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Does the Fornax dwarf spheroidal have a central cusp or core?
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ABSTRACT
The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at

∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre

from their current positions within a few Gyr, presenting a puzzle as to why they survive

undigested at the present epoch. We show that a solution to this timing problem is to adopt a

cored dark matter halo. We use numerical simulations and analytic calculations to show that,

under these conditions, the sinking time becomes many Hubble times; the globulars effectively

stall at the dark matter core radius. We conclude that the Fornax dwarf spheroidal has a shallow

inner density profile with a core radius constrained by the observed positions of its globular

clusters. If the phase space density of the core is primordial then it implies a warm dark matter

particle and gives an upper limit to its mass of ∼0.5 keV, consistent with that required to

significantly alleviate the substructure problem.

Key words: methods: N-body simulations – galaxies: dwarf – galaxies: individual: Fornax –

galaxies: star clusters.

1 I N T RO D U C T I O N

The Fornax dwarf spheroidal is a dark matter dominated satellite

orbiting the Milky Way. It has five globular clusters that are at a

projected distance from the centre of 1.60, 1.05, 0.43, 0.24 and

1.43 kpc (Mackey & Gilmore 2003) as well as further substructure

at a projected distance of 0.67 kpc (Coleman et al. 2005). These star

clusters move within a dense background of dark matter and should

therefore be affected by dynamical friction, causing them to lose

energy and spiral to the centre of the galaxy. We will show later

that, if Fornax has a cosmologically consistent density distribution

of dark matter, the orbital decay time-scale of these objects from

their current positions is �5 Gyr. This is much shorter than the age

of the host galaxy, presenting us with the puzzle of why these five

globulars have not merged together at the centre forming a single

nucleus (Tremaine, Ostriker & Spitzer 1975; Tremaine 1976).

Several groups have studied the origin of nuclei in galaxies,

e.g. Lotz et al. (2001) carried out Monte Carlo simulations, which

show that some, but not all, of the nuclei of dwarf elliptical galax-

ies could indeed have formed through coalescence of their globular

clusters. Additionally, they observed several dE galaxies and found

out that within the inner few scalelengths, their sample appeared

to be depleted of bright clusters. Oh & Lin (2000) used numeri-

cal simulations to show that in dwarf galaxies with relatively weak

external tidal perturbations, dynamical friction can lead to signifi-
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cant orbital decay of globular clusters and the formation of compact

nuclei within a Hubble time-scale.

Oh, Lin & Richer (2000) gave two possible models for the ob-

served spatial distribution of Fornax globulars. One possibility they

proposed is that the dark matter consists of massive black holes

which transfer energy to the globulars, preventing them from sink-

ing to the centre of the galaxy. Another possibility they investigated

was to postulate a strong tidal interaction between the Milky Way

and Fornax which also could inject energy into their orbits and the

central core of the dSph. This latter idea is probably ruled out due

to the proper motion observations of Fornax (Dinescu et al. 2004)

which suggest it is already at closest approach on an extended orbit

which never takes it close to the Milky Way.

Here, we investigate another possibility for the lack of a nucleus

in Fornax, namely that the central dark matter distribution has a

very shallow cusp or core which dramatically increases the dynam-

ical friction sinking time-scale (Hernandez & Gilmore 1998). This

would be inconsistent with dark haloes that form within the cold

dark matter (CDM) cosmology which have cusps steeper than −1

on all mass scales from 10−6 to 1015 M� (Dubinski & Carlberg

1991; Diemand, Moore & Stadel 2005).

Controversial evidence for cored mass distributions in dwarf spi-

ral galaxies has been debated for over a decade (Moore 1994). The

inner structure of spheroidal galaxies is harder to determine, how-

ever Kleyna et al. (2003) claimed that the second peak in the stellar

number density in the nearby Ursa Minor dwarf spheroidal (UMi

dSph), is incompatible with cusped CDM haloes. With their ob-

servations, they show that this substructure has a cold kinematical

signature and that its radial velocity with respect to its host galaxy
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is very small. Such a cold configuration could only survive intact if

the stars orbited within a cored mass distribution where the orbital

frequencies are all identical (harmonic potential) and phase mixing

does not occur.

The stellar kinematical data for Fornax suggest that it is dark mat-

ter dominated with a mass to light ratio of the order of 20 within

its optical extent. Due to the uncertainty on the orbital anisotropy,

the mass distribution can only be weakly constrained – the data is

consistent with either cusped or cored density distributions (�Lokas

2002). However, the normalization (or mass within the central 1 kpc)

is better constrained. In the inner ∼1 kpc of a cored halo, the mean

density is approximately six times lower than that in a cusped halo.

Furthermore, the velocity distribution function of the background

particles is hotter than a cusped halo. These facts conspire to signif-

icantly increase the dynamical friction time-scale in a cored mass

distribution.

In this paper, we construct cored and cuspy dark matter po-

tentials and calculate orbital decay and sinking times using high-

resolution numerical simulations together with analytic calculations

(Chandrasekhar 1943). The haloes are consistent with the kinemat-

ical data for Fornax. We follow circular and eccentric orbits of sin-

gle and multiple globular clusters. Although many dynamical fric-

tion studies have been carried out before (White 1983; Hernquist

& Weinberg 1989; Capuzzo-Dolcetta & Vicari 2005), we are not

aware of any studies within constant density cores at the resolution

used in this paper, although the recent study explored the effects of

sinking objects on various cusp structures (Merritt et al. 2004). In

Section 2, we present the numerical methods we used, the analyt-

ical computation of the sinking times which are compared to our

high-resolution numerical simulations. In Section 3, we discuss our

results and draw our conclusions.

2 R E S U LT S

We carry out a series of self-consistent simulations to examine the

orbital behaviour of massive particles moving within a dark matter

or stellar background. We use the parallel multistepping N-body

tree-code, PKDGRAV2, developed by Joachim Stadel (Stadel 2001).

We construct stable particle haloes using the techniques developed

by Kazantzidis, Magorrian & Moore (2004). These models have

density distributions that are described by the α, β, γ law (Hernquist

1990):

ρ(r ) = ρ0

(r/rs)
γ
[
1 + (r/rs)

α
](β−γ )/α

. (1)

For our simulations we used ‘NFW-like’ haloes (Navarro, Frenk

& White 1996; Moore et al. 1999b) with α = 0.5–1.5, β = 3.0

and γ = 0.5–1.5, or cored haloes with α = 0.5–1.5, β = 3.0 and

γ = 0.0. In the former case we have ρ 0 = 0.0058 M� pc−3 and

r s = 2.4 kpc. This cuspy halo has a virial mass of 2.0 × 109 M�.

The concentration parameter is 15 but our results would not change

with a lower concentration, since in either case we are within the

asymptotic cusp part of the density profile.

We use a three-shell model (Zemp et al., in preparation); 105

particles for the innermost sphere with 100 pc radius, 105 particles

for the shell between 100 and 500 pc and 105 particles for the rest

of the halo. The softening lengths of the particles in these shells

are 1, 10 and 100 pc, respectively. The results were found not to be

sensitive to these values. The particle masses are 58, 569 and 3.2 ×
104 M�. These models are stable in isolation but allow us to achieve

very high resolution at the halo centre where we wish to follow the

dynamical friction.
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Figure 1. The initial radial density profiles for the three different haloes

used in the simulations. The vertical lines indicate the size of the core of the

cored haloes.

For a small cored halo we have ρ 0 = 0.10 M� pc−3 and r s =
0.91 kpc (NB: the radius at which the slope of the density profile

is shallower than −0.1 is approximately 200 pc which defines the

constant density region in this model). This halo has a virial mass of

2.0 × 109 M� and the concentration parameter is 40. Again, we use

a three-shell model that has 105 particles for the innermost sphere

with 300 pc radius, 105 particles for the shell between 0.3 and 1.1 kpc

and 3 × 105 particles for the rest of the halo. The softening lengths

of the particles in these shells are 3, 30 and 300 pc, respectively. The

particle masses are 89, 1640 and 7572 M�. For a big cored dark

matter halo we have basically the same parameters as for the halo

with the small core, except for the scalelength r s = 2.2 kpc (here

the constant density region is approximately 1 kpc), the virial mass

M vir = 3.0 × 1010 M� and the particle masses, which are in this

case 106, 3625 and 1.2 × 105 M�. The density profiles of these

three haloes are shown in Fig. 1.

The density profiles agree fairly well with the constraints made

by observations of Fornax (�Lokas 2002; Walker et al. 2006). We did

actually perform the same simulations and treatment as described in

the following with the very haloes proposed by �Lokas (2002) with

the same results. We also repeated several of our simulations with

haloes modelled with 10 times as many particles than described

above. These high-resolution runs show exactly the same features

as the low-resolution runs, but with less noise.

Where available, we will present the high-resolution graphs in this

paper. The globular clusters are modelled as single particles of mass

M GC = 2 × 105 M� with a softening of 10 pc. We do not expect our

conclusions to change if we used a particle model for each globular

since they are stable against tidal disruption within Fornax. We start

the globulars outside the core, mostly on circular orbits and let them

orbit, expecting them to spiral in to the centre of their respective

host haloes due to dynamical friction. The distance from the centre

of the host halo as a function of time, r(t), can be computed using

Chandrasekhar’s dynamical friction formula (Binney & Tremaine

1987), which is given by

F = −4π ln �(r )ρ(r )G M2
GC

v2
c (r )

×
{

erf

[
vc(r )√
2σ (r )

]
− 2vc(r )√

2πσ (r )
e−v2

c (r )/2σ 2(r )

}
, (2)
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which gives the force acting on the massive particle crossing the

halo. The density profile ρ(r) is given by our equation (1), and we

assume that the velocity distribution is isotropic and Maxwellian

at all radii. Of course this assumption does not hold, but is good

enough for our purposes (Kazantzidis et al. 2004). We can then

easily calculate the velocity dispersion using the Jeans equation:

σ 2(r ) = 1

ρ(r )

∫ ∞

r

M(r ′)ρ(r ′)
r ′2 dr ′. (3)

We find similar sinking times for eccentric orbits, therefore for

brevity we show only the circular orbits in this paper and leave the

detailed parameter space study for a future paper which explores the

technical aspects of dynamical friction in structures with different

density profiles. Additionally, we assume that M GC � m par. This

is a little problematic in the case of the cuspy and the big cored

potential because the particles in the outermost shell have m par =
3 × 104 M� and m par = 1.2 × 105 M�, respectively. However,

these particles rarely penetrate the innermost 0.5 kpc of the halo. In

equation (2), ln � (r) is the Coulomb logarithm:

ln �(r ) = bmaxσ
2(r )

G MGC

. (4)

In this definition, bmax is the largest impact parameter to be con-

sidered. This parameter is defined by one of the assumptions

Chandrasekhar made while deriving the above dynamical friction

formula: the intruder must be moving through a medium with con-

stant density, therefore bmax is the greatest distance for which this

is still valid. We keep bmax as a free parameter when fitting our

analytic formulae to the simulations. We find for the cuspy haloes

bmax = 0.25 kpc and for the cored ones bmax = 1.0 kpc. In this equa-

tion, vc(r) is the circular velocity at radius r. The force exerted by

dynamical friction on the perturber is tangential with respect to its

movement and thus causes the cluster to lose angular momentum

per unit mass at a rate

dL

dt
= Fr

MGC

= −4π ln �(r )ρ(r )G MGCr

v2
c (r )

×
{

erf

[
vc(r )√
2σ (r )

]
− 2vc(r )√

2πσ (r )
e−v2

c (r )/2σ 2(r )

}
. (5)

Since the cluster continues to orbit at a speed vc(r) as it spirals to

the centre, its angular momentum per unit mass at radius r is at all

times L = rvc(r ). Substituting the time derivative of this expression

into equation (5) we obtain

dr

dt
= −4π ln �(r )ρ(r )G MGCr

v2
c (r )d[rvc(r )]/dr

×
{

erf

[
vc(r )√
2σ (r )

]
− 2vc(r )√

2πσ (r )
e−v2

c (r )/2σ 2(r )

}
. (6)

Substituting values for the initial radii we obtain the analytical

curves drawn in Fig. 2 plotted on top of the results from the nu-

merical simulations.

For the cuspy potential the analytic calculation agrees very well

with the numerical simulation. Haloes with a core give a poorer

agreement. After an initial sinking rate that agrees well with the

analytic expectation, the globulars sink faster as they approach twice

the core radius, and then stop sinking at the core radius. The analytic

formula predicts a continued, but slow infall to the centre. This

resonance/scattering effect will be investigated in a more detailed

paper (Read et al., in preparation). We note, however, that it is not

trivially due to the fact that the globular is of comparable mass

to that enclosed by its orbit; the radius at which M(r ) = M GC is
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Figure 2. Radial distance of the single globular cluster from the centre of

its host halo as a function of time. We start the calculations with the globular

at different initial radii for clarity. Solid curves are the analytic estimates,

dashed curves are from the numerical simulations.

approximately three times smaller than the core radius (see Fig. 4).

The stalling results are apparent in both of the cored halo simulations

(small core and big core). We conclude that the presence of a central

density core leads to the infall of the clusters stopping at the core

radius; the problem is in this sense scalable.

2.1 Particle noise and halo centring

It is difficult to define the centre of the constant density core. The

potential has a negative minimum, but
√

N noise perturbations can

have deeper potentials than the core itself. Thus, defining the centre

using the most bound particle gives a large error in determining

the centre. We found that a shrinking spheres method can work, so

long as one takes the centre of mass of a sphere containing most

of the core. If you continue to shrink the sphere based on a small

number (<104) particles, then this also picks out the largest Poisson

fluctuation in the core. The centre defined using ∼105 particles gives

a robust estimate.

In our standard-resolution simulations, we use 105 particles in the

high-resolution region each of mass 89 M�. Simulating the entire

halo at this resolution would require ∼4 × 107 particles. However,

as discussed above,
√

N noise can be substantial, even at this resolu-

tion. This may introduce spurious heating, preventing the globulars

from sinking. We can investigate this by examining the orbit of the

globular cluster. For a perfectly smooth spherical potential the or-

bit of the globular cluster would always remain in its initial orbital

plane. Fluctuations from particle representation will cause devia-

tions from this plane. Once the globular reaches the high density

centre in the cases of the low-resolution runs fluctuations in the

orbital plane become very large (fluctuations in L z/L ∼ 0.5 per

cent) – the relaxation time is very short and acts to counter dynam-

ical friction. We therefore carried out simulations with ten times as

many particles. At this resolution the fluctuations are greatly reduced

(fluctuations in L z/L ∼ 0.05 per cent).

2.2 Multiple globular clusters

Finally, we reran these simulations using five globulars to study

the effect of having multiple sinking objects. Perhaps interactions
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Figure 3. Radial distance of the five globular clusters from the centre of

their host halo as function of time, as they orbit within a cusped density

distribution. The arrow indicates the radius at which M GC = M(r ).

between the globulars themselves may prevent them from sinking to

the central cusp and merging. We distribute the globulars randomly,

what position and plane of the orbit concerns, with distances to the

centre between 0.2 and 0.8 kpc. The clusters are again placed on

circular orbits around the centre of their host halo and are evolved

with PKDGRAV2.

Interestingly, the clusters do not prevent one another from falling

to the centre, but instead create an interesting prediction. Fig. 3

shows the infall as a function of time for the five globulars in the

cuspy dark matter halo. Notice that all of the clusters fall to the

centre. However, clusters which start out at very similar radii arrive

∼1 Gyr apart. At any given time, even for very similar initial condi-

tions, the clusters occupy a range of radii. By contrast, for the case

with a central dark matter core (see Fig. 4), although the globulars

still arrive at different times due to interactions, they stall at the core
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Figure 4. Radial distance of the five globular clusters from the centre of the

host halo as function of time within the cored potential. The upper arrow

indicates the size of the core and the lower arrow indicates the radius at

which M GC = M(r ).
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Figure 5. Radial density profile of the dark matter haloes. Only the dark

matter is shown, the mass of the globular clusters is neglected. The initial

conditions are compared with the final state of the system. An isolated halo,

evolved for the same time, has exactly the same density profile as the initial

conditions.

radius; they do not sink to the centre even within 20 Gyr.1 Thus, if

Fornax does have a central constant density core we should expect

the clusters to stall at some minimum radius. No globular cluster

could possibly get any closer to the centre of the halo than the core

radius. The lower limit of the core size is constrained by the smallest

observed projected cluster distances to be 0.24 kpc.

Finally, one can see in Fig. 5 that for the case where there is a cusp

and the globular clusters do spiral in, they displace the dark matter

from the centre. Dark matter particles move out of the nucleus. The

density of the dark matter in the centre drops by more than an order

of magnitude, an effect that does not happen in cored haloes. We note

that several authors have recently studied this process in detail. For

example, El-Zant, Shlosman & Hoffman (2001) and Merritt et al.

(2004) study the change in an initial cuspy density profile due to

the frictional effects of sinking objects. This process allows initially

cusped density profiles to be transformed into nearly harmonic cores

as the globulars fall in. For the case of the five globulars in the

Fornax halo, the maximum initial central density slope for which

this can occur is approximately 0.5. Thus in order for these data to

be consistent with a CDM halo, the central cusp must have been

modified and flattened to a slope shallower than this value. Exotic

scenarios which might achieve this include infall and subsequent

blowout of massive gas clouds or star clusters (Read & Gilmore

2005).

3 C O N C L U S I O N S

The Fornax dwarf spheroidal has five globular clusters orbiting at

a projected radius of ∼1 kpc from its centre. Using a cuspy CDM

potential with central slope steeper than 0.5 and normalized to match

the inferred properties from the kinematical data, we find that these

globulars would all sink to the halo centre within 5 Gyr.

By contrast, we showed that if Fornax has a constant density

central core then the dynamical friction time becomes arbitrarily

long – the globulars stop sinking at the edge of the core, thus the

1Recall that this stalling behaviour was also present in the run with a larger

core size and so is not peculiar to the small core density profile.
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present position of the innermost globular gives a lower limit of the

core radius of the dark matter distribution. Since CDM uniquely

predicts that all haloes are cusped, this suggests that the dark matter

distribution within Fornax is not cold, but may be warm dark matter

or some other candidate. Alternatively, the mass distribution has

been modified through some exotic dynamical phenomenon such as

rapid mass-loss (Read & Gilmore 2005). If the phase space density of

the core, measured as Q ∼ 10−5 M� pc−3 (km s−1)−3 in our model,

is primordial then it implies a warm dark matter particle of mass

∼0.5 keV (Hogan & Dalcanton 2000; Dalcanton & Hogan 2001).

This is consistent with that required to largely solve the substructure

problem (Moore et al. 1999a).

Although the dwarf spheroidals around the Milky Way do not

contain prominent nuclei, about 30 per cent of dwarf spheroidals

(dEs) in clusters are nucleated. If these nuclei form by the merging

of star clusters then we must conclude that these galaxies have cuspy

mass distributions. This could be due to the fact that transformation

to dE via galaxy harassment gives an exponential distribution of

stars which usually dominate the central mass distribution. There-

fore, globulars could sink via friction against the stellar background.

Most nucleated dEs are near the cluster centre where harassment is

important which supports this idea.

Our numerical simulations show that the standard Chandreskhar

estimate of sinking time-scales works well for cuspy cores but fails

completely for cored mass distributions. In addition we showed that

over 106 particles are required within the core region to suppress

heating from particle noise (Weinberg 1998). This is particularly

important in a cored mass distribution where the potential minimum

is quite shallow. The fact that cored mass distributions do not give

rise to dynamical friction is an important result. We believe that

this is due to orbit-resonant scattering. This will be the subject of a

forthcoming paper (Read et al. in preparation).

We have shown that a natural solution to the timing problems for

Fornax’s globular clusters is a central dark matter core. A prediction

of this model is that the clusters have a well-defined minimum radius.

Fornax is not alone in showing indirect evidence for such a core.

The UMi dSph galaxy also has substructure which appears to have

survived longer than is possible within a cuspy halo. Understanding

the origin of these constant density cores could be one of the most

exciting challenges facing astronomy in the next few years.
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