION. A generalized Del Pezzo surface is a smooth projective surface V
which is 'of negative type' in the sense of Demazure, that is, (K2

/)>0 and
(D.KV) s£ 0 for all effective divisors D on V. Its degree is the number d = (Ky).

Note that this definition is independent of the field of definition. It is easy to
see that it includes the usual Del Pezzo surfaces.

PROPOSITION 0.4 (Demazure). The surface V is a generalized Del Pezzo surface
(of degree d) if and only if V is isomorphic to one of the following rational
varieties:

P1 X P1 (of degree 8);
the ruled surface F2 over P1 (of degree 8);
the surface P2(T) obtained from P2 by blowing up a set 2 of r points in 'almost
general position'; then 0 «£ r *£ 8 and d = 9-r.

The points blown up can be infinitely near. More precisely, starting from Xo = P2,
one constructs a sequence of surfaces

P2 = Xo <-Xx < - . . . <-Xr = P>2(2),

where each Xt is obtained by blowing up one point Jt,eAr,_i. The set 2 =
{xlf..., xr) is in almost general position if and only if, at each stage, x( does not
belong to any irreducible curve of Xt-i with self-intersection —2.

Proof. The proof is in [19], except for a few details. One has to show that a
generalized Del Pezzo surface V is rational, and this follows from the general
theory of surfaces. Namely, all the plurigenera are equal to zero. Indeed, suppose
there were an effective divisor D in the class mKv; then (D.KV) = m(#y) >0, a
contradiction. Now, by Proposition 2.4 (p. 378) of [4], pg = 0 and (K2

V) >0 imply
q=0. Thus V is rational, by Castelnuovo's criterion [4, p. 381, Theorem 5.1],
since P2 = q = 0.

This result enables one to apply Proposition III.3 of [19] (where V was assumed
to be rational). Actually, the ruled surface F2 is not mentioned by Demazure, but
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this is due to an oversight immediately before the statement of Proposition III.3:
in (d), replace ln > V by ln >2' , since F2 is also of negative type.

Finally, to show that all the surfaces listed are generalized Del Pezzo surfaces
one can refer to Theorem III.l of [19]. An easy verification shows that a set 2 as
described in Proposition 0.4 is in almost general position in the sense of the
definition of [19, Part III, § 2].

REMARK. Let D be an irreducible curve on V with negative self-intersection.
Then either (D2) = (D.Kv) = - 1 , or (D2) = -2 and (D.Kv) = 0, since pa(D) > 0.
In the former case, D is an exceptional divisor of the first kind; for reasons that
will appear later, we shall say that D is a line of V. In the latter case, D will be
called an irreducible root of V. For instance, the condition for 'almost general
position' in Proposition 0.4 can be expressed quite simply: 'Never blow up a point
lying on an irreducible rootV (... for the obvious reason that the proper transform
of the root would be an irreducible curve with self-intersection less than —2).

EXAMPLE 0.5. Let V czP3
c be an irreducible cubic surface having only isolated

singularities, and suppose V is not a cone. Let f: V'—>V be its minimal
desingularization. Then V is a generalized Del Pezzo surface of degree 3. Its lines
are the proper transforms of the lines of V. Its irreducible roots are the irreducible
components of the curves on V which are contracted by f into the singular points
of V. Thus they correspond to the vertices of the Dynkin diagram associated with
the singularities of V.

Proof. By Proposition 0.2, V has only rational double points. By Proposition
0.1(b), Kv> =f*(Kv). Now we know that -Kv is in the class of the hyperplane
sections. Hence {Kv>) = 3 and V is of negative type. Moreover, the lines of V are
the only rational curves L such that (L.KV) = — 1. Finally, the irreducible roots D
verify the condition (D.KV) = 0; so they are concentrated above the singularities
of V (of type A, say). By Proposition 0.1 (a), they are precisely all the irreducible
components Eit that is, they correspond exactly to the vertices of A.

This example has the following extension to generalized Del Pezzo surfaces:

PROPOSITION 0.6 (Demazure). Let V be a generalized Del Pezzo surface of
degree d over an algebraically closed field k. Let f0: V'—>V0 be the rational map
defined by the complete linear system \—iKv-\, where

I —- *

1 ifd&3,
2 ifd = 2,
3 ifd = l.

Then f0 is a morphism which contracts all the irreducible roots of V and is an
isomorphism everywhere else. Its image Vo is normal, with only rational double
points. For d^3, Vo is anticanonically embedded as a surface of degree d in Pd.

This is proved in [19, Part V, Theorems 1 and 2, Corollary 3].

DEFINITION. A singular Del Pezzo surface (of degree d) is a singular normal
projective surface V which is obtained from a generalized Del Pezzo surface V
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(of the same degree) by contracting all the irreducible roots (and nothing else; cf.
Proposition 0.1(b)). Equivalently, for d^3, V is a singular surface which is
isomorphic to the anticanonical image of a generalized Del Pezzo surface V.

This definition makes sense. Indeed, by Proposition 0.6 there exists such a
contraction/0: V'-*V0. But if we choose any other contraction (say/: V'—>V),
following the prescriptions of Proposition 0.1(b), then the birational map/o/o* is
a morphism, by [19, Corollary 1 to Theorem V.2], and hence an isomorphism, as
follows from the Zariski Main Theorem (since V is normal).

EXAMPLE 0.7. (a) Every singular Del Pezzo surface V of degree 3 (respectively
4) embeds anticanonically as a cubic surface in P\ (respectively as the intersection
of two quadrics in Pi).

(b) Conversely, every singular cubic surface V cP3
k (respectively every singular

intersection of two quadrics V a P4
k) with only rational double points, is a singular

Del Pezzo surface of degree 3 (respectively 4).

Proof (a) By Proposition 0.6, V embeds anticanonically as a surface of degree
d in Pi. For d = 3, there is nothing more to prove. For d = 4, it follows from [19,
Corollary 3 to Theorem V.2] that h°(V, (Oy2) = 13. Hence V <= Pi is contained in
a pencil of quadrics. (Indeed the family of all quadrics in Pj has dimension 14
and, by the above, they only cut out on V a linear system of dimension 12.) Since
V has degree 4, it follows that V a P\ is the intersection of two quadrics.

(b) Consider the minimal desingularization / : V'—>V, and repeat the argu-
ment of Example 0.5.

In Example 0.7(b), it is probably sufficient to assume that V has only isolated
singularities and is not a cone. Indeed this is true at least if k c C, as follows from
Proposition 0.2 (respectively Proposition 0.3). But we have no proof in the
general case, in particular for very small characteristics.

In Part III we study the singular Del Pezzo surfaces of degree d 2= 5. Note that
d is then at most equal to 8. The following fact goes back to Du Val [20]:

PROPOSITION 0.8. Let V be a singular Del Pezzo surface of degree d^5. Then V
has only rational double points, and their type is a subgraph of the Dynkin
diagram:

A4 ifd = 5;

AiXA2 ifd = 6;

Ax if d = 7 or 8.

In § 8 we make a list of all possibilities, including diagrams of irreducible roots
and lines. The diagrams we obtain are equivalent to the dual pictures of Timms
[44], but they are slightly more precise. We use them to show that the singular
Del Pezzo surfaces of degree d^S have arithmetic properties quite similar to
those of the smooth Del Pezzo surfaces of the same degree (Theorem 9.1):

THEOREM C. Let V be a singular Del Pezzo surface of degree d^5. Then:
for d = 5orl, V is k-rational;
ford = 6 or 8, both assertions (TR) and (HP) of Theorem B hold for V.
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Not surprisingly, the classification of these surfaces gets simpler and simpler as
the degree increases. So these varieties can be used as tools for proving theorems
about the surfaces of smaller degree. Nevertheless we deal with them only in Part
III because, unlike the surfaces of degree 3 or 4, they do not have an obvious
interpretation in terms of equations. Thus Parts II and III are almost independent
of Part I, if we except some occasional reference to provide an alternative
argument. This enables us to illustrate several different techniques.

Last but not least, it is our great pleasure to thank J.-L. Colliot-Th61ene, B. £.
Kunjavskii, Yu. I. Manin, A. N. Skorobogatov, and Sir Peter Swinnerton-Dyer
for their constant encouragement and their many valuable comments and
suggestions. In addition, the proof of Proposition 4.2 is due to Swinnerton-Dyer,
and Proposition 4.7 was communicated by Colliot-The'lene. The referee's remarks
have helped to clarify the exposition.

PART I. CUBIC SURFACES

1. Birational classification of singular cubics

Throughout this paper, we shall suppose that the field k is perfect. One reason
for this assumption will be seen in Remark (a) after Lemma 1.1. Finite fields are
allowed, but a constant assumption will be that k has more than five elements. In
fact, the proof of Lemma 1.2 is not applicable to the Chatelet surface
y2 + z2 = x3 - x over k = F3, though Colliot-The'lene has shown by another
method that this surface is fc-unirational.

(Sketch of proof. Let T be defined by {u2 + v2 = x -i}f=0- On setting
_y + (V—l)z = ri(«, + (V—l)i>,), we obtain a dominant map from T to the
Chatelet surface. Now T, being birationally equivalent to an intersection of two
quadrics which contains a line, is ^-rational (cf. [15, Chapter II, Proposition 2]).)

To begin with, we recall the statement of Nishimura's lemma, which is used at
several places in this paper:

LEMMA 1.0 ('Nishimura's lemma'). Let f: X > Y be a k-rational map from an
integral k-variety X to a proper k-variety Y. Suppose X(k) contains a regular
k-point. Then Y(k) * 0.

For a proof and further reference, see [12, Lemma 3.1.1].

LEMMA 1.1 (cf. [40]). Let V cP3
k be a singular cubic surface with only isolated

singularities. Suppose V is not a cone, and let 6 be the number of double points of
V. Then 6 =£ 4; and V is k-rational in each of the following cases:

(i) if V has a double point defined over k;
(ii) if 6 = 1 or 4;
(iii) if6 = 3andV(k)*0.

Proof. Since V is not a cone, it has only double points for singularities. If one
of them is defined over k, then projecting from this double point maps V
birationally into a plane. This deals with (i), and also with the case where 6 = 1,
since k is perfect.
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Now suppose 6 2= 3. We observe that no three double points are collinear.
Otherwise a general plane through them would meet the surface V in the cycle
2L + L', where L is the line joining the points, and L' is another line. So the
whole line L would be double on V, but by assumption V has only isolated
singularities. Then one sees easily that no four double points of V lie in a plane.

Now recall (cf. [17, p. 57]) that four non-coplanar points Qx, -, Q4 of P3

define a Cremona transformation 0 = Tyf, whose associated linear system
consists of all cubic surfaces on which each Q{ is at least double. (With a suitable
choice of coordinates, this is simply the map (x, y, z, t)*-+(l/x, 1/y, Hz, lit).)
This has the following consequences.

(1) If 6 - A, the Cremona transformation 0 defined by the four double points
maps V into a plane. This completes the proof in Case (ii).

(2) If 6 = 3 and V(k)*0, let Qlt Q2, Q3 be the three double points and
Q4 e V(k). Since we have already dealt with Case (i), we can assume that none of
the double points is defined over k. Then Q4 does not lie in the plane spanned by
Q\> Qi> a°d £?3- (Indeed the intersection of this plane with V consists of three
lines, on which the group Ga\(k/k) acts transitively.) Hence Q1}..., Q4 define a
Cremona transformation 0 , which maps V into a quadric W. To prove (iii), it
suffices to see that W contains a smooth A>point.

Now Q4 e V(k) is smooth; hence it follows from Nishimura's lemma (Lemma
1.0) that W(k):t0. If W is smooth, we have finished. Hence we shall assume
that W is a quadratic cone. If k is finite, we can find a smooth fc-point on a plane
section of W, since k is a Cx field! Thus we may assume that k is infinite. Let
U c= V be an open subset on which 0 restricts to an isomorphism. Then we can
find a line L c= Pi whose intersection with V is contained in U. The image
0(L n V) is a 0-cycle of degree 3 on W and consists of smooth points. Thus the
result follows from an elementary argument of descent on the degree (also used
in [17, proof of Lemma 3]).

(3) Finally, 6 cannot exceed 4. Indeed suppose Qx,..., Q5 are double points of
V, and let Q6 be a general point of (P3 (in particular, not lying on V). Then the
Cremona transformation 0 defined by Qu ..., Q4 has the property that the line
through ©(Qs) and Q(Q6) isjthe image of a twisted cubic T through Qlt..., Q6.
This is absurd: indeed TcfzV, since T s Q6; whence we get a contradiction to
Be"zout's theorem.

REMARKS, (a) The lemma does not hold over an imperfect field, even in the
case where 6 = 1. As an example we may take the surface V defined over the
power-series field k = ̂ ((A)) by the equation

x3 + A( v3 - vz2 + z3) + X2(y2t - t3) = 0.

A A-adic argument shows that V(k) = 0 . Now, one checks easily that V has only
one double point, with coordinates (A?, 0, 0,1).

(b) For 6 = 3 the lemma does not hold without the assumption that V(k) =£ 0 .
For instance, let k = Qp and 0 be a root of a polynomial of degree 3 which is
irreducible modulo p. Then the equation pt3 = Nki9yk(x + 6y + 82z) defines a
surface V such that 6 = 3 and V(k) = 0 .

(c) Another argument has been given in [45] for the case where 6 = 4: suppose
it is known that V has only rational double points (cf. Proposition 0.2); then, on
the minimal desingularization of V, one can blow down a set of six exceptional
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divisors of the first kind (corresponding to the edges of the tetrahedron through
the nodes) and obtain a Del Pezzo surface W of degree 9 (cf. the proof of
Theorem 7.2). Since W is a Severi-Brauer variety and contains a 0-cycle of
degree 1, W is isomorphic to IP*. (W contains an effective 0-cycle of degree 3
because V is a cubic surface, and an effective 0-cycle of degree prime to 3, for
instance because we can apply Case (i) over a field of definition of any one of the
double points.)

For 6 = 2, one has only the following weaker result. Indeed, the surface V3 of
Example 3.3 is not Q-rational.

LEMMA 1.2. Let V c Pi be a cubic surface having two conjugate double points
Q\, Q.2> an& n0 other singularities. Then V is k-unirational.

Proof. Of course V(k) # 0 , since the line Lo through Qx and Q2 is contained
in V. By the argument given in [32, Chapter IV, Theorem 7.8] (cf. also [32,
Chapter II, Theorem 2.9]), the lemma will be proved if we show that V contains a
fc-point that does not lie on any line of V.

First we deal with the case of a finite field. As card(fc) 2s 5, we can find a plane
K <= Pi through Lo, such that JZ fl V = Lo U Co, where Co is a smooth conic. Now
k is a Cx field, and hence C0(k) =£ 0 . Then Co, being isomorphic to P\, contains a
fc-point which does not lie on any line of V. Indeed, by assumption, card(fc) >5 ,
and one can show (cf. Fig. 3 in § 3) that no more than six lines can possibly meet
Co in a k-point.

Thus we may assume that k is infinite. It is tempting to try and prove the
lemma by considering the tangent plane To to V at a general /c-point Po of Lo, and
hoping that Tof\V is of the form Lo U Co with Co a smooth conic through Po.
However this idea does not work, because Ton V is singular at Qx, Q2, and PQ.
Hence the intersection cycle TQ. V is of the form 2L0 + L, where the line L may or
may not coincide with Lo. It follows readily that all smooth points on Lo have one
and the same tangent plane To. Moreover we see that, in the case where L = Lo,
we do not get any new /c-point from this construction. The argument that follows
is inspired by a technique used by Skolem in [41, pp. 308-309]; cf. [17,
footnote 2] .

First we consider the case in which L¥^L0. (This happens if and only if V has
singularities of type 2Ax.) Pick a general fc-point P on L, and let JZ be the tangent
plane to V at P. Then JZ^TQ, because L is simple in the intersection TQ.V.
Further, the points on L do not all have the same tangent plane JZ, for at the
fc-point L o n L (which is non-singular, because the Qt are conjugate), we know
that the tangent plane is 7 .̂ Therefore JZ D V is of the form LUC, where C is a
smooth conic through P. As k is infinite, it follows that C contains a fc-point that
does not lie on any line of V.

Next we suppose that L = Lo, that is, T0.V = 3L0. (This happens whenever V
has singularities of type 2A2.) Then we proceed in two steps:

(i) Let K be the quadratic extension of k over which Qx is defined. Let JZX be a
plane through Lo defined over K, but not over k, and such that JZX n VK is of the
form L0U Cx, where Cx is a smooth conic, defined over K. We denote by C2 its
conjugate. As Qx e CX(K), the curve Cx contains infinitely many ^-points. If Px is
such a point, other than Qx or Q2, then its conjugate P2 lies on C2\CX, and the
line L joining Px and P2 meets V in a fc-point P $ Lo.
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(ii) Now we remark that the plane n spanned by P and Lo meets V along a
curve of the form Lo U Co, with Co of degree 2 and P e C0(k). If Co is a smooth
conic, we have finished. Otherwise, Co is the union of the two lines (P, Qx) and
(P> QT)- (Indeed it cannot contain Lo; or else, n would be the plane 7 ,̂ which
does not contain P, since we are in the case where T0.V = 3L0.) But only finitely
many points P $L0 have the property that the lines (P, Qx) and (P, Q2) lie on
VK. So the proof will be complete once we show that we can get infinitely many
k-points P $ Lo through the above construction.

To this effect, let us consider a general plane section Yx of VK through Qx,
defined over K. Then Yx is an irreducible cubic curve with a double point at Qx.
We can assume that Px was chosen as the intersection of Yx with nx (residual to
Qx). Thus P2 lies on the conjugate Y2 of Yx. Let KP be the cone over Yx with
vertex P. Then it is clear that Y2 is not contained in KP: otherwise, the double
points of Yx and Y2 would be collinear with the vertex P, but P $L0. Therefore Y2

meets KP in finitely many points. Now, clearly, P2 is contained in the intersection
Y2 fl KP. This means that, if we fix Yx and let nx vary, only finitely many pairs
(Px, P2) will give rise to the same point P. This completes the proof of the lemma.

THEOREM 1.3. Let V czP\ be a singular cubic surface, defined over k. Suppose
we are in one of the following situations:

(a) V has 3 conjugate double points, and no other singularities; or

(b) V has 2 conjugate double points, and no other singularities.

Then, in Case (a), V is birationally equivalent {over k) to a smooth Del Pezzo
surface of degree 6. In Case (b), V is birationally equivalent to a smooth Del Pezzo
surface of degree 4 with a k-point.

Proof. As mentioned in the Introduction, we shall give two different proofs of
this theorem. In this section we assume that i t c C (or at least that k has
characteristic 0), so that we can use the classification of Proposition 0.2.
(However, the result holds in general, as will be seen from the second proof, in
§ 2.) So V has singularities of type 3At or 3A2 in Case (a), of type 2AX or 2A2 in
Case (b). According to Proposition 0.2, these are the only possibilities, since the
action of the Galois group Gal(k/k) preserves the type of a singularity. As we
shall see, the cases 3^4^ 3A2, and 2AX can be dealt with in a uniform way, while
the case 2A2 requires some extra work.

(a) The three double points Qx, Q2, Q3 are not collinear, as we saw in the
proof of Lemma 1.1. We denote by L, (i = 1, 2, 3) the line joining Qj and Qk

(i =£/, k). It lies on V.
Now consider the minimal desingularization/: V'-*V. By Proposition 0.1, we

know that the canonical class of V is represented by the total transform

(1) Kv.=f*(Kv).

Moreover, since V is a cubic surface in Pj, we can choose the divisor Kv so that
-Kv is a hyperplane section which does not contain any singularity of V.
Therefore the proper transform L\ =f~1[Li] of each line L, is such that

(2) (f*(-Kv).L'i) = (-Kv.Li) = l.

Hence L\ is an exceptional divisor of the first kind. Indeed, pa(L,') = 0 and it
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follows from (1) and (2) that

(3) {Kv,.L'i) = -\.

If we blow down these exceptional divisors, we get a map g: V'-*W onto a
smooth surface W with a canonical divisor Kw satisfying

i=i

Then it is clear from (4), (1), and (3) that

(K2
W) = (g*(Kw)2) = {K2

V) - 3 - 2 2 (Ky.Ll) = 6.

We claim that W is the Del Pezzo surface of degree 6 we are looking for. It
suffices to show that -Kw is ample, and this follows easily from NakaVs criterion
for ampleness (see, for example, [21, Theorem 5.1, p. 30, and Remark, p. 33]).
Indeed, let D be any integral curve on W. We have to show that (—Kw.D)>0.
But

(KW.D) = (g*(Kw).g*(D)) = «KV. - 2 L0.(D' + 2 v,L!))t

where D'=g~1[D] is the proper transform of D, and the v, are some
(non-negative) integers. Then

{-KW.D) = {-Ky.D') + 2 {L\.D') + 0,

the closing zero being a consequence of (3). Thus (-Kw.D)^0. Indeed, it
follows from (1) and the choice of -Kv that

(-Ky.D') = (f*(-Ky).D') = (-Ky.f(D')) ^ 0.

And in fact, (-Kv.D')>0, unless/(D') is reduced to a point, in which case D'
is a component of the exceptional divisor E above one of the singular points of V,
say <2i- Thus, in order to prove that (—Kw.D)>0, it is necessary and sufficient
to show that, for such a component D',

(5)
1=1

In the case 3Alt this is clear: E being irreducible, we have D' = E and
{L'2.E) = (L'3.E) = 1. In the case 3A2, D' can be either of the two components of
E = E' 4- E". Now, as follows from Lemma 3 of [6], V is equivalent to the surface
with equation JCI*2*3 - *o = 0, from which one can see that (L2.E') = (L'3.E") = 1
(up to a permutation of E' and E"). Thus (5) holds also in this case. (At the end
of the section we indicate a variant of this argument which avoids the recourse to
an explicit equation.)

(b) Let/ : V'-» V be the minimal desingularization of V. We denote by Lo the
line of V that joins the two double points Qx and Q2, and by L'o its proper
transform f'x[L0]. Then all three formulae (1), (2), and (3), are valid. So L'o is an
exceptional divisor of the first kind. If we blow it down, we get a map g: V'—>W,
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and the analogue of (4) is

(4') Kv. = g*(Kw) + Ll>.

It follows that (Kw) = (Ky-) - 1 - 2{Ky.L'Q) = 4. Now, the same argument as was
used under (a) shows that -Kw is ample if and only if

C\'\ (I L 1

for any component D' of the exceptional divisor E above either Qx or Q2.
So, in the case 2Alf W is a Del Pezzo surface, since D' = E is irreducible and

(Lo.E)>0. But this is not true in the case 1A2\ Indeed, it follows from Lemma 3
of [6] that, in this case, V is equivalent to a surface with equation

xtx2x3 - (p(x0, *j) = 0,

from which one can see that E = E' + E" with (L0.E') = 1, but (L0.E") = 0. Thus
(5') does not hold for D' = E", and -Kw is not ample.

But, by Lemma 1.2, we can choose a point PeV(k) such that the plane
{P, Qi> Qi) meets V in the union L0UC0, where Co is a smooth conic. Let
n\ V"-»V be the blowing up of V at the point f'\P). Then an easy
verification shows that the proper transform CQ = (f ° Jiy^Co] is an exceptional
divisor of the first kind, as well as L'0' = (foJT)~1[L0] = Jt~1[L0]. Moreover,
Co n LQ = 0 , since Co and Lo are not tangent. (Remember / is simply a blowing
up.) We can therefore blow down both CQ and LQ, thus obtaining a morphism
h: V"—*Z onto a smooth surface Z, which is the required Del Pezzo surface of
degree 4:

V" .

V

f{

Indeed, the anticanonical divisor — Kz verifies Nakai's criterion for ampleness, as
can be seen from the fact that/ '^Co] meets the exceptional component E" above
<2i, and from the relation

(6) Ky. = h*(Kz) + Q + Ll

For let D be any integral curve on Z. We have to show that (-KZ.D) > 0. But

(KZ.D) = (h*(Kz).h*(D)) = (Ky - Cg - US).(D" + pCL + vLg),

where D" = h~x[D]. Hence, as before,

(-KZ.D) = {-KV..D") + {CID") + (Lo\£>").

It suffices to show that (-KV:D")>0. We may assume that D"=£Eo =
{f°n)~\P)> s i n c e (#v"£o) = - 1 . Let D' = n{D"), so that
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where A is the multiplicity of D' at f~\P). Thus

= {(-n*(Kv) - E0).JI*(D')) + A(£v...£0)
= (-Kv..D')-(E0.7z*(D'))-X
= d e g / ( D ' ) - 0 - A

= deg/ (D ' ) -mul t / , / (D ' )>0 ,

since the multiplicity of an irreducible curve at a point is always less than its
degree.

A variant. This proof can be described in a more conceptual way, provided we
refer to Part II for some notation. In essence we shall use the same ingredients,
but the argument looks very much simpler than the above. This is because we do
not prove the assertions we make about the diagrams of irreducible roots and
lines. Justifying these assertions as is done in § 5 for degree 4, i.e. without using
[6], would require a certain amount of work!

Consider the minimal desingularization / : V'—> V. We know from Example
0.5 that V is a generalized Del Pezzo surface of degree 3. Its exceptional curves
of the first kind are the proper transforms of the lines of V. Its irreducible roots
correspond to the vertices of the Dynkin diagram 3AX, 3A2, 2Alt or 2A2, as the
case may be.

(a) Blow down the three lines L-. This yields a surface W, which is still a
generalized Del Pezzo surface, with degree 6 (cf. §7). Moreover W does not
contain any irreducible root. By Criterion 7.3 this is clear in the case 3Ai and, in
the case 3A2, it amounts to proving (5). But it can be shown that the diagram of
irreducible roots and lines looks as follows (the notation is explained in § 6):

h~k

Blowing down the three lines, we obtain a diagram of the form

with no roots. By Proposition 0.6, this corresponds to a smooth Del Pezzo surface
of degree 6.

(b) Blow down the line L'Q. This yields a generalized Del Pezzo surface W with
degree 4. In the case 2Alt W does not contain any irreducible root and we
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conclude as above. In the case 2A2, it can be shown that the diagram of
irreducible roots and lines (cf. §6; by definition, qx, = 2/0 - E**i lh) looks as
follows:

1,-1 U-U [2A2]

Now W has been obtained by blowing down /14. Therefore, by Criterion 7.3, it is
of the following type:

In other words, W belongs to Type 3 of Proposition 6.1. (It is an Iskovskih
surface.) As in the above proof, we can blow up a suitable fc-point of W, not lying
on any irreducible root. It follows from Proposition 0.4 that the surface we obtain
in this way is a generalized Del Pezzo surface of degree 3 and of type 1AX. Now
this situation has already been considered. (In Example 0.7(a) we saw that this
surface is the minimal desingularization of a cubic surface of type 1AX.)

Note. The diagram for the case 1AX is almost impossible to draw! As a
consolation prize we can offer the diagram for the case 3J4J (see facing page).
(For lack of space, the following shorter symbols have been used: a = /13 b = /15

c = /35.)

2. Explicit resolution by means of a Cremona transformation

The proof of Theorem 1.3 given in § 1 has the advantage that it is very natural
once we know a good local description of the singularities. But this description,
provided by Proposition 0.2, is not available in positive characteristic. On the
other hand, Part (a) of the theorem was already proved in [17], by means of an
explicit Cremona transformation. This section is devoted to a proof of Part (b) of
the theorem which is in a similar vein, and is even simpler than that of Part (a) in
[17]. This is due essentially to the fact that the transformation we use here is an
involution. Of course this tremendously simplifies the description of the inverse
Cremona transformation! We begin by describing this rational map <f>: P3-->P3,
which turns out to be one of the most classical Cremona transformations of P3.

Fix a plane n a P3, and let C<zn be a conic (not necessarily irreducible).



SINGULAR DEL PEZZO SURFACES

I*

39

h-u

Choose a point P $ JZ, and consider the linear system Ji of all quadrics containing
{} 3 3CU{P}. This defines a rational map »P3, which is easy to describe

3explicitly: if we denote by (x, y, z, t) the coordinates in P3, we can assume that
P = (0, 0, 0, 1) and that n is given by the equation t = 0. Then M is generated by
the following divisors: {xt, yt, zt, cp{x, y, z)}, where (p(x, y, z) = 0 is the equation
of C in JZ. Thus we can write

(1) <&{x, y, z, t) = (xt, yt, zt, (p(x, y, z)),

and a trivial verification shows that O"1 is given by the same formula, that is,

REMARK. Note that C may even be non-reduced. In fact, the classical quadratic
transformation (a-process) is the situation in which C is a double line: written
projectively, the usual coordinate change X = x/z, Y = y/z, Z = z becomes

(x, y, z, t)^>(xt, yt, z2, zt);

in this case, C is the double line z2 = 0 in the plane t = 0. Written like this, the
transformation is not an involution; so it is an advantage to interchange the last
two coordinates Z and T.

The effect of $ on P3 is easily obtained from (1):
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LEMMA 2.1. Let K be the cone over C with vertex P.
(a) O is undefined only on CD {P}.
(b) <I> maps Jt\C into P.
(c) 3> blows down each (open) generating line of the cone K, say

{(/Uo, Xy0, KZQ, 1)| A gt 0, (p(x0, y0, z0) = 0},

into the corresponding point (x0, y0, z0, 0) e C.
(d) Conversely, <1> Wows «/? P into jr, and each point Qo = (xQ, y0, z0, 0) e C

mto the corresponding generating line (P, Qo) of K.
(e) Let 2 = P3\(^: U K). Then <J>|2 is an isomorphism o /2 onto itself.
(f) A general line L of P3 is in correspondence with an intersection of two

quadrics in M, that is, with the union of C (the fixed part) and a variable conic
<£~1[^] passing through P and meeting C in two points. (Only one if C is a double
line, but then O-1[L] is tangent to n.)

Proof All these assertions are easy to verify. We prove only (e), since it is
crucial for what follows. In view of (a), we know that <1> is certainly defined every-
where off JZUK. Moreover 3>(2)c2. Indeed, since 3>(jt, y, z, t) e n, we have
cp(x, y, z) = 0; whence (x, y, z, t) e K. And if <&(x, y, z, t) e K\n, then
(p(xt, yt, zt) = 0 and q>(x, y, z) =£ 0; hence t = 0; therefore (x, y, z, t) e x. Now,
since O2 = id, it follows that O|2: 2 ^ 2 is an isomorphism.

We can now restate Theorem 1.3(b), in a more precise formulation:

THEOREM 2.2. Let V <zP3
k be a cubic surface having two conjugate singular

points Qi, Q2, and no other singularities. Let n be a k-rational plane through
Lo- (Qi, Qi), and write n.V = L0 + C, where C is a conic. C may be reducible,
but we assume that n has been chosen so that C •$> Lo. Let P e V(k) be such that
P $jt and P does not lie on any line of V. (The existence of such a point is
guaranteed by Lemma 1.2!) Then the following assertions hold.

(a) The image W = <&[V] ofV under the quadratic transformation 3> defined by
C and P is a cubic surface. IfVis defined by equation (2) below, then W is defined
by (3).

(b) / / the Qi are of type Ax, that is, if the tangent cone at each point Qt is
non-degenerate, then W is smooth. Otherwise, W contains exactly two conjugate
double points, which are of type Ax.

(c) / / the Qi are of type Ax, then W contains three k-rational lines in a plane
(n', say). Moreover, W contains the conjugate lines Lx= (P, Qx) and L2 =
(P, Q2), so that W has at least two k-rational tritangent planes, viz. n' and

REMARK. The classification of singularities does not play any role in the proof
of this theorem. However, in order to allow comparison with Theorem 1.3(b), we
refer to 'type Ax for the case in which the tangent cone is non-degenerate.

Proof, (a) The degree of W is the intersection number of W with a generic line
of P3. By Lemma 2.1(f), this is also the number of variable intersections of V with
a conic passing through P and meeting C in two points. Now, it is easy to see that
there are three movable intersection points off the base locus of <£. Hence
deg W = 3.
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This can also be seen explicitly. Indeed we can make the following
assumptions:

P = (0,0, 0,1);
n is the plane with equation t — 0;
Lo is the line with equations x = t = 0.

Then the equation of V is as follows:

(2) t2a{x, y, z) + tp(x, y, z) + x<p(x, y, z) = 0.

The Cremona transformation 3>: P3 •»»P3 can be viewed either as a birational
map from P3 into itself, or as a birational map from a first space P —P3 into
another space P' — P3. The former point of view is useful in particular when we
wish to emphasize the fact that O is an involution. However, when writing down
explicit equations, we shall adopt the latter point of view, using coordinates
{x, y, z, t) for P, and (X, Y, Z, T) for P \ This will prevent some confusion. (The
two ways of thinking can be reconciled by thinking of P and P' as being
superposed like two leaves of a book. Thus, for instance, the plane n is defined
indifferently by the equation t = 0 or by T = 0.) In particular, the equation of V
will be in the coordinates of P, while the equation of W will be in those of P \
This equation is easily obtained from (2), since we know O"1. It suffices to
substitute ( ^ ^ ^ t) = ( J f J , yT ZT ^ ^ z ) )

in (2), and we get

(3) <p{X, Y, Z)a{X, Y, Z) + TP(X, Y, Z) + T2X = 0.

(b) In studying the singularities of W, we can forget about the ground field and
work over the algebraic closure of k, remembering only that Qx and Q2 must
have tangent cones of the same type, both degenerate or both non-degenerate.
Thus we are free to suppose that

0 i = (0,0, 1,0) and 02 = (0,1,0,0).

(This assumption serves to simplify the end of the proof.) Now we observe that

q> = ax2 + bxy + cxz + dyz,

with d=£0, since C contains Qx and Q2> but does not contain Lo. Up to a linear
change of coordinates of the form y =y' — Xx, z = z'' - \xx (which induces the
identity on Lo and leaves P fixed), we may assume that q> = ex2 + yz. The conic C
is smooth if and only if e ̂  0; in this case we may assume, up to a transformation
of the form y = ey' (which leaves the Qt fixed), that e = 1. Therefore we may
assume that

(4) (p{x, y, z) = ex2 + yz, with e = 0 or 1.

Furthermore, the coefficients of y2 and z2 in P(x, y, z) are equal to zero, since Qx

and Q2 are double. Thus we can write

(5) ac(x, y, z) = ax + by + cz,

(6) p(x, y, z) = dx2 + exy + fxz + gyz.

It is interesting to remark that a(x, y, z) = 0 is the equation of the tangent plane
at P. Finally, we note that the following inequalities hold:

(7) b*0,
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Indeed, suppose c = 0; then the line x = y = 0 is entirely contained in V, contrary
to the assumption that P does not belong to any line of V. Similarly, the last
inequality holds because the line x = by + cz = 0 does not lie on V.

With these preliminaries, it is an easy matter to study the singularities of W.
Indeed, it follows from Lemma 2.1(e) that W is smooth everywhere, except
possibly on n U K a P', where JZ is defined by the equation T = 0, and K by
q>{X, Y, Z) = 0. From (3) we see that a singular point of W is a solution of the
following system:

(8)

If T = 0, we find that j8 = 0 and Jac(<par) = 0. Moreover, (3) implies that
qxx = 0. Therefore (even in characteristic 3) a singular point of W corresponds to
a singularity of the curve with equation q>a = 0. Now we distinguish two cases.

(i) Suppose the system <p = a = /? = 0 has a non-trivial solution (Xo, Yo, ZQ).
Then it follows from (2) that V contains a line passing through P, namely
{(AAQ, AIQ, AZQ, 1)| A e k}, and this contradicts one of our assumptions.

(ii) A singularity of the curve with equation (pa = 0 must therefore correspond
to a singularity of C, which is possible only if e = 0 in (4). Then (Xo, Yo, ZQ) =
(1, 0, 0); so, by (6), j8 can vanish at this point only if d = 0. But, in this case, it
follows from (2) that (1,0,0,0) is a singular point of V, contrary to the
assumption that there are no singularities other than the Qt.

Now suppose T=£0, but q>(X, Y, Z) = 0. Then it follows from (3) that
0 + TX = 0. By (8), a singularity can occur only if p + 2TX = 0. Hence X = 0.
Therefore )S = 0 and, using (6) and (7), we see that YZ = 0. Note that, as a
consequence of (3), (4), and (6), W contains the two lines Lx = {X= Y = 0} and
L2= {X = Z = 0}, which are the blow-ups of Qlt respectively Q2 (cf. Lemma
2.1(d)). We have to look for singularities of W on one of these lines, say Lx (by
symmetry, this is enough). The last two derivatives in (8) give no information.
The first two imply that

(9)

This is possible only if

(10) fg = c.

And this is precisely the condition for the tangent cone at Qx to be degenerate (its
equation is ct2 + ftx + gty + xy = 0). This proves that W is smooth in the case 1AX.
In the remaining case, the tangent cone at Q2 must also be degenerate, that is,

(11) eg = b,

since Qx and Q2 were conjugate. Then W is indeed singular, with the two singular
points

Q[ = (0, 0, 1, - / ) and Q2 = (0, 1, 0, -e).

In order to complete the proof, it suffices to check that the tangent cone at Q\
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is non-degenerate. To this effect, we change coordinates, as follows: T=U-fZ,
and compute the initial form after setting Z = 1. We obtain

(ec - df)X2 + (a - ef)XY + bY2-fXU + gYU.

Substituting fg for c, and eg for b, we find that this quadratic form is degenerate
only if

(12) = a+g2e.

But this is impossible, since the conditions (10), (11) and (12) imply that V was
reducible; a contradiction. Indeed, the equation (2) can then be written in the
form

(gt + x){ta(x, y, z)+gcp{x, y, z)} = 0.

(c) Finally we have to prove that, in the case 2Alt W contains three it-rational
lines in a plane. This can be seen as follows.

As P is an isolated base point for the linear system Ji, it must be blown up into
a ^-rational line LP on W. Since <& blows up P into n (Lemma 2.1(d)), LP lies in
this plane. One sees easily that LP is defined by the equations T = a(X, Y, Z) = 0.

We noticed in the course of the proof that Lx = (P, Qt) and L2 = (P, Q2) lie
on W. Thus the plane JZP=(P, QU Q2), with equation X = 0, contains a third
line, which is ^-rational. Call it L \ According to (3), (5), and (6), it is defined by
the equations X = bY + cZ + gT = 0. Thus V * LP\ in fact, U is the transform of
the conic residual to Lo in the plane nP.

The lines LP and L' meet in the point (0, c, -b, 0). Hence they determine a
plane n', with equation aX + bY + cZ + gT = 0, which contains a third fc-rational
line L" of W. This completes the proof of the theorem.

FIG. 1
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REMARKS, (a) The existence of three /c-rational lines on W is in agreement
with a theorem of Iskovskih [25], to the effect that a conic bundle surface with
invariant 4 is a Del Pezzo surface of degree 4 only if it can be fibred in two
different ways. After blowing down one of the lines in K' , there remain two
different fibrations (around either of the other two lines).

(b) Of course, the transformation <I> can also be used if V contains some
further singular points. By Lemma 2.1(e), these are simply preserved.

(c) It is clear that Theorem 1.3(b) is a consequence of Theorem 2.2, since we
can apply the transformation O twice if necessary and blow down one of the
^-rational lines, so as to obtain a smooth intersection of two quadrics in P\.

(d) As a matter of fact, this too can be done quite explicitly. Indeed, the line
LP lies on W because P is a base point of the linear system M. Thus we can blow
down LP simply by forgetting P in the description of 3>, which amounts to
considering a bigger linear system, say Jf, generated by {xt, yt, zt, q?(x, y, z), t2}.
This is the content of the next corollary:

COROLLARY 2.3. Let V a Pi be a cubic surface having two conjugate singular
points of type Au and no other singularities.

(a) V is birationally equivalent to a smooth intersection of two quadrics U in P*.
If t = q)(x, y, z) = 0 is the equation of the conic C, which is chosen as in Theorem
2.2, the birational equivalence W: V •••> U is given by

V: {x, y, z, t) •-» (xt, yt, zt, <p(x, y, z), t2).

(b) U contains two conjugate lines, Lx and L2, which meet in a point P e U(k).
(c) If V is defined by (2), then U is defined in Pj, with coordinates

(£, 7], £, x, v), by the following system of equations:

Proof (a) For the purpose of the proof, we choose a fc-point P e V(k)
satisfying the conditions imposed in Theorem 2.2. (This point plays no role in the
statement, for it is clear that the linear system Jf, which defines V, consists of all
quadrics that contain the conic C.) Of course we can assume that P = (0, 0, 0,1),
and that V is given by equation (2). Further, since V is obviously defined over k,
we can forget about the ground field and work over k. Thus we shall adopt the
same notation as in the proof of Theorem 2.2.

Let U be the intersection of two quadrics determined by (13). It is not hard to
check that W[V] c U. We shall prove that U is obtained from W = O[V] by
blowing down the line LP. Since, by Theorem 2.2, W is smooth, this will imply
that U is smooth and irreducible, whence the result follows.

Now, we can define a morphism s: W-^U as follows: the image of
(X, Y, Z,T)eW is

u , n, <,> T, v) j ^ y ^ z<x T^ _TX_^ on

where

= cp(X,Y,Z) = 0},
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and

W2 = W\{a(X, Y, Z) = TX + 0(Z, Y, Z) = 0}.

This map is well defined. Indeed, since W is smooth, it follows from (3) that
W1UW2 = W. Moreover, on Wt n W2, it follows from (3) that T = 0 if and only if
a(X, Y, Z) = 0. Hence it is immediate that the two descriptions of s coincide on
Wi D W2. Furthermore, the image of s is in U.

An easy verification shows that W = 5°<J>. Let p: U~>W be the projection
(X, Y, Z, T) = (?, TJ, £, T), which is defined everywhere, except at the point
P' = (0,0, 0,0,1):

/-$•> W

Let W = W\{T = a(X, Y, Z) = 0} and U' = U\{P'}. Then s maps W into U', p
maps U' into W. Moreover, s' =s\w and/?' =p\u- satisfy the relations

s' °p' = idu> and p'°s'=idw..

Finally, the line LP with equations T = a(X, Y, Z) = 0 is mapped into the point
P', which is smooth on U. This can be verified directly on the system (13): one
needs to know only that a is not identically zero, but this is clear since
a(x, y, z) = 0 is the equation of the tangent plane to V at P.

This snows that s is the map that blows down LP on W. Since U is the image,
and W is smooth, we see that U is smooth and irreducible, and V = s °O has the
required properties.

(b) By Theorem 2.2(c), W contains two conjugate lines, Lx and L2, through
P e W{k). Since the morphism s: W—*U, which blows down LP, is defined over
k, we see that P = s(P)€U(k), and 0 contains the two conjugate curves
Ll = s(Ll) and L2 = s(L2) through P. It remains to show that Lx and L2 are
straight lines, and for this we can again work over k. Then P = (0, 0, 0, 1,0), and
Lx = {X = Y = 0} is mapped into L1 = {̂  = r̂  = i» = 0}, whence the result
follows.

(c) If V is given by equation (2), then the argument of Part (a) shows also that
W[F] is defined by the system (13). At first sight the result seems to depend on
the fact that P = (0, 0, 0,1) e V(k) satisfies certain particular conditions. But
since the linear system Jf is independent of the choice of P, we have certainly
shown that W[V] is a smooth intersection of two quadrics. Now, trivially, it is
contained in the variety U defined by (13). Hence ^[V] = U.

REMARKS, (a) As we saw at the beginning of the proof, and again in Part (c),
the statement of Corollary 2.3 makes no reference to the fc-point P of Theorem
2.2. If no suitable point is explicitly known (remember that it must not lie on any
line of V), we may be unable to write the equation of V in the form (2). But it is
not difficult to compute the expression that replaces the second equation in (13).
Even if V is defined by an equation of the form (2), the inequalities (7) may fail
to hold. But in all cases \P[V] is smooth! This remark will be used in Example 3.3
below.
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(b) It is not difficult to convince oneself from Lemma 2.1 that the effect of the
transformation V on W is as described in the proof of Theorem 1.3(b). In the
case 24!, 3> blows up P into LP, and the Q{ into the corresponding irreducible
roots. Then it blows down the proper transform of Lo into P, and carries the
irreducible roots into Lx and L2. Now, the morphism 5 blows down LP into P'
and carries Lx, L2, and P into Lx, L2, and P respectively. Therefore *P blows up
the Qi, and then blows down the proper transform of Lo into P. In addition, it
carries P into P \

3. Miscellaneous applications

Theorem 1.3 has a number of applications to arithmetical questions. We may
recall the following result, which was also discussed in [17, pp. 55-56]:

PROPOSITION 3.1 (Skolem). The class of singular cubic surfaces defined over a
number field k satisfies the Hasse principle.

Proof. This can be viewed as a consequence of Theorem 1.3(a). Indeed, by
Lemma 1.1 and an elementary discussion, we are reduced to the case of three
conjugate double points, and hence to a smooth Del Pezzo surface of degree 6.
Now, for such a surface, the Hasse principle is well known to hold, for instance
because it is the compactification of a principal homogeneous space over a
two-dimensional A:-torus [32, Chapter IV, §§ 8.6 and 8.7].

PROPOSITION 3.2. Let V cP3
kbe a singular, absolutely irreducible, cubic surface.

Suppose V is neither a cone, nor a surface with precisely two conjugate double
points. Let Z be any smooth projective model of V. Then the following assertions
hold:

(a) if Z(k) =fc 0 then Z is k-rational;
(b) the Gd\{kIk)-module Pic Z is stably a permutation module;

(c) the Neron-Severi torus of Z (dual to Pic Z) is stably rational;

(d) if k is a local or global field of characteristic 0, then the Chow group
A0(Z) = ker(C//0(Z)-»Z) is trivial.

Proof, (a) By Nishimura's lemma (Lemma 1.0), V(k)^0. Hence the asser-
tion follows from Lemma 1.1. (If the singularities of V are not isolated then V has
a double line, and it suffices to project from any fc-point on it.)

(b) This is a consequence of Property (a) for the class of surfaces we consider,
at least if char(fc) = 0 (see [15, Chapter III, Proposition 5]). This was pointed out
by Colliot-The'lene, who also supplied the following direct argument, which is
valid in arbitrary characteristic.

The assertion being birationally invariant (cf. [29, Proposition l.lr]), we are
reduced, as in Proposition 3.1, to the case where Z is a smooth Del Pezzo surface
of degree 6. Notation being as explained in §5, PicZ —Z4 has a standard
orthogonal basis {/0, lx, l2, h}, in which the canonical class writes

CD = - 3 / 0 + /i + /2 + /3.

ASSERTION 1. The only classes % e Pic Z for which (%.(o) = —2 and (|j2) = 0 are
those of the form £ = /0 - /, (i = 1, 2, 3).
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Indeed, write | = £Lo £,•«,•/,-, with n, s* 0 and e, = ±1 for each i ^ 0. Then the
conditions imposed on £ correspond to the following relations:

3

-3eono - 2 £,A = - 2 ,

Applying the Schwarz inequality to the vectors e = (e1, e2, £3) and n =
(«!, n2, n3), we obtain

3

|3eono ~ 2| = (2>?) =(V3)n0.

The only solution of this inequality is e0 = +1, no = l. Whence we see that % is of
the form indicated. A similar argument yields:

ASSERTION 2. The only classes | e Pic Z /or H>/»C/I (£. w) = - 3 and (f2) = 1 are
% = lQ and % - 2/ 0 - /1 - 1 2 - h-

Now, as <S= Ga\(k/k) preserves the intersection form and the canonical class,
we see that the ^-module

with trivial action on £, has the following ^-invariant basis:

To check that B is indeed a basis, it is useful to observe that /0 is the sum of the
linear combination of the five vectors with coefficients —1,-1,—1,2,1.

(c) This is an immediate consequence of (b); see [46, Theorem 4.61].
(d) It follows from (b) that Hl(k, S) = 0, where 5 denotes the N6ron-Severi

torus of Z. Now, by a result of Colliot-The'lene [10, Proposition 7], the
'characteristic homomorphism' $ : AQ{Z)-*H\k, S) is injective. Hence

REMARK. None of the assertions of Proposition 3.2 holds for the class of cubic
surfaces with two conjugate double points, as can be seen from Example 3.3
below. Indeed, by [46, Corollary 6.40], it would follow from (c) that LJJ \Q, S) = 0,
which is not the case (cf. Property (c) in the subsequent Remark). Neither is
A0(Z) equal to zero. Hence none of the assertions of Proposition 3.2 holds for
the singular cubic surface defined by (3).

EXAMPLE 3.3. The following varieties are birationally equivalent over Q:
the conic bundle surface Vi <= AQ defined by

(1) Y2 - 221Z2 = (X2 - 13)(Z2 - 17);

the singular intersection of two quadrics V2 c PQ defined by

(2 ) \x\- 221x1 = xl-4Xox3,
{ XQX3 = X4 — 13^o>
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the singular cubic surface V3 c PQ defined by

(3) t2(30x + 15y - 2z) + A:(-221X2 + y2 + z2 - 15yz) = 0;

the smooth intersection of two quadrics ( / C P Q defined by

(4)

the smooth cubic surface W C P Q defined by

(5) 1105X(30y2 + 2Z2 - 19 YZ) + T{311X2 + 5Y2 + 5Z2 - 15YZ) + T2X = 0.

Proof The equivalence of (1) and (2) is obtained by putting

(xl,x2,x3,x4) = (Y,Z,X2-13,X),

and making the system (2) homogeneous.
The surface V3 is obtained by projecting V2 into PQ from the Q-point

M = (0,15,1, 2, 0). (As M does not lie on any line of V2, this is the same as
blowing up M on V2-) So the transformation is determined by the choice of four
generators of the linear system 56 of all hyperplanes passing through M. The
particular choice made here is one for which the equation of V3 becomes
especially simple:

\Xy y, Z, tj — \XQ} "̂ 1 i.DX2) X3 ZX2 T I J ^ O , X$j.

One goes from (2) to (3) by writing xx = y + 15AJ2, etc., and eliminating x2. Thus
x2 = (t2 — xz)/2x. Note that V3 contains the line Lo defined by t = x = 0, on which
are the two double points (0,15 ± V221, 2, 0).

Then the equations (4) of an equivalent smooth Del Pezzo surface of degree 4
are given directly by Corollary 2.3 (cf. Remark (a) at the end of § 2).

Finally, V3 is certainly birationally equivalent to a smooth cubic surface W. But
the point P = (0, 0, 0,1) cannot be used for defining the transformation O of
Theorem 2.2, since it lies on three lines of V3. In order to obtain the equation of
W, it is therefore necessary to select some other Q-point on V3. A possible choice
is (5,11, -28,0). After the coordinate change x = 5t', y =y' + lit', z = z' - 2St',
t = x', the method of Theorem 2.2 yields equation (5) and shows that W is
smooth. (This does not follow immediately from Theorem 2.2 as stated, since the
coordinate change we have used is not sufficiently general: with the notations of
the theorem, this is a case in which CZDLQ. However, it is not difficult to adapt
the proof so as to include this special situation.)

REMARK. This example, which appeared for the first time in [45], has
numerous interesting properties. We list some of them without proof. For details,
see [38, §V] and [29, §2]. In what follows, Z denotes any smooth projective
surface which is birationally equivalent over Q to the surfaces of the example.

(a) Z is Q-unirational.
(b) For every completion Qv of Q, the surface Zv is Qv-rational. However, Z is

not Q-rational.
(c) The Chow group A0(Z) does not embed in 0uy4o(Zu). In fact

A0(Z) = Z/2, while Ao(Zy) = 0 for all v. Thus the kernel UiAo(Z) =
ker(y40(Z)-»©uy40(Zu)) is equal to Z/2 and coincides with the group
LU1(Q,5) = ker(//1(Q, S)->(BV H\QV) S)) associated with the Ne*ron-Severi
torus of Z.
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(d) i?-equivalence is trivial everywhere locally, but not globally. In fact,
Z(Q)/R=A0(Z) = 1/2, as follows from [15, Chapter VIII, Theorem 8].

(e) The Brauer group of Z is non-trivial: Br Z/Br Q> = Z/2. Nevertheless,
Brauer equivalence is trivial on Z, locally and also globally since Brauer
equivalence satisfies the Hasse principle. This is a case where Brauer equivalence
is strictly coarser than i?-equivalence.

(f) The weak approximation property holds for the N6ron-Severi torus of Z
(cf. [29, Proposition 1.3]).

The principal interest of Example 3.3 is that it provides explicit equations of
rational surfaces in various classes for which these phenomena occur.

Another interesting application of Theorem 2.2 is to the following proposition,
which is used in [3] as a step towards proving that the Zariski problem has a
negative solution for surfaces over a non-algebraically closed field.

PROPOSITION 3.4. Letf e k[x] be an irreducible polynomial of degree 3. Suppose
char(fc)¥= 2 and dek is not a square. Then the 'generalized Chatelet surface'
V a A* with equation

(6) y2-dz2=f(x)

is not k-rational.

Proof. We can replace V by its compactification Vx c P3
k, with equation

(7) (y2-dz2)t = F(x,t),

where F is the cubic form defined by F(x, 1 )= / ( JC) . This is a singular cubic
surface, with two double points (of type A2) on the line t = x = 0. As we know, Vx

is birationally equivalent to a smooth cubic surface W <= Pi, which contains three
^-rational lines (in the plane n') and a pair of conjugate lines (in the plane JZP).
Before going into details, we give a brief sketch of the argument. It is possible to
compute all the lines on W and to describe how the Galois group CS= Ga\(k/k)
acts on them. Thus, using Theorem 2.2, we shall see that no set of 2, 3, or 6
mutually skew lines of W is invariant under the action of <S. By a result of
Swinnerton-Dyer [43], this suffices to establish that W is not k-rational. (Note
that we need the full strength of Swinnerton-Dyer's result: the criterion
discovered earlier by B. Segre is insufficient, since W contains a fc-rational line.)
In what follows, we use the standard notation for the orbits of <S, as in Table 1 of
[32, Chapter IV, § 9]. Thus, for example, the symbol l2!^2 means: two orbits of
order 1, one of order 2, and two of order 6. Since we need to apply the
transformation <E> twice, we begin by describing all the lines of Vx, then those of
its transform V2 (which is of type 2A1), and finally those of the smooth transform
W of V2.

(a) Vx contains seven lines, forming two orbits for the action of ^ (symbol
l V ) , namely:
(I1) the line L£, with equations t = x = 0;
(61) a pair of lines D*A (/ = 1, 2) in each plane with equation x = kt, where

A is any root of /.
As d is not a square, and / i s irreducible, we see that ^ acts transitively on the last
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six lines. Moreover, the intersection of V\ with the plane t = 0 consists only of the
line LQ (with multiplicity 3). From this it is evident that there are no other lines
on Vx. The situation is represented on Fig. 2.

xP
FIG. 2

(b) By Lemma 1.2, we can choose a suitable A>point P* on Vu and a conic C*
which define a transformation <&*, as in Theorem 2.2. Let V2 = $*[Vi], which is
of type 1AX. The lines on V2 form five orbits, which are described by the symbol
l2!^2. Indeed, V2 contains the following 16 lines:

(I2) the blow-up LP. of P*;
the line Lo joining the two new double points, (2i and Q2, which is also
the image of the conic in the plane (P*, LQ) ;

(21) the 'blow-ups' (in the sense of Lemma 2.1(d)), L* and L2, of Qf and Q2;

(62) the images Z)/A of the lines Dfx;
the image Zs/>A of the conic C, A residual to Z)*A in the intersection of V\
with each plane (P*, Dfk).

To check, for instance, that each Ei>x is a straight line, one computes its degree,
i.e. its intersection number with a general plane. This is also the number of
movable intersections of the corresponding conic C,A with a general quadric of
the linear system associated with 3>*. Now, apart from P* and Qf, there is one
intersection on the conic C*; so there is only one point left off the base locus of
O*. Hence the degree is equal to 1. The situation is depicted on Fig. 3, but not all
incidence relations are shown (cf. the note at the end of § 1).

xP

•/.A

FIG. 3
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It can be shown that there are no other lines on V2 (cf. [6]). However, this is
not needed for what follows, so we omit the proof.

(c) Now we choose a suitable fc-point P on V2, and a conic C, which define a
transformation O, as in Theorem 2.2. Then W = $>[V2] is smooth. Therefore W
contains 27 lines, which we proceed to display:

(I3) the blow-up LP of P;
the line L', which is the image of the conic in the plane (P, Lo);
the line L", which is the image of the conic in the plane (P, LP.)\

(23) the 'blow-ups', Lx and L2, of Qx and Q2;
the images of the lines L* and Lf;
the images of the conies in the planes (P, Lf);

(63) the images of the lines £ a ;
the images of the lines DiX\
the images of the conies in the planes {P, Di>k).

Hence there are altogether nine orbits, which are described by the symbol 132363.
They have been enumerated in such a way that, for each order (1, 2, or 6), the
lines in the first orbit meet L'; those in the second orbit meet L"; finally those in
the third orbit meet LP. The above description makes it clear that no set of 2, 3,
or 6 mutually skew lines on W can be invariant under the action of ^, which is all
we had to prove.

4. A discussion of the converse

It is an exercise to show that the converse of Theorem 2.2 holds, in the
following sense:

PROPOSITION 4.1. Every smooth cubic surface W czP3
k with three coplanar

k-rational lines and a further k-rational tritangent plane through one of them {like
n' and jzP in Fig. 1) is k-birationally equivalent to a cubic surface with two double
points.

Proof. We label the various data as in Fig. 1: the given three A:-rational lines
are therefore denoted L', L", LP; the other known A;-rational tritangent plane
(through L') contains a pair of lines, Lx and L2, lying on W, which meet in a
fc-point; call it P. We choose a ^-rational plane JT^JV' through LP, such that
P $ n and K D W = LP U C, where C is a conic. (Clearly, we could assume that C
is smooth, but this assumption is unnecessary. In fact, allowing C to be
degenerate sometimes leads to easier computations.)

Now consider the quadratic transformation <£ defined by C and P. It is easy to
verify that the proper transform V = ®[W] is a cubic surface. (The argument is
identical with that used in Part (a) of the proof of Theorem 2.2.) By Lemma
2.1(c), the lines Lx and L2 are blown down into two points Qx and Q2 on V. To
check that Qx is a double point of V, we make the following observation: a
general line L through Qx is the image of the intersection of two general quadrics
(in the linear system M) containing Lx. This intersection is of the form
C U Lx U L, where L is a general line meeting both C and Lx. Thus L meets W in
one movable point, off C U Lx. This means that L = $[L] meets V in one point
other than Qx, whence Qx is double. It can be seen, by a direct argument or by
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applying the Zariski Main Theorem, that V has no singularities other than Qx

and Q2-

SCHOLIUM. The above argument is completely general. But it includes a
particularly noteworthy situation, which does not appear clearly on Fig. 1: this is
the case in which P is an Eckardt point, that is, P e L\ When this happens, the
image $>[L'] of the line L'—instead of being a smooth conic (in the plane
(P,LQ)) as in the general case (see Part (c) of the proof of Proposition 3.4)—is
the line denoted LP» in Fig. 3. (This is characterized by the fact that the tangent
plane to V at any smooth point on Lo meets V in the cycle 2L0 + LP*.) Moreover,
it is easily seen that P lies on LP-\L0.

With the notation used in the proof of Theorem 2.2 (the equations of U were
given in Part (c)), this special situation is one in which g = 0. In § 2, the inequality
g i= 0 occurred in (7) and was used later to prove the smoothness of W. As a
matter of fact, the reader can check that W is also smooth when g = 0, though the
proof is slightly more complicated. (Of course one must still assume that P does
not lie on any line other than LP*. Otherwise, a counter-example is provided by
the surface V3 of Example 3.3, where P is an Eckardt point!) A consequence of
this discussion is that, by choosing P on LP», we can arrange for the smooth cubic
surface W of Theorem 2.2 to contain a ^-rational Eckardt point on one of the
three /^-rational lines!

REMARK. Swinnerton-Dyer, in a letter to Colliot-Th61ene, furnished an
elementary argument by which a cubic surface V of type 2At can be transformed
into one of type 2A2, provided some arithmetic condition is satisfied. For
simplicity we assume that char k i= 2. Then the equation of V can be brought to
the form

(1) (Y2 - dZ2)T + 2Yfa(X, T) + 2Zp2(X, T) + y(X, T) = 0,
where the /?, are quadratic, and y is cubic. Now we set T = 1 and define

(2) x=X, y = Y + p1(X,l), z = Z--df$2{X,\).

This transforms V into the conic bundle surface V ezAl with equation

(3) y2-dz2 = g(x),

where g e k[x] is a polynomial of degree 4. If g has a root in the field k, we can
send it to infinity by an automorphism of P\. Then g is replaced by a polynomial /
of degree 3, and we obtain a cubic, which is a generalized Chatelet surface (as in
Proposition 3.4). We may add that the quadratic transformation defined by (2) is
of a very degenerate type (cf. the Remark before Lemma 2.1): C is the double
line X2 = 0 in the plane T = 0, and P = (0,1,0, 0) is a point of osculation on the
line X = T = 0. (See [22, p. 198, end of § 17].)

In view of these results, it is natural to ask whether some weaker assumption
might suffice to prove the converse. The next proposition shows that having one,
or even three, k-rational lines is not a sufficient condition. We denote by Q)h the
family of all cubic surfaces in P\ which are birationally equivalent to a singular
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cubic surface with a fc-rational set of h double points. Further we denote by S8j
the family of all cubic surfaces in P\ which are birationally equivalent to a smooth
cubic surface with j lines individually defined over k. Finally, let 9t be the family
of all /c-rational cubic surfaces in P\. Then, by Theorem 2.2, Q)2cz%, so that the
following inclusions hold:

(4) 0tcz%^^d^ex.

Note that 2£3 is the same as J%. Indeed, if two ^-rational lines on a smooth cubic
surface are skew then the surface is in 9t. If they meet, then there is a third line in
their plane; so the surface is in 3?3. On the other hand, by Proposition 3.4 we
know that, for most fields, 9t =£ 22.

REMARK. If k = U then 91 ¥= 22 = i£, = 56X. Indeed, it is well known that every
smooth cubic surface W over R contains at least three coplanar real lines. (Hint.
There is at least one real line /. Among all the lines which are skew to /, we can
find a pair {dx, d2) defined over U. lfd1nd2i

:0, then the third line in the plane
(d1, d2) is a real line that meets /. If dxC\d2 = 0 then T = {I, dx, d2} is a skew
triplet defined over U. Consider the complementary triplet (in the intersection of
W with the unique quadric through T; cf. [17, Remark 1])!) That i?3 = 22 follows
from Proposition 4.1. (Hint. If there is no further real tritangent plane through /,
then W contains a pair of skew lines, and hence it is already in 91.) Finally
Q)2±9l. Otherwise, by what we have seen so far, all smooth cubic surfaces would
be birationally trivial over U, and we know this is not the case: those having two
real components are not birationally trivial.

PROPOSITION 4.2. If k is a finite field, then all three inclusions in (4) are strict:

Proof (communicated by Swinnerton-Dyer). We start from the following idea:
over any field k, if V cz P3

k is a cubic surface with two double points, each of them
is defined over a quadratic extension K/k; hence VK is ^-rational. Thus, in order
to show that a surface W e t£x is not in 3)2, it suffices to prove that no quadratic
extension K/k has the property that WK is ^-rational. Now this is particularly
easy to do over a finite field, since there is a unique quadratic extension.
Moreover, we possess an extensive classification of cubic surfaces over finite
fields ([42]; see also [32, Chapter IV, §9]). Thus the argument will be based on
Table 1 of [42], and its subdivision into 25 classes c,.

To begin with, we make the following remark, which derives from that table: if
a cubic surface W, defined over a finite field k = $q, contains a ^-rational line, but
is not ^-rational, then W belongs to one of the classes c3, c4, c7, c19, c20, or c24.
(In all other cases where W contains a /:-rational line, one can see from the third
column (and Table 2 in the case c2l) that W contains a ̂ -rational pair of skew
lines; hence it is ̂ -rational.) Now we use the last column of Table 1, which
contains the orders of the roots of unity 77, = (Oj/q, where the w, are the
eigenvalues of the Frobenius endomorphism acting on Pic W. Since going over to
the quadratic extension K = F92 of ¥q replaces (at by cof, we see, for instance, that
class c24 (where the orders are 1,2,4,4,6,6) goes over to a class whose orders
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are 1,1,2,2,3,3, namely c8. In this way we get the following table:

Class over k = D
Class over K =

3 4 7 19 20 24
1 3 6 2 4 8

In particular, classes c3, c7, c19, and c24 become rational over K, whereas c4 and
c20 do not. Indeed it follows from [43], or from column 7 of Table 1 in [32,
Chapter IV, § 9], that a surface in class c3 is not A>rational. A fortiori a surface in
class c4 is not ^-rational.

Now suppose we take a surface W a P3
k in class c3. From Table 1 of [42] we see

that W contains three coplanar fc-rational lines and a further A;-rational tritangent
plane through one of them. Hence, by Proposition 4.1, W e3>2, but (as we have
just remarked) W | <%. (Alternatively, take a surface V given by equation (6) of
§ 3. The proof of Proposition 3.4 shows that V e @2\^» a nd also that V is
equivalent to a smooth surface W in class c7.)

If we start from a surface W in class c4, we see from Table 1 of [42] that
W e i?3. But W 0 2 ; indeed WK is not ^-rational, since it belongs to class c3.

Finally, let us take a surface W in class c20. Then W e^, but W £ if3. Indeed,
suppose W is birationally equivalent to a smooth surface V with three ^-rational
lines. Then (since we know already that W $ 91) V is in one of the classes c3, c4,
or c7. Therefore, if we denote by L the biquadratic extension L = F9«, we see
from the above table that VL is birationally trivial. However, this is impossible,
since WL is only in class c3.

What we have proved so far is that the proposition holds over a finite field k,
provided there exists a surface in each class as required (viz. c3, c4, or c20, as the
case may be). In a letter to the authors, Swinnerton-Dyer asserts that all 25
classes do exist over any finite field. What is more, one can use the methods of
[42] to work out the exact number of surfaces of each type over F9, 'though the
calculation is extremely tedious'! We shall content ourselves with a weaker result:
we show that, for any given class cv, there exists a cubic surface in this class over
some finite field. The argument that follows was also suggested by Swinnerton-
Dyer.

If one considers the generic cubic surface over a number field F (which is
therefore defined over a transcendental extension Q of F), then the degree
[Qv: Q] of the least field Qx over which the 27 lines are defined, is equal to the
order of the group G of those permutations of the 27 lines which preserve
(pairwise) incidence relations (cf. [32, Chapter IV, § 1.12]). It follows from
Hilbert's irreducibility theorem that, for most cubic surfaces over F, the Galois
group of the field of definition of the 27 lines is the full group G. Take one
surface W for which this is true. By Cebotarev's density theorem, every
conjugacy class cv in G is the class of the Frobenius automorphism for an infinity
of primes. Thus, when we reduce modulo one of those primes, we get a cubic
surface over a finite field F9 which is in the required class cv.

In the course of the proof, we have obtained the following result, which
provides an answer to a question raised in [11, Remark 6.7(i)].
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PROPOSITION 4.3. There exists a cubic surface W, defined over a finite field
k = $q, which has a k-rational line and becomes birationally trivial over $qs, but
over no intermediate extension.

Proof. Indeed we have seen that a surface in class c20 is in class c4 over F̂ z, in
class c3 over ¥q\ and becomes rational only over F9s.

REMARK. The question in [11] was motivated by a study of torsion in the Chow
group A0(W) = ker(CH0(W)^>Z). It is therefore worth noting that here
A0(W) = 0. Indeed, it is a result of Bloch that, over a finite field k, this group is
trivial for any smooth projective variety which becomes rational over k.

The reader may want to see some more explicit example of a variety in
over a number field, say. It is difficult to use Proposition 4.2 for that purpose, for
if we lift a surface in class c2o, it may be birationally equivalent over <Q> to one in
class i?3 with a bad reduction! Furthermore, even in the case of good reduction,
birational equivalence does not seem to behave well under reduction. Fortun-
ately, Colliot-The*lene has shown us a particularly interesting collection of
examples, of a type which does not exist over a finite field.

EXAMPLE 4.4.1 (Colliot-The'lene). Let W a Pi be the smooth cubic surface
defined by

(5) (x - ext)(x - e2t)(x - e3t) + (x- e4t)y
2 + (x- e5t)z

2 = 0,

with e,;€k (i = 1,..., 5) and 611,,*,(e, -ej )#0. Then We2£^S£$, providing none
of the following numbers is a square in k:

._ 1 ? , vi - 1, z, 5),
e5 -e4 e4 - e5

(For instance, if k = Q, the conditions are fulfilled if we take e, = i.)

Proof. The surface W is a conic bundle surface with invariant 5, the degenerate
fibres corresponding to x/t = ei, (i = 1,..., 5). Moreover, W contains the line E
with equations x = t = 0, and the conditions guarantee that every line L on W
which meets E is conjugate to the residual line in the plane spanned by L and E.
This ensures that W-*P\ is a relatively minimal conic bundle. Now suppose W
were birationally equivalent to a smooth cubic surface with three ^-rational lines
say D, D', D". On considering the pencil of planes through D, we could view this
surface as a conic bundle with invariant 5. Then we could blow down one of the
lines D' or D" (and perhaps some further exceptional divisors of the first kind in
the fibres), so as to obtain a relatively minimal conic bundle surface V—» P\ with
invariant r ^ 4 . It follows from a result of Iskovskih [23, Theorem 2.5, plus the
argument of Corollary 1.7] that there would exist a fibre-preserving birational
equivalence between V and W. But this is impossible, since the invariants differ
(see, for example, [7, Theorem 4.11]).

An example in JZ^X^ n a s been found by Kunjavskii. He starts from the
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equation

(6) y
2-xz2 = (x2-a)(x2-a3),

which defines a (non-minimal) conic bundle surface Y over the affine line
SpecQfx]. We assume that a#—1 and is not a square in Q. The degenerate
fibres are those above x = ±Va, ±Va3, 0, and <». Whence we see that the
splitting field of Y is the extension Q(i, $a)/Q, whose Galois group G is the
dihedral group with eight elements. As in [29], we can view G as a subgroup of
the Weyl group associated with the Dynkin diagram D5 (cf. [28, beginning of
§ 6]). Then the three index-2 subgroups of G are:

(c2c3(12)(34)), cyclic, corresponding to Q(i);
{c2c3, cxc4) and (cxc2c3c4, (12)(34)), isomorphic to Z/2xZ/2, corresponding
to Q(Vfl) and Q(V-a), respectively.

All of them contain the group H= (cxc2c3c4). Since the orbit decomposition for
this group action is of Type IV (see [32, Chapter IV, §9, Table 2]), it follows
from [32, loc. cit., Table 3], that

H\H, Pic Y) = 1/2 x 1/2.

As a result, Y does not become rational over any quadratic extension of Q.
Otherwise it would a fortiori become rational over the fixed field of H, and
H\H, Pic Y) would vanish.

Of course Y is not a cubic surface, but it can easily be carried into one. Indeed
(6) can also be written as follows:

y
2-a* = x(x3 -(a+ a2)x + z2).

Hence it suffices to set y — a2 = ux to obtain the birationally equivalent cubic
surface with equation:

(7) u(ux + 2aV) = x2 - (a + a3)xt2 + z2t.

EXAMPLE 4.4.2 (Kunjavskii). The cubic surface W C P Q defined by (7) is
smooth, and W e <£3\22.

Proof. One checks that W is smooth and contains the union of three lines
{t = 0; x(x - u)(x + u) = 0}. But W $ 3)2 since, as we have seen for Y, it does not
become rational over any quadratic extension of Q.

Finally, we discuss the converse of Corollary 2.3, which is extremely simple:

PROPOSITION 4.5. Every smooth intersection of two quadrics UcP4
k with a

k-rational pair of lines, Lx and L2, meeting in a point P, is k-birationally
equivalent to a cubic surface with two double points.

Proof It suffices to project U from P into PI. The general fibre of this
projection r: U-> Pi is finite and consists of just one point (with multiplicity 1):
if it contained more than one, say Px and P2, then the line through P, Pl} and P2

would be entirely contained in each of the two quadrics (call them Yi and Y2),
and hence also in U=Y1nY2. This is impossible, since P is smooth.

Therefore the image V = r[U) is a cubic surface, which contains the two points
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Qi = r[Lj] (i = 1, 2). It is an easy matter to check that the Qt are double on V:
take a generic line L through <2X; lift it to a 2-plane in P4, which meets each of
the two quadrics Y( in the union of Lx and one other line Dt. Now Dl^D2\ or else
U would contain infinitely many lines. Hence Dx and D2 meet in only one point
R, which lies off Lx. (Otherwise, a generic 2-plane through Lx would meet U only
in Lx\) Thus, apart from Qx, the only intersection of L with V is r(R), whence (2i
is double.

In the case where P = (0, 0, 0, 1, 0), we may add that the projection r maps
(£, TJ, £, r, v) into (£, r\, £, v). This is obviously a retraction (and hence the
inverse) of the map W of Corollary 2.3.

As an application of these results, we consider the surface U c Pi studied by
Coombes and Muder in [16]. This is the intersection of quadrics defined by the
system

where a, c, dek* (and /: is any field of characteristic not equal to 2). The point P
with coordinates (|, ??, ^, r, u) = (0, 0, 0, 1, 0) lies on the two lines defined by
v = £ = -r] = ±(Vd)£. Therefore, by Proposition 4.5, U is birationally equiv-
alent to a cubic surface V with two double points. Hence, by the Remark
following Proposition 4.1, U is also birationally equivalent to a generalized
Chatelet surface V, whose equation is of the form (3). As a matter of fact, the
explicit computation reveals that V is a true Chatelet surface. The necessary
coordinate changes will appear quite natural if, instead of applying Swinnerton-
Dyer's method, we use the geometric argument already employed in the proof of
Proposition 4.1. For this reason we go into the details of the computation.

PROPOSITION 4.6. The surface U a Pi defined by the system (8) is k-birationally
equivalent to the Chatelet surface V a Aj£ with equation

(9) y2 - dz2 = x(x - ac)(x -(a + c- 1)).

Proof. Projecting U from P, which amounts to eliminating z from the system
(8), we obtain the following equation for V:

(10) a(d? - £2)(£ - v) = {c(d? - r,2) + ft - £)(£ - u)}ft + v).

This surface contains two double points on the line

The tangent plane n' to V at a general point of Lo is given by

a ( £ - v)-c{r] + v) = 0.

Hence the line denoted LP* in Fig. 3 is given by

r] - £ = (a - c)rj - (a + c)v = 0.

With the notation used in the proof of Proposition 4.1, we can consider that we
are in the degenerate case where U = L" = Lo, and set LP = LP*.

One of the five tritangent planes through L' is the plane JZP = {£ — v = 0},
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whose intersection with V contains the pair of lines Lx U L 2 = { t - v = d%2 — r\2 = 0}.
These two lines meet in P = (0, 0,1,1). Finally, we must choose a ̂ -rational plane
JT^JT' through LP. As the residual conic C is not required to be irreducible, a
convenient choice is n = {r) - £ = 0}. Therefore we define T = TJ - £, X= £ - u,
Y = | , Z = rj. The point P then becomes {X, Y, Z, T) = (0, 0, 0, 1), and the
equation of V reads

(11) {dY2-Z2){(a + c)X-2cZ}

+ T{2{a - \)XZ + X2 + c(dY2 - Z2)} + (1 - a)T2X = 0.

This is of the form (3) of § 2. Thus O carries V into the surface V with equation
(corresponding to equation (2) of § 2):

(12) ?{{a + c)x -2cz}+ t{2(a - \)xz + x2 + c(dy2 - z2)}

+ (l-a)x(dy2-z2) = 0.

If this is a Chatelet surface, one of the planes through LQ = {t = x = 0} meets
V along this line with multiplicity 3. And indeed the plane with equation
x + (c/(l - a))t = 0 has this property. We therefore define

c
u = x + 1.

\-a

The equation of V now becomes

,. v / , 2 2 rs ^ i a c ( a + c — 1) -, a(a + c — 1) + c ,
(1 -a)u(<ty2-z2-2fz) +13—7 TTT-^ + ' "-^ + m2 = 0.

(a - 1) a - 1

We get rid of the term in utz by setting v = z +1. In addition we write
w = t/(l - a). This yields the equation

(13) (v2 - dy2)u = w((a + c - l)w - «)(anv - u).

Let /i = ac(a + c — 1); it suffices to put x - hw, y, = hv, x, = hy, and u = 1 to obtain
the equation of V in the form (9).

Proposition 4.6 can be used to determine the Chow group A0(U). Indeed, we
know (cf. [11, Proposition 6.3]) that the functor Ao is a birational invariant for
smooth projective surfaces. So we can replace U by any other smooth projective
model of the Chatelet surface V, for instance, the one used in [13, § IV]. This
yields in particular a very simple proof of the main result of [16, Theorems 4.4,
4.5], which can be stated also more simply in terms of Chatelet surfaces. In this
form, the result (communicated by Colliot-The"lene) is as follows:

PROPOSITION 4.7 (Colliot-The'ldne). Let k be a local field of characteristic 0 and
residual characteristic not equal to 2, with discrete valuation v. Suppose d is a
non-square unit in k, ala2{al-a7)i=Q, and v(a1) = 0 or 1, v(a2)^Q. Then the
Chow group A0(X) of any smooth projective model X of the Chatelet surface Y
with equation

(14) y2-dz2 = x(x-ai)(x-a2)
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is equal to:

0 ifY has good reduction (that is, v(a1) = v(a2) = v(ax - a2) = 0);
Z/2 x Z/2 if Y has very bad reduction (that is, v(ax) = 1, v(a2) ^ 1);
Z/2 in the remaining cases of 'not so bad' reduction.

Proof. As mentioned before, we are free to assume that X is the standard
model used in [13]. Let O be the singular point of the fibre at infinity. We
consider the commutative diagram

H\k, S)

where i is the map sending a A:-point P into the class of the 0-cycle P — O, and <£
is the characteristic homomorphism defined in [14]. It is known that i is surjective
[11, Theorem C], and O injective [14, Theorem 2]. Therefore computing A0(X) is
the same as computing the image of 3>, which coincides with the image of 6.
Now, as explained in [13, § IV] and in [38, § III] there is an explicit formula for 6
on some non-empty open subset U of X, namely:

(15) 6\v: P~(x(P),x(P)-ax)e(k*lNK*)2,

where K = k(\/d). In fact, 6 is completely determined by its restriction to U(k),
but it will also be convenient to know how to compute directly its value at a
fc-point of X\U. This is done as follows: suppose, for instance, we wish to
compute 6 at a point P where x(P) = 0. Then we can replace the first coordinate
in (15) by (x(P)-al)(x(P)-d2), since (x-a^)(x-a2) differs from x by an
element of NK/k(K(X)*). This is a consequence of the 'general lemma' which
appears on page 18 of [38]. In addition, the set X(k)\U(k) contains only the three
points Po, PX) and PX) which lie above x = 0, a1} and °°, respectively. This enables
us to compute the group Im 6 quite easily.

To begin with we list the images of the three exceptional points in (k*/NK*)2:

0(P0) = (axa2, -ax),

= (auax(a1-a2))>

In what follows we use the additive notation and denote by 1 the non-trivial
element of Z/2. Thus, in particular, 6(Pao) = (0, 0). Note, further, that x e NK* if
and only if v(x) is even.

First case: v(ax) = 0. In this case the group Im 6 cannot be Z/2 x Z/2, since it
does not contain the elemental, 1). Indeed, (1,1) is not the image of any of the
three exceptional points and, for P e U(k), we have

v(x(P)) odd >̂ v(x(P))^l and v(x(P)-a1) = 0.

Hence it suffices to determine whether Im 6 is trivial or isomorphic to Z/2. We
distinguish three subcases.
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(1) If v(a2)^2, we denote by n an element of k with valuation 1. Then, by
(14), there is a point Pn e U(k) such that x(Pn) = n. Now 6{Pn) = (1, 0), whence

(2) If v(a2) = 1, then d(P0) = (1, 0), whence Im 0 = Z/2.
(3) If v(a2) = 0, we consider three subcases.
(3a) If v(ax - a2) 2* 2, there is a point P' e U(k) such that x(P') = jz + av Now

6{P') = (0,1), whence Im 0 - Z/2.
(3b) If u(fl2 - a2) = 1, then 0(Pj) = (0,1), whence Im 0 « Z/2.
(3c) Finally, if u(flj - fl2) = 0 then Im 0 is trivial. Indeed the three exceptional

points do not contribute and, for P e U(k), we have

v(x(P)) odd => v(x(P)-a1) = v(x(P)-a2) = 0,

which contradicts (14). Further,

v(x(P)-a1) odd => u(x(P)) = i/(jc(P)-a2) = 0,

which also contradicts (14).

Second case: v(a1) = l. In this case the group Im 0 cannot be trivial, since it
contains 6(P1) = (1, *). We distinguish two cases.

(1) If v(a2) 2* 1, then Im 0 = Z/2 x Z/2. Indeed, either v(a2) is even, in which
case d(P0) = (1,1) and 0(Pj) = (1, 0), or v(a2) is odd, in which case d(P0) = (0,1)
and 0(A) = (!,*)•

(2) If v(a2) = 0, then Im 0 is isomorphic to Z/2, with generator (1,1). Indeed,
this is the image of Po and J\. Besides, for P e U(k), we have

v(x(P)) odd => v(x(P)-a2) = 0;

hence v(x(P) - a^ cannot be even, since this is incompatible with (14). Similarly,

v(x(P)) even and u(x(P)-fl0 odd => v(x(P))^2

4> v(x(P)-a2) = 0,

which is incompatible with (14).

PROPOSITION 4.8. Up to birational equivalence over k, the following classes of
projective varieties coincide:

(i) cubic surfaces Vx c= P\ with two conjugate double points, and no other
singularities;

(ii) smooth cubic surfaces V2 <= P3
k with three coplanar k-rational lines and a

further pair of coplanar conjugate lines;

(iii) smooth intersections of two quadrics V3 a P£ with a pair of conjugate lines
meeting in a point;

(iv) intersections of two quadrics V4 <= Pi with two conjugate double points and
no other singularities, and such that V4(k) ¥= 0 ;

(v) generalized Chatelet surfaces V5 a P{ x P | with a k-point; in ajfine space
Spec k[x] ® k[y, z], V5 is defined by an equation of the form

^k(6)/k(y + <5z) = g(x),

where g e k[x] is a separable polynomial of degree 4, and [k(d): k] = 2.
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Proof. Let Vi be a surface in Class (i). If V1 is not of type 2AX, it follows from
Theorem 2.2 that Vi is fc-birationally equivalent to a cubic surface of type 1AX.
Hence, up to birational equivalence, (i) is the same as

(i)' cubic surfaces V[ a P3
k with two conjugate double points of type 1AX, and

no other singularities.

We show that Class (i), or (i)', coincides with all the others.
A surface in Class (i)' is fc-birationally equivalent to one in Class (ii), by virtue

of Theorem 2.2; conversely, one goes from (ii) to (i) by means of Proposition 4.1.
One goes from (i)' to (iii) by means of Corollary 2.3; and conversely, from (iii)

to (i) by means of Proposition 4.5.
Let Vi be a surface in Class (i)'. We consider the line denoted LP* in Fig. 3: as

explained in the proof of Lemma 1.2, it is the line residual to Lo in the
intersection of V[ with its tangent plane at an arbitrary smooth point on the line
Lo joining the two double points. Its existence and basic properties can also be
ascertained by a local calculation (starting from equation (2) of § 2), which is only
moderately tedious. As LP* is an exceptional divisor of the first kind, defined over
k, we can blow it down. In this way we get a singular Del Pezzo surface V4 of
degree 4 (cf. § 7) with the same singularities as V[. By Example 0.7(a), V4 can be
realized as an intersection of two quadrics in P4

k. Clearly, V4(k) =£0; for instance,
V4 contains the image of LP..

Conversely, let V4 be a surface in Class (iv). We shall see in §7 (Lemma 7.1)
that V4 is fc-unirational. Thus we can find a smooth point S e V4(k) which does not
lie on any of the finitely many lines of V4 (cf. Lemma 5.3). (This is clear if k is
infinite. It is also true for k finite with more than five elements, as one checks by
going through the arguments of Lemmas 7.1 and 1.2.) By the argument of
Lemma 5.3, one sees that the variety obtained by blowing up S on V4 embeds as a
cubic surface in Pi, which is in Class (i).

Finally, a surface in Class (i)' is fc-birationally equivalent to one in Class (v), as
we have already seen in the Remark following Proposition 4.1. (The case of
characteristic 2 can be done with only minor changes.) Of course, V5(fc)=£0,
since V[(k)=£0. Conversely, on setting u=x2 one sees that the generalized
CMtelet surface with equation

Nk(6)/k(y + &z) = g(x) = aox4 + ...+a4

is fc-birationally equivalent to the intersection of two quadrics V4 defined by

(x2 = uv,
\ dz) = a0u

2 + axux + a2uv + a-$xv + a4v
2.

An easy calculation, using the separability of g, shows that V4 has precisely two
conjugate double points, that is, V4 is in Class (iv).

COROLLARY 4.9. Let V be a smooth proper surface which is k-birationally
equivalent to a surface belonging to any one of the Classes (i) to (v) of Proposition
4.8. In particular, V(k)¥i0. Then all the birational properties of generalized
Chdtelet surfaces hold for the surface V. We quote but a few, under the assumption
that char(fc) = 0.

(a) Let & be a universal torseur over V. If 2F has a k-point then ZT is stably
k-rational.
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(b) If k is a number field then the Hasse principle and weak approximation hold
forS-.

(c) / / k is finitely generated over Q then V(k)/R is finite, and each class for
R-equivalence is parametrized by the k-points of a k-rational variety.

(d) GivenOe V(k), the natural map V(k)/R-*A0(V), defined by P^>c\(P - O),
is a bijection.

(e) For k a number field, the arithmetic conjecture discussed in [38], which
enables one to compute A0(V), is verified.

(f) If k is a number field then Brauefs obstruction is the only obstruction to
weak approximation on V.

Proof. See [15, Chapter VIII, Theorems 1, 2, 6, 8, 10, and 11]. Some further
properties can also be found there.

REMARKS, (a) The proof of Proposition 4.8 shows that a surface V5 in Class (v)
is birationally equivalent to one in Class (iv) even if V5(k) = 0 . Conversely, one
can show that a surface V4 in Class (iv), even without a fc-point, is birationally
equivalent to a generalized Chatelet surface, provided that some condition is
fulfilled. See, for instance, Proposition 7.5.

(b) Consider the class

(i)" cubic surfaces V'{ c P3
k with two conjugate double points of type 2A2, and

no other singularities.

Contrary to (i)', this class is strictly included in Class (i). Indeed,

PROPOSITION 4.10. The surface V3 of Example 3.3, which is in Class (i)', is not
Q-birationally equivalent to a surface in Class (i)".

Proof. The conic bundle surface Vi of Example 3.3 is of Type VIII in Manin's
classification [32, Chapter IV, §9]. This is proved in [29, Propositions 1.12 and
1.10]. Now it follows from [32, loc. cit., Table 3], that H\Q, Pic U) = 1/2, where
U is any smooth proper model of either Vx or V3, for instance, the Del Pezzo
surface defined by (4) in Example 3.3.

But it can be shown, with the methods of Part II, that any surface in (i)" is
fc-birationally equivalent to a smooth Del Pezzo surface Z of degree 4, whose
diagram of lines contains a connected pair of orbits of order 2:

I t

Indeed, starting from the diagram of irreducible roots and lines given at the end
of § 1 for the case 2A2, we blow down the line /14. This gives rise to a generalized
Del Pezzo surface of degree 4, of Type 3 in the classification of § 6. There is an
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orbit of order 2 coming from the pair of roots {lx - 1 2 , U -15}:

63

Now if we blow up a general Q-point on this surface, we obtain a generalized
Del Pezzo surface V of degree 3 and of type 2AX. By Proposition 0.6, this is a
model of a singular cubic surface of type 1AX. The line / joining the two double
points corresponds, on V, to a subdiagram of the form

Blowing down the line /on V, we obtain a subdiagram of the form

as required.
With this information on the orbits, a glance at Table 2 of [32, Chapter IV,

§9], shows that the smooth Del Pezzo surface Z must belong to one of the
following types: II, IV, or VII (it is now known (cf. [27]) that Type V does not
exist, but has to be replaced by another type, which does not contain any orbit of
order 2). But if we suppose that Z is a model of either Vi or V3> we must have

H\Q, Pic Z) = H\Q, Pic U) = Z/2.

Then Z must be of Type VII, as follows from Table 3 of [32, loc. cit.].
This yields a contradiction. Indeed, by Theorem 1 of [27], we know that the full

group of automorphisms of a surface of Type VII is (Z/2)2. This must coincide
with the splitting group of the surface, since there is also an orbit of order 4.
Hence, by [29, Proposition 1.10 and Theorem 1.9], the N6ron-Severi torus 5 of
Z is rational. But we know that this is not the case for the surfaces of Example
3.3, for which H\Q, 5 ) ^ 0 . (Cf. Property (c) in the Remark following the
example.)
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PART II. INTERSECTIONS OF TWO QUADRICS

5. Classification of singularities

The singular Del Pezzo surfaces of degree at least 4 have been studied
classically. Timms [44], in particular, gives an impressive list of possibilities,
which includes in each case a description of the lines on the surface. As
mentioned in the Introduction, a nearly modern presentation was given by Du
Val [20]. However, a proof that the singularities of the non-conical intersection of
two quadrics in P j are always rational was obtained only recently [37, 26, 47].
The present section is meant to provide number theorists with the minimum
background for understanding the forthcoming sections.

To begin with, we show how the rationality statement of Proposition 0.3(b)
follows from Proposition 0.2. The reason for giving this argument is that it
depends on two lemmas which are referred to elsewhere in the paper.

PROPOSITION 5.1. Let V czP^ be an irreducible intersection of two quadrics
which has only isolated singularities. Then either V is a cone over a smooth quartic
of genus 1 in P j , or V has only rational double points.

Proof. If V is a cone, then a general hyperplane section of V is the intersection
of two quadrics in P& This intersection is necessarily smooth, since V has only
isolated singularities. Thus we may assume that V is not a cone. Take a general
point S on V, and project the surface V from S into PJ. Call this projection <p,
and let W = (p[V] be its image.

LEMMA 5.2. The surface W a P^ is a cubic surface with only isolated rational
double points.

Proof. By the argument of Proposition 4.5, we see that the projection
(p: V •> W is generically one-to-one. Hence the degree of W is equal to 3 (the
intersection of W with a general line in PQ corresponds to the intersection of V
with a general 2-plane through S). Next we consider a general hyperplane section
r of V through S. Since 5 is a general point of V, which has only isolated
singularities, we see that T has genus 1. Therefore its image, which is a general
plane section of W, is also a curve of genus 1. This implies that W has only
isolated singularities.

Moreover, W is not a cone over an elliptic curve, since it is a rational variety.
Indeed W is birationally equivalent to V, which is not a cone. Hence either V is
smooth, in which case it is well known to be rational, or it has a multiple point Q,
which is not a vertex. Projecting from Q, we get a surface of degree at most 2,
which is birationally equivalent to V. It follows that V (and hence W) is rational.
Thus we are in Case (b) of Proposition 0.2, which proves the lemma.

Let V be the variety obtained by blowing up S on V. Consider the following
commutative diagram:

V - - - •
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LEMMA 5.3. The intersection V contains only finitely many lines. Hence ip is an
isomorphism.

Proof. If V contained infinitely many lines, then so would W. But, by Lemma
5.2, W is neither a cone, nor a cubic surface with a double line. Hence W contains
only finitely many lines, and this proves the first assertion.

To show that q> is an isomorphism, one can proceed as in Lemma 2 of [17].
Using the fact that V is the intersection of two quadrics, one shows that the linear
system i? of all hyperplanes through 5 separates points and infinitely near points
on V\{S}. Indeed S, being a general point of V, does not lie on any line of V,
since there are only finitely many of them. Then one shows that if separates the
points of L = ^ - 1 (5) , that is, the points infinitely close to S. It follows that <p is a
morphism with no infinite fibres. Now, by Lemma 5.2, W is normal. Hence, by
the Zariski Main Theorem, <p is an isomorphism.

On combining Lemmas 5.2 and 5.3, one sees that V has only rational double
points, which completes the proof of Proposition 5.1.

This proposition enables us to use the results of Demazure [19] on generalized
Del Pezzo surfaces. In the rest of this section, k denotes an arbitrary algebraically
closed field.

LEMMA 5.4. Suppose V c Pj has only rational double points. Letf: V -» V be
the minimal desingularization of V. Then Pic V is a free abelian group of rank 6,
and the triple (Pic V ; (ov-; > ) , where cov> denotes the canonical class and -v- the
intersection product, is isomorphic to the corresponding triple for a smooth Del
Pezzo surface of degree 4.

Proof By Example 0.7(b), V is a generalized Del Pezzo surface of degree 4.
Moreover, PicV is free of rank 1 0 - ( w v ) = 6 (cf. [32, Chapter IV, Lemma
2.4]). The final assertion follows from Proposition 0.4 and the construction of the
surfaces P2(2) in [19, Part II, § 2].

The following facts about the triple (Pic V ; aiv.; -v.) are taken from [19]:
Pic V =Z 6 has a basis l0) llf..., l5 such that

(ll) = 1, (/?) = - 1 for all i > 0, (/,. I,) = 0 for all i *j.

Let Q = {ae Pic V'\ (a.cov>) = 0} be the orthogonal space to

5

(Ov = -3 / 0 + 2 lh-
h = \

Let R = {a e Q\ (a2) = -2} be the set of roots. Then R consists of all elements
of the form /, - /, or ±(/0 - /, - /, - lk), with i, j , k all distinct and non-zero. We
call simple roots the elements lo-h-h-h, l\-12, h~h, I3-U, and l4-15.
They form a basis of the Z-module Q, with associated Dynkin diagram D5. The
extended Dynkin diagram D5 is obtained by considering the root - / 0 + /3 + /4 + /5
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in addition to the simple roots:

/0-/1-/2-/3

FIG. 4

REMARK. It is clear from Proposition 0.1 that the set of irreducible curves
is, c V lying above the singular points of V can be identified with a certain subset
Ri of R. This subset consists precisely of all the roots a which are represented by
an irreducible curve T on V'. Indeed the relations (a2) = —2 and (a.cov) = 0
imply that pa(T) = 0, and hence T is a smooth rational curve. Moreover, T is
uniquely determined, since (a2) < 0. The elements of /?, will be called irreducible
roots, as in the Introduction.

PROPOSITION 5.5 (Demazure). The subset R( is a free subset of Pic V. A
necessary and sufficient condition for an exceptional class A e Pic V (that is, one
satisfying (A2) = (A.av) = ~1) to be the class of an irreducible effective divisor L,
is that (A. or) ^ 0 for all a e /?,-.

This is proved in [19, Theorem III.2 and Corollary]. Clearly, L is uniquely
determined. Since o)v. =f*((ov), we see that L is nothing but the proper
transform of a straight line on V.

We end this section by enunciating the stronger form of Proposition 0.3(b),
which classifies all intersections of two quadrics in Pi having only isolated rational
double points. This classification is somewhat more precise than the classification
into types, since there are two different kinds of varieties with singularities of type
2A1, and two of type A3. In every case of Proposition 5.6, the representative set
Ri appears as a proper subgraph of the Dynkin diagram D5 of Fig. 4. (Of course,
two vertices which are joined by an edge in D5, must also be joined by an edge
in any subgraph.) But the signs have been selected so that the vertex a =
—I0 + I3 + U + I5 is replaced by its opposite. Indeed -or has a standard realization:
take a line L in P\, and blow up three distinct points x3, x4, x5 lying on it; then
— or is the class of the proper transform of L.

It is worth remarking that there does not seem to be any obvious fundamental
reason why the type of singularity should be a proper subgraph of D5. Indeed,
Naruki and Urabe [36] have given examples of singular Del Pezzo surfaces of
degree 2 whose type is not a proper subgraph of the relevant Dynkin diagram E7.
(For instance, one can produce 6AX by blowing up the seven vertices of the plane
figure shown in Fig. 5 and then contracting the six irreducible roots thus
obtained.)

PROPOSITION 5.6 (Du Val). Let V c Pi be a singular intersection of two quadrics
which has only isolated rational double points. Let Rt c /? be the set of irreducible
roots of its minimal desingularization V. Then, up to the action of the Weyl group
W(R), the set R( belongs to one of the following types.
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FIG. 5

U 5 [l]
2. /2-/3 , /4-/s. [2AJ

(77ie /me joining the two double points lies on V.)
3. k-li-k-h.U-h. [2AJ

(77ie /me joining the two double points does not lie on V.)

4. 13-14,U-15. [A2]
5. h-h,l*-h-h-h,lA-ls. P4J
6. h-l2,h-h,U-ls. [AXA2]
7. l2-l3,l3-U,U-l5. [A3]

(V contains five lines, only three of which pass through the double point.)

(V contains four lines, all of which pass through the double point.)

9.
10.
11.
12.
13.
14.
15.

h-l2, lo-h-U-h, lo-li-k-h, h-h.

lx - l2, lo-li-k- h, h ~ U, U~ h
lx-l2,l2-h,h-h,U-l5-
l2-h, h~U, k-li-h-h, U~Is-
lx - l2, k-h-U- h, k-h-h- h, h ~ U,
h ~ h, h~ h, h ~ U, k-li-k- h, U ~ Is-

[4i4j
[2A,A2]

\AXA^\
[A4]
[D4]
X 3 ]
[D5]

Moreover, all these cases occur; that is, for each one of the sets R( listed above,
there exists an intersection of two quadrics V cPl whose set of irreducible roots in
Pic V is the given set Rh

Sketch of proof (see also [47, Table 1]). The readability of all these types
follows from the construction of the generalized Del Pezzo surfaces of higher
degree (cf. Proposition 8.6 and Example 0.7(a)).

The classification of all possibilities is based on the fact that R is a root system
of type D5, for which a standard realization is known [5, Chapter VI, § 4, no. 8,
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and Table IV at the end of the volume]. However, to avoid confusion when
referring to Proposition 5.5, we shall work with the intersection product on
Pic V, which is negative definite on Q (the orthogonal space to cov). Thus (a. ft)
is the opposite of the standard inner product (a \ {$) appearing in Bourbaki.

Let {elt..., e5} denote the canonical basis of IR5, with intersection matrix - / .
We know from [5, loc. cit.] that R = {±e,f±£y 11 «£/</=£5}. We can identify
these roots with elements of Pic V through the following correspondence:

li lj ** bi tj>

5

This amounts to setting
5

'0 / J

h=l

and it provides an interesting realization of the root system D5 in the space IR6

spanned by the /,, with the associated indefinite bilinear form. Further, the Weyl
group W(R) is known to be the semi-direct product of the symmetric group #5
(which acts by permuting the base vectors e,-) with the group (Z/2)4 consisting of
all even combinations of sign changes cf: et*-* -£,-.

Now it follows from Proposition 5.5 and an obvious geometric constraint that it
suffices to classify the subsets R{ c R with the following two properties:

(a) Ri consists of linearly independent vectors (whence we already see that R(

contains at most five elements);

(b) for any two distinct roots a, jS e Rif we have (a.p) = 0 or +1.
This is done by induction on the cardinality of R{.

6. Diagrams of irreducible roots and lines

With the help of Proposition 5.5 we can give a complete description of the lines
that lie on a singular intersection of two quadrics in P£. We recall that the
exceptional classes in Pic V are the following:

/, for i ^ l ;

hj = lo-h-lj forl«Si<y;

h = \

As was already mentioned after Proposition 5.5, those exceptional classes which
are represented by an irreducible effective divisor L on V, correspond to the
straight lines of V. By an abuse of language (already used in the Introduction),
we shall also call them the lines of V.

We can represent on the same diagram both the lines and the irreducible roots
of V, by using two kinds of vertices: the irreducible roots are represented by
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small circles, while the lines are represented by dots. Two vertices are joined by
an edge if and only if the corresponding divisors meet (in which case the
intersection number is always equal to 1). Then Proposition 5.6 can be restated as
Proposition 6.1 below.

Though the diagrams of Proposition 6.1 are drawn over an algebraically closed
field, it is important to notice that they contain a wealth of arithmetic
information. Indeed, for an arbitrary perfect field k, they give very precise
information on the Galois action (the action of Gal(£//c) on Pic V). An example:
if V has exactly three double points, can the action of Gal(£/fc) be transitive on
these points? A glance at Diagram 5 shows this to be impossible. We shall use
these diagrams in a very essential way in our proof of Theorem 7.2.

PROPOSITION 6.1. The configuration of irreducible roots and lines on the minimal
desingularization of a singular Del Pezzo surface of degree 4 is described by one of
the Diagrams 1-15.

1. {12 lines) iAi]
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2. (9 lines)

3. (8 lines)

4. (8 lines)

/4-/5

[2AJ
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5. (6 lines)

6. (6 lines)

7. (5 lines)

'2 * 3 * 3 ~ * 4 * 4 ~ »
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8. (4 lines)

—o

9. (4 lines) [4.4J

/ i r / 2 l2

10. (4 lines)

h /0-/1-/2-/3

'45

[2AXA2]

*14 ~ I5
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11. (3 lines)

h-U /O-/1-/2-/3 l2 /l-/2
—0 0 • 0

12. (3 /mes)

/1-/2o I3-U fs q
-• •

13. (2 /mes)

/0-/1-/2-/3 h-h

14.

6
/1-/2
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15. (1 line) [D5]

7. Arithmetical applications

In this section, k will again denote an arbitrary perfect field. The intersections
of two quadrics we consider will always be assumed irreducible, even when this is
not mentioned explicitly. Among all singular intersections of two quadrics in P4

k)

those belonging to the third type of Proposition 5.6 have special arithmetic
properties:

DEFINITION. We say that a singular intersection of two quadrics V cPl is an
Iskovskih surface if it has precisely two conjugate double points, with the
property that the line joining them does not lie on V.

Proposition 5.6 shows that, in this case, both double points are of type Ax.
Iskovskih [24] used a surface of this type to give the first example of an
intersection of two quadrics in PQ having smooth points everywhere locally, but
no rational point. In Theorem 7.2, we shall see that these are the only singular
intersections of two quadrics in Pj for which the Clean Hasse Principle can fail.

LEMMA 7.1. Let V a Pi be a singular intersection of two quadrics which has
only isolated singularities and is not a cone. Suppose V contains a smooth k-point.
Then V is k-unirational. More precisely, there is a dominant rational map P2

k •••> V
of degree 1 or 2.

Proof. Let S e V(k) be a smooth fc-point, and consider the projection
cp: V •••» Pi from S. By the argument of Proposition 4.5, the image W = cp[V] is a
cubic surface and <p: V •••> W is a birational equivalence. As we saw in the proof
of Lemma 5.2, W is not a cone over an elliptic curve, since V (and hence W) is
^-rational. Moreover, it follows from Nishimura's lemma (Lemma 1.0) that
W{k) =£0. This implies that W (and hence V) is fc-unirational. Indeed, as in the
proof of Proposition 3.2(a), we may assume that the singularities of W are
isolated. Then the assertion follows from Lemmas 1.1 and 1.2. More precisely, W
is /orational unless it has two conjugate double points, and no other singularities.
But, in this case, Theorem 1.3(b) asserts that W is birationally equivalent to a
smooth Del Pezzo surface of degree 4 with a k-point. Now, such a surface is
known to be fc-unirational of degree 2 [32, Chapter IV, Theorem 7.8].

REMARKS, (a) An easy refinement of this proof shows in fact that V is
A:-rational if it is not an Iskovskih surface. We do not give the details, since
Lemma 7.4 contains a more precise statement.
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(b) As we saw in §3, the Iskovskih surface V2 of Example 3.3 contains a
smooth Q-point, but is not Q-rational.

(c) Lemma 7.1 does not hold under the sole assumption that V(k)=t0. Indeed
one can give examples where all k-points on V are singular, in which case V is
clearly not fc-unirational. For instance, over k = U or Q2> we can take the variety
V defined by

xl-\lx\=-xl-xl
This is 'Ellison's example' (cf. [12, Example 3.1.3]).

THEOREM 7.2. Let V be the family of all singular intersections of two quadrics
V c P j having only isolated rational double points. Let Voc.V be the subfamily
consisting of those varieties which are not Iskovskih surfaces.

(a) The minimal desingularization V of any variety V eV0 is a non-minimal
surface (that is, V contains an exceptional curve; cf. [32, Chapter III, § 4.7]).

(b) If k is a number field, then the 'Clean Hasse Principle' (called lprincipe de
Hasse fin' in [12]) holds for the class Vo: ifVeV0 contains a smooth point defined
over kv, for every completion K of k, then every proper model of V contains a
k-point. (However, the usual Hasse principle may fail to hold; a counter-example
is the system (1) over k = Q.)

IfVefo, let Z be any smooth protective model of V.

(c) / / Z(k) =£ 0 then Z is k-rational.
(d) The Ga\(k/k)-module Pic Z is stably a permutation module.
(e) The Neron-Severi torus of Z is stably rational.
(f) For k a local or global field of characteristic 0, the Chow group A0(Z) is

trivial.
(g) R-equivalence is trivial on Z, that is, Z(k)/R = 0, provided Z(k)¥^0.

None of these assertions holds for the class V\T0 of Iskovskih surfaces.

Proof. Using the diagrams of § 6, we shall establish a more precise version of
(a), from which all the assertions derive. We begin by making some general
remarks about the effect of blowing down a line L on a generalized Del Pezzo
surface Xx, defined over k. This gives rise to a morphism g: X1^>X2, where X2

is again a generalized Del Pezzo surface. (This is an easy consequence of the
definition given in the Introduction.) In addition:

(i) KXl = g*(KX2) + L, whence (K2
Xl) = (K2

Xl) + 1;

(ii) if a curve I \ meets L with multiplicity ju = 1, then its image F2 = g [ r j
verifies (Tl) = (T2) + 1; indeed

(rl) = (g*(T2)
2) = (I\ + nL)2 = (T2) + 2^(IYL) + fi2(L2) = (Tl) + /x2;

(iii) any two curves meeting L have intersecting images.

A useful consequence is the following:

CRITERION 7.3. When we blow down an exceptional curve L = YtLi on a
generalized Del Pezzo surface, the diagram of its irreducible roots and lines (as in
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§ 6) undergoes the following transformations:

a curve with self-intersection —2 (represented by a small circle) becomes
exceptional (i.e. the small circle is replaced by a dot) if and only if it meets one
and only one of the L,;
on the other hand, it disappears from the picture if it meets two or more of
the L,;
an exceptional curve goes out of the picture if and only if it meets any of the L,;
nothing new can appear on the picture as long as we only blow down.

Armed with this criterion, we can now examine all fifteen cases of Proposition
5.6 and prove the following lemma:

LEMMA 7.4. For V e To, the minimal disingularization V contains an excep-
tional curve. In fact there exists a morphism g: V - » V", which is obtained as a
sequence of blowings-down, such that:

in Cases 2,6,7,11,12, and 15 of Proposition 5.6, V" is isomorphic to Pj;
in Cases 1, 4, 5, 9,10, and 14, V" is a form of P1 x P1;
in Cases 3, 8, and 13, V" is a generalized Del Pezzo surface of degree 8, of type
Au which is birationally equivalent to a form of P1 x P1.

Proof For clarity we begin with Case 15; the reader should refer to the
diagrams of § 6.

15. There is a unique line; blow it down. By Criterion 7.3 we get a generalized
Del Pezzo surface of degree 5, with diagram

If we blow down the new line, we obtain

o o -

of degree 6. Another blowing down yields

o — • — •

of degree 7. Now the middle dot corresponds to a line defined over k, which we
can also blow down, thus obtaining •, of degree 8. This unique line can again be
blown down, and the surface obtained is a Severi-Brauer surface, since it has
degree 9 (cf. Proposition 0.4). As a matter of fact, this is a trivial Severi-Brauer
variety, but we shall give a general argument further on.

14. Blowing down both lines, we get

of degree 6. Blowing down the middle pair, we get a surface of degree 8 with no
irreducible root and no exceptional curve, i.e. a form of P1 x P1.

13. Blowing down both lines, we get
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of degree 6. Blowing down the new pair of lines, we get o, that is, a surface of
degree 8, of type A1} which is a form of the ruled surface F2.

The other cases are similar; so we shall deal with them more quickly. The
resulting diagram is in brackets; the three possibilities are abbreviated SB, Q, and
F respectively.

12. Blow down l12 and /5 ( o — • — o — • ). Blow down both lines (•). Blow
down once more (SB).

11. Blow down all three lines ( o — • — • ) . Blow down the middle line (•).
Blow down once more (SB).

10. Blow down l3 and /14 (1 * R Since the middle pair comes from the

two roots /0 —1\ — l-i — h and /4 — /5, it is defined over k. So we can blow it down
(Q)-

9. Blow down all four lines (Q).
8. Blow down all four lines (F).
7. Blow down /23, lx2, and /5 ( • — # • ) . Blow down the ends (SB).
6. Blow down l2, ll3, /34, and /5 (•). Blow down once more (SB).

5. Blow down /3 and l24 £ < ^ I^*)- N o t e t h a t l^e r o o t h~h was defined

over k. Since the other two roots give rise to the ends of the hexagon in brackets,
we can blow down these two lines (Q).

4. Blow down /13, l^, /34, and /5 (Q).
3. Since, by assumption, V is not an Iskovskih surface, the two roots are

individually defined over k. Thus we can blow down l1} l2, l3, and /45 (F).
2. Blow down /24, /3, /5, l12, and /14 (SB).
1. Blow down l5, /14, /24, and /34 (Q).

Furthermore, the Severi-Brauer surface of Case SB is always trivial. Indeed it
is obtained from a surface of degree 4 by blowing down 5 exceptional lines.
Hence it contains a zero-cycle of degree 1. Thus it is isomorphic to P|.

It remains to prove, in Case F, that V" is birationally equivalent to a form of
P1 x P1. Now V, being a surface of degree 4 in Pj, contains a Zariski-dense set of
effective zero-cycles of degree 4 (it suffices to cut out V by a family of ^-rational
planes). Hence we can find an effective 0-cycle of degree 4 in general position on
V" and blow it up, thus obtaining a generalized Del Pezzo surface of degree 4 (cf.
Proposition 0.4). Since there is only one root, we are in Case 1 of Proposition 5.6.
But we proved above that a surface of this type is birationally equivalent to a
form of P1 x P1.

We now proceed with the proof of the theorem.
(a) This follows from the more precise assertions of Lemma 7.4.
(b) Since the Clean Hasse Principle is birationallv invariant [12, § 3], it suffices

to prove the usual Hasse principle for any smooth model of V e To. By Lemma
7.4 there exists a smooth model which is either P2

k or a form of P1 x P1. The
former case is trivial; in the latter case, the Hasse principle is well known to hold.
(A very nice proof can be found in [9, pp. 19-20].)

However, the usual Hasse principle fails in general. Indeed the system (1) has
solutions with x0 = 1 over all completions of <Q>, but no non-trivial rational
solutions (just subtract the two equations!). The surface denned by (1), having
four double points, is of Type 9.
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(c), (d) Again it suffices to prove these assertions for one smooth projective
model. Now if Z is a Severi-Brauer surface or a form of P1 x P1, they are well
known to hold.

(e), (f) These follow from (d), as in Proposition 3.2.
(g) This follows trivially from (c).
Finally, none of the assertions of Theorem 7.2 holds for the class of Iskovskih

surfaces. Indeed, a counter-example to (c)-(g) is provided by the surface V2 of
Example 3.3, since we have already mentioned that in this case

Z{Q)/R = A0(Z) = \UA0(Z) = LU \Q, S) = Z/2.

A counter-example to (b) is furnished by Iskovskih's example:

C3 + X0X3 = 0 ,

- 4 = 0.
The singular points are (0,1, ±i, 0,0). This surface has smooth points
everywhere locally, but no rational point [24]. This variety is also a counter-
example to (a). Indeed the eight lines of the diagram of §6 can be computed
explicitly. One sees that they form two orbits for the action of Gal(Q/Q):

*! ± ix2 = x4 ± (V3)x0 = x3 = 0;

x1±ix2 = x4± (y/2)x0 = x0 + x-x = 0.

(2)

Thus Gal(<Q/Q), acting on this set, has no orbit consisting of skew lines. Hence
there is no exceptional curve.

Alternatively, we may argue as follows. If the minimal desingularization V of
an Iskovskih surface is not a minimal surface, then there exists a birational
morphism g: V'—*V", where V" is a generalized Del Pezzo surface of degree
ds=5. Consequently, assertions (b) and (c) of Corollary 9.4 hold for V", and
hence also for V (cf. [29, Proposition 1.6]). Now it is known that any smooth
model of V2, respectively of the surface defined by equation (2), is a counter-
example to (b), respectively to (c).

The next two propositions are analogues of Proposition 4.8 and Corollary 4.9,
but here the existence of a fc-point is not assumed (cf. Remark (a) after Corollary
4.9).

PROPOSITION 7.5. Let V a Pi be an Iskovskih surface. Assume (Pic Z)^= Pic Z,
where Z is any smooth projective model of V, and <& = Gal(£/fc). Then V is
k-birationally equivalent to a generalized Chdtelet surface.

Proof. See [27, Theorem 4]. Alternatively, the assumption is equivalent to the
condition Br k <-> Br k(V), via the standard exact sequence

0-> Pic Z-> (Pic Z)^-> Br A:-> Br Z.

Now, the proposition under this condition is just Proposition 8(ii) of [15,
Chapter IX].

PROPOSITION 7.6. Let k be a number field, and V <= Pi a singular intersection of
two quadrics which has only isolated singularities and is not a cone. Let Z be any
smooth projective model of V. Then Manin's obstruction is the only obstruction to
the Hasse principle for Z.
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Proof. By Proposition 0.3, V has only rational double points. Hence the result
follows from Theorem 7.2(b) if V e To. Indeed the Clean Hasse Principle, being
birationally invariant, holds for Z since it does for V.

Therefore we may assume that V is an Iskovskih surface. Then we may apply
Proposition 7.5. Indeed the assumption Z(kv)^0 for all u implies that
(PicZ)^=PicZ, as can be seen from the commutative diagram of exact
sequences ,_. -. «,4 0 > PicZ • (PicZ)* > Brk

0 —> nPicZ. > riCPicZ.)^ >I\Brkv

Thus V is birationally equivalent to a generalized CMtelet surface. Hence the
result follows from [15, Chapter VIII, Theorem 11].

Of course, many other properties can be obtained by combining Lemma 7.4
and Proposition 7.5 with the results of [15] on generalized Chatelet surfaces (cf.
Corollary 4.9). The following result is also of interest:

PROPOSITION 7.7. Let V c: P^ be an Iskovskih surface. Suppose that the minimal
desingularization V of V is a minimal surface. Then V is not k-rational.

Proof. Using the diagram of §6 (Case 3), we describe a pencil of rational
curves on V: all four effective divisors /1 + /14, 12 + 124, h + h4> and /45 + /5,
belong to the class f = lo-l4. Therefore / lies in (PicV')^. We may clearly
assume that V(k)i=0, whence /ePicV". As (/2) = 0 and (f.cov.) = -2, the
curves in / are rational and h°(f) 2s 2. (This is the Riemann-Roch inequality, but
in our case it is obvious, since we know four distinct effective divisors in the
class!) Hence the effective divisors in the class / describe a pencil of non-
intersecting rational curves. (There is no superabundance, for / i°(/)>2 =>
(f2) =£ 0.) This shows that V is a conic bundle surface with invariant 8 — (co2/-) = 4.
By assumption V is a minimal surface, and hence a relatively minimal conic bundle.
Thus it follows from [25, Theorem 2], that V is not birationally trivial over k.

REMARK. The surfaces of degree 8 of type Ax that occur in Lemma 7.4 include
the minimal desingularizations of quadratic cones. Nevertheless, they seem to
have been forgotten by almost everyone! As explained in the proof of Proposition
0.4, they were overlooked by Demazure (cf. [19, Proposition 111.3(2.3)], in the
case where r = 1). Neither are these surfaces mentioned by Timms [44]. (But they
do appear in Theorem 1.3 of [34].) A direct construction is as follows: take a
point xx in P2, and an infinitely near point x2 (i.e. a tangent direction at xx); let L
be the line through xx in the direction x2; blow up xx and then x2; finally blow
down the proper transform of L. This is analogous to the construction of smooth
quadrics, except that x2 is infinitely close to xx. The image of P2 under the
rational map defined by the linear system of conies through xx which are tangent
to x2, is a quadratic cone in P3. (If xx has coordinates (Xo, Xx, X2) = (1, 0, 0),
and x2 is in the direction X2 = 0, then the map is defined by

\XQ, XX, X2) •-» \XQX2, XX) XXX2) X2).

The equation of the image is Y2 = YXY3.)
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PART III. SURFACES OF HIGHER DEGREE

8. Classification of singularities

This Part is devoted to a study of the singular Del Pezzo surfaces of degree
d 5* 5. In this section we establish Proposition 0.8 in a stronger form, by proving,
for each degree, the analogue of Proposition 5.6. Thus we may assume that k is
algebraically closed. Note, further, that d «= 8. Indeed, as follows from Proposi-
tion 0.4, a generalized Del Pezzo surface of degree 9 contains no irreducible
roots; so we can contract nothing. The reader will find it of some interest to
compare the diagrams we obtain below with the pictures of Timms [44].

PROPOSITION 8.1. Let V be a singular Del Pezzo surface of degree d = l or 8.
Then its minimal desingularization V has exactly one irreducible root. More
precisely,

if d = 8, V contains one irreducible root and no line:

O [A,]

if d = 7, V contains one irreducible root and two lines, with the following
configuration:

1 ^ 2 ' 2 ' 1 2 \A 1

Proof There is at least one irreducible root, since V is singular. By Proposition
0.4, this implies, for d = 8, that V is the ruled surface F2. In this case the result
follows from known properties of this surface (see [35, Proposition 2]).
Alternatively, one may argue directly, using the fact that Pic V is of rank

4
For d = 1, V is of the form P2(2). So we can use the results of Demazure, in

particular Proposition 5.5 and the analogue of Lemma 5.4. Up to sign, there is
only one root, say lx -l2- Then the lines are determined as in § 6, by means of
Proposition 5.5.

PROPOSITION 8.2. Let V be a singular Del Pezzo surface of degree 6. Let R( c R
be the set of irreducible roots on its minimal desingularization V. Then, up to the
action of the Weyl group W(R), the set R{ belongs to one of the following types.

1. h-k- [Ax]
2. lo-k-k-k- [Ax]
3. lo-k-k-kJi-k- [2AX]
4. k-k.k-k- [A2]
5. lo-k-k- k, h ~ k, k ~ k- [AXA2]

Proof. The proof is on the same lines as that of Proposition 5.6. By the
analogue of Lemma 5.4, we see that Pic V — Z4 and that R is a root system of
type Ax xA2 (apply [32, Chapter IV, Theorem 3.5]). We choose for simple roots
the elements ac = lo-ll-l2-k, h-k> and l2-/3:

a
o

o
l\ — k k~ k
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Further, the Weyl group is known to be of the form

X) x W(A2) = 9>2x &

The generator of 5^ replaces oc by its opposite, and 5^ acts by permuting the /,
(i =£0). Thus the proof reduces to the following two independent assertions.

(i) Up to the action of W{AX), there are two possibilities: if oc is not an
irreducible root, then we may assume that neither oc nor -a is irreducible.

(ii) Up to the action of W(A2), the other irreducible roots form one of the
following sets:

These assertions are proved quite easily. This yields 2.3 = 6 different types,
including the case in which R( is empty. This case is not mentioned in the
statement, since V is assumed to be singular.

As in § 6, this proposition can be restated as follows:

PROPOSITION 8.3. The configuration of irreducible roots and lines on the minimal
desingularization of a singular Del Pezzo surface of degree 6 is described by one of
the following diagrams:

1. (4 lines) [-<4i]

\2

2. (3 lines)

3. (2 lines)

/ 0 - / 1 - / 2 - / 3

/ 0 - / 1 - / 2 - / 3

[2AX]

4. (2 lines)
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5. (1 line)

/0-/1-/2-/3
0

PROPOSITION 8.4. Let V be a singular Del Pezzo surface of degree 5. Let Rt c R
be the set of irreducible roots on its minimal desingularization V. Then, up to the
action of the Weyl group W(R), the set R( belongs to one of the following types.

1.
2.
3.
4.
5.
6.

[1AX]
[A2]

[AXA2]

Proof. By the analogue of Lemma 5.4, we see that Pic V - Z5 and that R is a
root system of type A4 (apply [32, Chapter IV, Theorem 3.5]). We use the
standard realization of this system in 1R5, as in [5, Chapter VI, §4, no. 7]. Note
that, by Proposition 1 of [5, Chapter VI, § 4, no. 2], we may identify

with

and e4 - e5

~h, and lo-h-l2-
in this order. Since we know that W(A4) - 5̂ 5 acts by permuting the base vectors
eh the proof now proceeds exactly as in Proposition 5.6.

PROPOSITION 8.5. The configuration of irreducible roots and lines on the minimal
desingularization of a singular Del Pezzo surface of degree 5 is described by one of
the following diagrams.

1. (7 lines)

2. (5 lines)

M3



3. (4 lines)

4. (3 lines)

L
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/ 1 - / 2
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[A2]

[A1A2]

5. (2 lines)

/1-/2

o—

[A3]

* 3 ~ * 4

6. (1 line)

/ 2 - / 32 / 2 - / 3
o—— o

[A,]

PROPOSITION 8.6. All the cases described occur; that is, for each one of the sets
R( listed in Propositions 8.1, 8.2, 8.4, and 5.6, there exists a singular Del Pezzo
surface V of the corresponding degree whose set of irreducible roots in Pic V is the
given set Rt.

Sketch of proof. It suffices to construct a generalized Del Pezzo surface V with
the prescribed set of irreducible roots Rh Since we have a complete classification
for all degrees, we can proceed by induction. Thus in most cases a surface of
degree d is obtained from a surface of degree d + 1 by blowing up only one point.
By Proposition 0.4 we know that it is enough to make sure that this point does
not lie on any irreducible root, and this condition is easy to check on the
diagrams. We omit the details (cf. [44, § 8]).

9. Arithmetical applications

In this section, k denotes an arbitrary perfect field. We use the classification of
singularities over k to establish the following result (cf. Theorem 7.2).
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THEOREM 9.1. Let Vd be the family of all singular Del Pezzo surfaces of
degree d.

(a) For d = 5, 6, or 1, the minimal desingularization V of any variety V eVdis
a non-minimal surface.

(b) If d = 5 or 7, then any surface V e Td is k-rational.
(c) / / d 2= 5, any surface V e Td with a smooth k-point is k-rational.
(d) Let Z be any smooth projective model of a variety V e Td, where d^5.

Then A0(Z) = 0.
(e) If k is a number field and d^5, then the 'Clean Hasse Principle' holds for

the class Vd: if V e Vd contains a smooth point defined over ky, for every
completion ky of k, then every proper model of V contains a k-point.

Proof. To begin with, we consider the case of degree 8, for which a special
argument is required.

LEMMA 9.2. Let V be a singular Del Pezzo surface of degree 8. We denote by B
the irreducible root on its minimal desingularization V.

(i) The variety obtained from V by blowing up a point not lying on B is a
generalized Del Pezzo surface of degree 1 (with an irreducible root).

(ii) If B(k)^0, then V also contains a k-point that does not lie on B.
(iii) If k is a number field, then the Hasse principle holds for V.

Proof. As we saw in the proof of Proposition 8.1, V' is the ruled surface F2.
Recall [35, § 2] that this surface contains a unique irreducible curve with negative
self-intersection, which is called the base line. (This is B, of course; and it is
smooth.) Furthermore, it contains a unique pencil of non-intersecting rational
curves, called the fibres, all of which are irreducible and smooth. If F denotes any
fibre, the following relations hold:

(F2) = 0, (B.F) = l, (B2) = -2.

Now we can proceed with the argument.
(i) If P is a point of V that does not lie on the base line B, it is known [35,

Corollary to Proposition 1] that the elementary transformation centred at P
carries V' into the ruled surface Fx, which is P2 with a point blown up. Therefore
blowing up P on K' yields a surface of the form P2(2), namely Fx with a point
blown up, whence the result follows.

(ii) If P e B(k), let F be the fibre through P. It is uniquely determined, since
(F2) = 0. Thus F is defined over k, whence it is isomorphic to P\. Therefore we
can find on F a fc-point that does not lie on B.

(iii) If PeV'iK), let F be the fibre through P. Since (B.F) = 1, the
intersection of F with B is a k»-point. Thus B(kv)¥

:0. Now B, being a smooth
rational curve, verifies the Hasse principle. Hence we have shown that

V'{kv)±0 for all v r> B{kv)±0 for all v

REMARK. A cone over a non-trivial conic provides an example of degree 8
where the word 'smooth' cannot be deleted in Theorem 9.1(c). This creates the
interest of the second assertion in Lemma 9.2. (Cf. the proof of Corollary 9.4.)
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LEMMA 9.3. For d = 5, 6, or 1, the minimal desingularization V of any variety
V e Yd contains an exceptional curve. In fact there exists a morphism g: V'—*V",
which is obtained as a sequence of blowings-down, such that V" is isomorphic to
PI, except in Cases 1 and 4 of Proposition 8.3 (d = 6), where V" is a form of the
ruled surface F2. (In Case 1, V" may also be chosen to be a form of P1 x P1.)

Proof. As in the proof of Lemma 7.4, we apply Criterion 7.3 successively to
the diagrams of Propositions 8.1, 8.3, and 8.5. The details are easy, but there are
a few interesting cases.

(a) d = 7. Begin by blowing down l2 (not ln, which leads to a form of F2'-)-
(b) d = 6. 1. Blow down /3 and ll2 to get a form of F2. (By blowing down l2

and l13, we obtain a form of P1 x P1.)
2. By blowing down lu l2, and /3, we get a Severi-Brauer surface. To see that

it is Pi, note that the proper transform of the irreducible root is a smooth rational
curve with self-intersection 1. Hence it is isomorphic to P*., and the Severi-
Brauer variety is trivial.

3 and 5. By blowing down l3, we are reduced to the case of degree 7.
4. Blow down l3 and l12.
(c) d = 5. 1. By blowing down /34, we are reduced to Case 2 of degree 6.
2. Do not blow down /13! Blow down l2 and /4. This yields a smooth Del Pezzo

surface of degree 7 (• • • ) . Blow down the ends, so as to obtain a trivial
Severi-Brauer surface (since /13 is defined over k).

3. By blowing down /3 and /12, we are reduced to the case of degree 7. (It
would be a bad idea to blow down /4.)

4 and 6. By blowing down /4, we are reduced to Case 5 of degree 6.
5. By blowing down l12, we are reduced to Case 3 of degree 6.

Now it is easy to complete the proof of Theorem 9.1. For d = 5 or 7, all the
assertions follows trivially from Lemma 9.3 (where V" — P|).

This lemma also implies assertion (a) for d = 6. Now we remember that both
assertions (d) and (e) are birationally invariant (cf. [11, Proposition 6.3; 12, § 3]).
Hence, by another application of Lemma 9.3, it is enough to prove (c)-(e) for a
form of the ruled surface F2. Of course this will also settle the case where d = 8,
since a form of F2 is nothing but the minimal desingularization V of a singular
Del Pezzo surface of degree 8.

We therefore appeal to Lemma 9.2. Assertion (e) for V is already contained in
(iii). And assertion (c) follows from (i) and (ii), since we have just seen that a
generalized Del Pezzo surface of degree 7 is /^-rational. Finally, we compute
A0(V). Clearly, in view of (c), we may assume that V'(k) = 0. Further, as we
saw in the proof of Lemma 9.2, we can view V as a conic bundle surface
q>: V —» B over the base B, which is actually contained in V. Hence, by Lemma
3.7 of [11], every effective 0-cycle A on V is rationally equivalent to an effective
0-cycle of the same degree, C = (p*(A), contained in B. Since B is a smooth
rational curve, we can fix an effective 0-cycle CO of degree 2 on B, and then every
0-cycle on V is rationally equivalent to some multiple of CO. Hence A0(V) = 0.

COROLLARY 9.4. Let Wd be the family of all generalized Del Pezzo surfaces of
degree d.

(a) If d = 5 or 7, then any surface W eWd is k-rational.
(b) / / d 5= 5, any surface W eWd with a k-point is k-rational.
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(c) If k is a number field and d^5, then the Hasse principle holds for the class

Proof These results are known to hold for the class of smooth Del Pezzo
surfaces (cf. [32, Chapter IV]). Thus we may assume that W e Wd is the minimal
desingularization of a singular Del Pezzo surface V of degree d, and apply
Theorem 9.1. There is one minor difficulty: for proving assertion (b), one must
know that V has a smooth fc-point if W(k) =£0. But the problem arises only for
d = 6 or 8. By Lemma 9.3, it suffices to consider the latter case. But, for d = 8,
the difficulty is resolved by the second assertion of Lemma 9.2.
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