<
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

Human Molecular Genetics, 2013, Vol. 22, No. 7
doi:10.1093/hmg/dds532
Advance Access published on December 18, 2012

1289-1299

Tmprss3 loss of function impairs cochlear inner
hair cell Kchnma1l channel membrane expression

Laurence Molina'-", Lydie Fasquelle23, Régis Nouvian23, Nicolas Salvetat!, Hamish S. Scott45,
Michel Guipponi®, Franck Molina', Jean-Luc Puel?3 and Benjamin Delprat?3.*

'SysDiag UMR 3145 CNRS/Bio-Rad, Cap Delta/Parc Euromédecine, 1682 rue de la Valsiére, CS 61003, Cedex 4,
Montpellier 34184, France, “Inserm U 1051, Institut des Neurosciences de Montpellier, Hopital Saint Eloi, Montpellier
34091, France, 3Université de Montpellier, Montpellier 34091, France, 4Department of Molecular Pathology,

The Centre for Cancer Biology, SA Pathology and Box 14 Rundle Mall Post Office, Adelaide, South Australia 5000,
Australia, °The Schools of Medicine and Molecular and Biomedical Science, The University of Adelaide, Adeliade,
South Australia 5005, Australia and ®Department of Genetic Medicine and Development, University of Geneva
Medical School and University Hospitals of Geneva, 4 Geneva 1211, Switzerland

Received October 25, 2012; Revised and Accepted December 12, 2012

Before acquiring their mature state, cochlear hair cells undergo a series of changes in expression of ion
channels. How this complex mechanism is achieved is not fully understood. Tmprss3, a type Il serine prote-
ase expressed in hair cells, is required for their proper functioning at the onset of hearing. To unravel the role
of Tmprss3 in the acquisition of mature K* currents, we compared their function by patch-clamp technique in
wild-type Tmprss3"" and Tmprss3Y26°*-mutant mice. Interestingly, only outward K* currents were altered in
Tmprss3Y?°°*.mutant mice. To determine by which mechanism this occurred, we compared the protein net-
work of Tmprss3"" and Tmprss3Y?°°*-mutant mice using proteomic analysis. This led to the identification of
a pathway related to potassium Kcnma1l channels. This pathway was validated by immunohistochemistry, fo-
cusing on the most downregulated protein that was identified as a cochlear Kcnma1-associated protein,
APOA1. Finally, we show that, in contrast to Tmprss3WT, Kcnma1l channels were absent at the neck of
inner hair cells (IHCs) in Tmprss3Y?6°*-mutant mice. In conclusion, our data suggest that lack of Tmprss3
leads to a decrease in Kchmail potassium channels expression in (IHCs).

INTRODUCTION

The perception of sound relies on the proper functioning of the
cochlea, the peripheral auditory organ. In mammalian cochlea,
inner hair cells (IHCs) translate sound stimulation into graded
receptor potentials. At the onset of hearing (P10-P12 in mice),
IHCs undergo massive changes in their electrical properties
(1,2), and notably, the maturation of hair cells correlates
with the expression of large outward-rectifying potassium cur-
rents, /i f, carried by Kenmal channels (3). The fast activation
kinetics of these channels shape the time course and amplitude
of the hair cell receptor potential (4), indicating that Kcnmal
channels in hair cells are critical for high-fidelity sound encod-
ing. At the same time /i ,, current is expressed to set the resting

potential of IHCs (5,6). This current is generated by KCNQ4
whose mutations are responsible for DFNA2 human deafness
(7). Finally, a classical delayed-rectifier K™ current, name /i ¢
shows slow activation kinetics and represents the slow compo-
nent of the K™ outward current (3).

Mutations in the TMPRSS3 gene were shown to cause human
autosomal recessive non-syndromic deafness (DFNB8/10) (8),
characterized by bilateral, severe to profound hearing loss.
To address the role of the protein in the cochlear physiology,
we generated an ethylnitrosurea (ENU) C3HeB/FeJ-mutant
mouse (9). A T to A substitution in exon 7, resulting in a non-
sense mutation at tyrosine 260 was identified (Tmprss3¥2°*¥)
that would result in the production of a 194 amino acid trun-
cated protein, deleted of most of its protease domain (9).
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The analysis of the Tmprss3'?°**-mutant mice revealed that

Tmprss3 is essential for mouse cochlear hair cell survival at
the onset of hearing and that Tmprss3 mutations induce deaf-
ness in mice (9) and in humans. Indeed, in the Tmprss3*25%*
mutant mice, hair cells degenerate drastically in 2 days
(between P12 and P14). Thus, Tmprss3 is expressed in coch-
lear hair cells in the developing cochlea and at the onset of
hearing, suggesting that Tmprss3 may be a hair
cell-autonomous survival factor (9). We also identified a
novel, longer Tmprss3 isoform with a 22 amino acid extension
at the N-terminal, namely Tmprss3f. This isoform is expressed
predominantly in the cochlea in contrast to the shorter isoform
that is expressed broadly, suggesting a specific role of
Tmprss3f in hair cell functioning and/or survival (9). Finally,
the only known substrate of TMPRSS3 that was observed in
Xenopus oocytes (10) is the epithelial amiloride-sensitive
sodium channel (ENaC).

Because IHC maturation is dependent on a change in ionic
conductance expression, and given that Tmprss3 is known to
activate ENaC channels in Xenopus oocytes, we would like
to determine whether Tmprss3 was able to modulate the func-
tion of channels or channel regulatory proteins in IHCs. Using
an integrated approach combining the patch-clamp technique,
two-dimensional (2D) gels followed by mass spectrometry
analysis, bioinformatic functional studies and immunohisto-
chemistry, we showed, for the first time, that Tmprss3 loss
of function leads to a decrease in the IHCs’ Kcnmal
channel plasma membrane expression. These alterations
were associated with the downregulation of ApoAl in IHCs,
which is a protein identified as a Kecnmal channel interacting
partner expressed in IHCs (11).

Our data highlight a novel link between Kcnmal channels
and a serine protease. This unique finding suggests that this
original relationship seems highly important for the normal
physiology of IHCs and it should be significant for other es-
sential body functions, where Kenmal channels play a key
role, such as neurotransmission (12), blood flow (13), urine
flow (14) and immunity (15).

RESULTS

Lack of fast K* conductance in Tmprss3¥*%°* mouse IHCs

Because ENaC, the only known substrate of Tmprss3, is not
expressed in cochlear hair cells (16—18), whole-cell patch-
clamp recordings were used to probe the K' current in
P13-old apical IHCs before degenerative changes occurred in
this region of the cochlea (9). When depolarized, IHCs from
Tmprss3”" showed an outward K™ current with a fast activating
outward component, reminiscent of Kcnmal currents (3,4,19)
and a more slowly activating component (Fig. 1A). IHCs from
Tmprss372°°X showed a drastic reduction in the amplitude of
the outward currents when measured 1 ms after the start of the
depolarizing pulses (mostly recruiting Kenmal channels activa-
tion; 4.6 + 0.4 nA at 30 and 2.27 + 0.15nA at 37mV in
Tmprss3"" and Tmprss3¥2°°*, respectively,Fig. 1B—D). In con-
trast, the magnitudes of the currents at the end of the depolariz-
ing pulses were comparable between the genotypes (Fig. 1D).
The difference of K* outward current observed between the
Tmprss3”" and Tmprss3729°% could be explained by a delayed

Figure 1. IHCs K" current analysis of Tmprss3”” and Tmprss3"2%* mice.
(A and B) Representative outward currents recorded from P13 Tmprss3””
(A, black) and Tmprss3"2°°* (B, red) IHCs. K" currents were evoked by
100 ms long-step depolarizations from — 114 mV to the indicated potentials
(voltage increments of 10 mV, holding potential of —74 mV). (C) First 10
ms of these outward currents recordings on an expanded time scale.
Tmprss3”" (black) and Tmprss3'2%°* (red). (D) Mean I/V relationships for
Tmprss3”" (black) and Tmprss3™2** (red) IHCs obtained by averaging cur-
rents 1 ms after the start of the depolarizing pulses over 1 ms (filled circles,
early average) and over the last 15 ms of depolarization steps (filled squares,
late averange)A The mean series resistance of Tmprss3”” (black) and
Tmprss3'2°°X (red) IHCs was 3.4 + 0.1 MQ and 3.8 + 0.1 MQ), respectively,
after Rs compensation, and data were corrected offline for the remaining
voltage error and liquid junction potential (—4 mV). Resting membrane capaci-
tance of Tmprss3" " (black) and Tmprss3"2%%% (red) was 9.4 + 0.1 2pF and 8.1 +
0.2 pF, respectively (n = 20 for Tmprss3™", n = 16 for Tmprss372°*Y). The dif-
ference is statistically significant (two sample #-test, P < 0.05).

maturation. However, exocytosis triggered by Ca®" currents
was similar between Tmprss3”” and Tmprss3'2* in P9-
P11-o0ld IHCs (Data not shown), suggesting normal hair cell de-
velopment (20). Current-clamp recordings (/i,j = 0 pA) indicated
no difference in the resting membrane potential of the IHCs
between both genot;/pes (—694 +13mV and —679 +
2.1 mV for Tmprss3"" and Tmprss3'?5°% THCs, respectively).

Differential proteomics

To identify proteins that could regulate the expression of IHC
K* channels and that are linked to Tmprss3, P10 mouse
cochlea extracts from Tmprss3”" and Tmprss3'?%°* were ana-
lyzed by a proteomic approach using 2D-gel electrophoresis
(2D-GE). We chose P10 because it represents a good com-
promise between the presumed absence of the apoptosis-
related proteins that may be present in cochlear extracts at
P12 due to the beginning of hair cell degeneration, and the
presence of mature K currents that begin to appear at P10.
After image analysis, more than 2000 spots were detected
from cochlea extracts with a wide range of molecular
weights (15—-150 kDa) and isoelectric g)oints (3-10pl). To
compare the Tmprss3” " and Tmprss3'2°%* proteomes, it was
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Figure 2. Proteomic analysis and altered pathway in Zmprss3"2***-mutant mice. (A) 2D-GE of proteins extracted from Tmprss3”” cochleae (left gel) and
Tmprss372%°X cochleae (right gel). Seventy-seven protein spots were differentially expressed, and protein spots were up or downregulated (example of spot regu-
lation in the side inset). The proteins of interest identified by LC-MS/MS are shown on the gels by a circle. (B) Heat map and HAC of the 77 protein spots present
in all cochlea 2D-GE. The intensity levels of the protein spots p were visualized by a heat map and HAC analysis using the JMP v8 software. Each column
represents the data from one 2D-GE experiment. Rows represent individual spots. Raw data were mean centered, and the graduated scale color codes from
green (low level of intensity) to red (high level of intensity). (C) Network of identified proteins connected to Kenmal. Nodes and edges are represented by
gray circles and black lines, respectively. Identified proteins differentially expressed between Tmprss3” 7 and Tmprss3¥2*X were highlighted using a graduated
scale from green (downregulated) to pink (upregulated) according to their fold ratio. Proteins that were both up and downregulated in different protein spots
were represented by a ratio of 1 (yellow). Some edges may represent a set of different PPIs found in the database. View of the merged network imported
from Cytoscape using the IntAct and BioGRID databases.

statistical methods:

important to firstly assess the consistency of our dataset after
2D-GE separation. To this end, we used a dispersion tree ap-
proach (20), and the 10 2D-GE experiments were dispersed
homogeneously on the 10 branches of the tree, which
formed a circle (Supplementary Material, Fig. S1A). The
homogeneity of the data was also confirmed by three other

the Mahalanobis distance, principal
component analysis and Pearson correlation (Supplementary
Material, Fig. SIB-D).

In the comparative analysis of all protein spots between
Tmprss3”" and Tmprss372°°X, 77 distinct protein spots were

differentially expressed (Fig. 2A). To visualize these protein
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spots further, we clustered the high-confidence dataset of 77
proteins spots. The dataset was then subjected to hierarchical
clustering analysis generating the heat map and the dendogram
shown in Figure 2B. Two main clusters of protein spots were
clearly detected and differentially regulated. These two clus-
ters corresponded to upregulated proteins in the presence of
Tmprss372°°% (high intensity shown in red) and to downregu-
lated proteins (low intensity shown in green). Thirty-three
protein spots were downregulated and 44 were upregulated
in Tmprss3'2°%X mice. All the differentially regulated protein
spots were identified by liquid chromatography coupled to
tandem mass spectrometry (LC-MS/MS) analysis, and the
results are summarized in the Supplementary Material,
Table S1. One hundred and nineteen independent proteins
were identified (after excluding redundant proteins) because
of the presence of several spots containing more than one
type of identification. Indeed, some proteins were present in
full size form and/or in fragment form, such as vimentin and
tubulin beta-5, and others were present in different pI forms
such as transaldolase 1 and sparc. Moreover, proteins that
were upregulated in a spot and downregulated in another
one were represented by a fold ratio of one. Less than 1%
of proteins identified in our screen are related to apoptosis,
suggesting that the altered expression of the proteins is due
to a lack of function of Tmprss3, rather than a degenerative
process initiated by the IHCs.

Perturbed network identification

To evaluate the potential functional relationships between the
set of identified proteins, we carried out a gene ontology (GO)
enrichment analysis. We then used the Ontologizer software to
perform a statistical analysis of the mapping of the 119 iden-
tified proteins over the functional GO terms (Supplementary
Material, Table S2). Subsequently, we built a wider network
by looking at connected proteins (first-degree neighbors)
with our set of 119 identified proteins using the IntAct and
BioGRID merge network. The average degree of connectivity
of the new network (Supplementary Material, Fig. S2) sup-
ported the potential functional relationships between differen-
tially expressed proteins found in the Y260X-mutated mouse
versus the wild type (WT). This new network (Supplementary
Material, Fig. S2) contained 191 proteins connected with 68
identified proteins. In this network, the identified proteins
were connected to each other at the most with second-degree
neighbors (via a single intermediary). Out of 191 proteins, 160
were present in a main connected subnetwork corresponding
to 52 identified proteins, with 23 upregulated, 23 downregu-
lated and 6 up and downregulated. The other subnetworks,
containing at least one identified protein, were composed of
a maximum of two to five interactions, or of isolated proteins.
In addition, 51 identified proteins did not have any currently
documented interaction partners referenced in the IntAct and
BioGRID databases. From the main subnetworks (160 pro-
teins), only 4 highly connected ‘hub’ proteins were identified.
These ‘hubs’ were Ywhab, Ywhaz, DlIh4 and Kcnmal corre-
sponding to the following proteins: 14-3-3 protein beta/alpha
(Ywhab), 14-3-3 protein zeta/delta (Ywhaz), disks large
homolog 4 (DIg4/PSD95) and calcium-activated potassium
channel sub-unit alpha-1 (Kcnmal) connecting 17, 5, 13 and

22 identified proteins, respectively (Fig. 2C and Supplementary
Material, Fig. S2). Interestingly, Kcnmal protein connected the
largest number of identified 2proteins from corr}\parative 2D-GE
analysis between Tmprss3” " and Tmprss3¥2%°%.

APOAL1 is downregulated in Tmprss3*'?%**-mutant mice

Among the proteins identified by mass spectrophotometry,
APOAT1 was the most known cochlear interacting protein of
Kcnmal, which was downregulated. To validate the APOAL1
regulation by Tmprss3, immunohistochemistry was implemen-
ted on P13 cochlear explants. Using a polyclonal antibody,
APOA1 ’g/red) seemed to be expressed mainly in the IHCs of
Tmprss3” " mice labeled with a monoclonal parvalbumin anti-
body (green) (Fig. 3A). This expression pattern is expected as
APOAL1 has been shown to be expressed in the cytoplasm of
mouse [THC (11). In contrast, APOA1 labeling was fainter in
the remaining Tmprss3'2°** IHCs (Fig. 3B). Indeed, the total
intensity of the APOALI signal inside each IHC is greater in
Tmprss3”T mice than in Tmprss3'2%* mice (Fig. 3C).
Because ApoAl is known to interact with Kenmal channels
(11), the downregulation of ApoAl in Tmprss3*?°°* mice sug-
gests that Tmprss3 impairs the Kenmal channel’s interactome.

Kcenmal channels are not clustered in puncta in
Tmprss3¥2%* mouse IHCs

It is well known that Kcnmal channel immunoreactivity is
clustered in puncta in the neck of mammalian IHCs (19).
Therefore, it is possible to determine whether Kenmal channels
are correctly expressed in the IHCs of Tmprss3'?***-mutant
mouse. To address this question, immunohistochemical staining
of the Kecnmal channel using a monoclonal anti-Kcnmal anti-
body was used in the developing Tmprss3”” and Tmprss3¥25%*
organ of Corti in the same cochlear turn from P12 to P14 (Fig. 4).
Indeed, as there were no more hair cells from P15 in
Tmprss372°**.mutant mice, we did not pursue our study
further after P14. At P12, the period corresponding to the
onset of hearing in mice, some 77 mprss3”7 THCs expressed
Kcnmal channels in their neck (Fig. 4A). In contrast, no
Tmprss372°°* THCs expressed Kenmal channels at this stage
(Fig. 4B). At P13, more Tmprss3”" THCs expressed Kcnmal
channels, and the number of puncta increased per hair cell
(Fig. 4C). As at P12, no P13 Tmprss3"2°** IHCs expressed
Kcnmal channels (Fig. 4D), but signs of IHCs that had degen-
erated were observed. Finally, at P14, all Tmprss3”” THCs
expressed Kcnmal channels, and the number of puncta
increased (Fig. 4E). At P14 in Tmprss3'?%** IHCs, the majority
of IHCs had degenerated, but in the persisting IHCs, no Kcnmal
channel expression was observed (Fig. 4F). We quantified the
number of IHCs expressing Kecnmal channels in their neck de-
pending on the cochlear turn and the age of the animals (see
Fig. 4G). The number of IHCs expressing Kenmal channels
is greater in the basal turn of the cochlea than in the apical
one and increased from P12 to P14 as previously observed (19).

DISCUSSION

The lack of expression of Kcnmal channels at the plasma
membrane may be due to defects of various cellular processes.
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Figure 3. APOALI is downregulated in IHCs Tmprss3'?°**-mutant mice. Cochlear explants were stained with anti-APOA1 antibody in P13 mice. (A) APOA1
(red) is expressed mainly in IHCs, identified by parvalbumin labeling (green) in Tmprss3” " cochlea. (B) Less staining could be observed in the remaining IHCs
of Tmprss37?**-mutant mice. (C) Quantification of the intensity of APOA1 labeling in hair cells in Tmprss3"" (24%) and Tmprss3* 260X_mutant mice (7.6%).

Wilcoxon test, P < 0.05).

One hypothesis may be that as the hair cells begin to degener-
ate, the consequence will be an altered expression of Kenmal
channels. Our data show that only Kcnmal channels are
lacking—the delayed rectifier K™ channel is still present as
is the calcium channel Cavl.3 (this study). However, specific
abolition of Kecnmal channels when cochlear hair cells are de-
generating has never been reported to our knowledge. More-
over, in Beethoven mutant mice, hair cells still have residual
Iy ¢ current just before their degeneration (21). Hence, it is un-
likely that the specific lack of Kenmal channels is due to the
degeneration of cochlear hair cells. Another hypothesis is that
Tmprss372°°* hair cell maturation fails or is delayed as THCs
from Tmprss3'2%%" are smaller than WT littermate. Indeed,
genetic ablation of the calcium channel Cavl.3 sub-unit
(19), and its associated -2 sub-unit (22), ER transmembrane
protein Tmc1 (21), molecular motor Myo6 (23), actin-binding
protein (24), or thyroid hormone receptor (25) leads to the
absence of Ik ¢ current because of a failure or a delay in coch-
lear hair cell maturation. However, transmission electron mi-
croscopy observations of Tmprss3*?*** THCs show normal
development until their degeneration [(presence of small
numbers of ribbons/IHCs, mature synaptic contacts with
only one ribbon/synapse, efferent synaptic contact onto
lateral afferent under IHC and direct efferent synaptic
contact onto OHC (9)], and normal /¢, current am/glitude
and normal exocytosis were measured in Tmprss3'2°** when
compared with Tmprss3"7 (this study). All these observations
suggest involvement of other mechanisms besides maturation
failure or delay.

Observing our differentially expressed protein data, we
identified proteins associated with Kcnmal channels that
may modulate the membrane expression of channels and trans-
porters. Indeed, 15 out of 119 and 13 out of 119 of the proteins
identified in the present screen were identified previously as
Kcnmal channel interacting partners that originated from
membrane/cytoskeletal and cytoplasmic fraction, respectively

The percentage corresponds to the percentage of red color (n = 3 for Tmprss3”7, n = 4 for Tmprss

37260%) The difference is statistically significant (two sample

(26,27). These data suggest that Tmprss3 is a part of Kcnmal
channel pathway and that loss of function of Tmprss3 inter-
feres with proper Kcnmal channel membrane expression.
Interestingly, three proteins identified in our screen induce
deafness either in humans (y actin and serpinb6) or mice (3
actin). ACTGI (y actin) was identified as the causative gene
of DFNA20/26 human deafness (28) and in the syndromic
deafness form of Baraitser-Winter Syndrome 2 (29). All
DFNB20/26 patients display progressive, bilateral, sensori-
neural hearing loss that begins in the high frequencies. As
age increases, the degree of hearing loss increases, with
threshold shifts seen at all frequencies (28). In contrast, con-
genital or late-onset progressive hearing loss is a common
feature of Baraitser-Winter syndrome 2. Actgl is essential
for the stereocilia maintenance in mice (30), but not their
normal development. However, Tmprss3'?%**-mutant mice
have normal stereocilia (9). Interestingly, downregulation of
Actgl, which interacts with Kcnmal, decreases Kcnmal
channel membrane expression in transfected CHO cells (27).
As Actgl is downregulated in our screen, it is tempting to
speculate that Tmprss3 affects the distribution of Actgl that
in turn affects the proper expression of KenmAl channel at
the inner hair cell plasma membrane. ACTB (3 actin) muta-
tions cause Baraitser-Winter Syndrome 2 (29). Actb is also
required for stereocilia maintenance, and mutations in mice
lead to progressive deafness (30). Like Actgl, Actb interacts
with Kcnmal, and its downregulation in podocytes decreases
Kcnmal surface expression (31). As Actb is downregulated
in our proteomic screen, this may lead to a decreased expres-
sion of Kcnmal at the inner hair cell surface. Interestingly,
Eps8, a protein with actin binding, bundling, and barbed-end
capping activities is a novel component of the hair bundle
that is localized predominantly at the tip of the stereocilia
and is essential for its normal elongation and function (24).
Surprisingly, IHCs from Eps8 knockout mice do not develop
adult-type ion channels (lack of /x ¢ conductance linked to
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Figure 4. Kcnmal channels are no longer expressed in the neck of IHCs of Tmprss3'2***-mutant mice. (A) Cochlear explants were stained with anti-Kcnmal

antibody (red) in P12 mice. IHCs were identified with parvalbumin staining using anti-parvalbumin monoclonal antibody (green), and the nucleus was stained
with Hoechst. Kecnmal channels were expressed in the neck of some IHCs from Tmprss3””. (B) In contrast, no Kenmal expression was found in the IHCs from
P12 Tmprss3'?** mice. (C) Kenmal channels were more expressed in each P13 Tmprss3” " THC and in more IHCs of the same turn. (D) As for P12, no Kenmal
labeling was found in Tmprss3¥2**X THCs. (E) Kenmal channels were expressed in all P14 Tmprss3” " THCs of the same turn. (E) Like P13, no Kenmal labeling
was found in Tmprss372°** THCs. (G) Quantification of Kenmal channel expression in the developing organ of Corti from P12 to 14 in three cochlear turns: M1,
M2 and A (mid-turn 1, mid-turn 2 and apex). An increase in the number of IHCs expressing Kenmal channels was found from P12 to P14 in the Tmprss3””
cochlea (blue vertical bar). The number of IHCs expressing channels was greater in the mid-turn than in the apex at the same developmental stage. In contrast, no
Kenmal channel immunoreactivity was observed in any Tmprss372**X THCs (red line) (n = 4 for Tmprss3"7, n = 4 for Tmprss372*X). The difference is stat-
istically significant (two sample r-test, P < 0.05).

Y260X
3

Kcnmal channels) as observed in Tmprss mice, but /¢, that Serpinb6 exhibits a prosurvival function in Caenorhabdi-

current and exocytosis fail to mature in Eps8 knockout mice in
contrast to Tmprss3'2°** mice. These data suggest that the
same phenotype (lack of Kcnmal) is due to two different
mechanisms. Finally, SERPINB6-truncating mutation is asso-
ciated with DFNB91 deafness (32). Serpinb6 is a proteinase
inhibitor of cathepsin G and kallikreins. It has been shown

tis elegans (33). In developing and in adult cochlea, Serpinb6
is expressed in cochlear hair cells, suggesting a critical role of
the protein in hair cell physiology (32). Nevertheless, Serpinb6
has not yet been identified as a partner of Kcnmal, and no in-
formation could be found showing a link between Serpinb6
and surface membrane expression of Kcnmal.



The analysis of the proteomic approach underlies 14.3.3 3
and 14.3.3 { as potential proteins functionally related to the
Tmprss3¥2°*  mutation. Considering the IHC Kcnmal
channel plasma membrane alteration, it is tempting to specu-
late that 14.3.3 proteins may be involved. Indeed, it has
been shown that 14.3.3 B, 1433 &, 1433 7, 1433 v,
1433 7 and 14.3.3 { interact with Kcnmal channels and
that downregulation of 14.3.3 vy induces an increase in
Kcenmal channel membrane expression in CHO cells (27).
14.3.3 B knockdown increases ENaC membrane expression
(34), 14.3.3 B mediates forward trafficking to the plasma
membrane of KCNK3 (35) and 14.3.3 { mediates trafficking
to the plasma membrane of KA2 kainate receptors (36). More-
over, 14-3-3 proteins promote the cell surface transport of cor-
rectly assembled complexes (37). Interestingly, cleavage of
14-3-3 proteins, which is executed by at least two different
mechanisms, probably involves caspase-3 and a still
unknown protease beyond the caspase family in an isoform-
specific manner (38) that could be Tmprss3. Of course, we
cannot rule out the possibility that Tmprss3 directly controls
the membrane expression level of Kcnmal channels, as
Tmprss3 and Kcnmal channels co-localize in the ER of
transfected cells.

This novel link between Kcnmal channels and a type II
serine protease may be highly significant in other organs, as
Kcnmal channels are widely expressed in neuronal and non-
neuronal tissues, including epithelia, smooth muscle cells
and sensory cells, where they couple membrane potential
and intracellular Ca*™ concentration (39—41). Kenmal chan-
nels contribute to the repolarization of action potentials
(APs) (42), mediate the fast phase after hyperpolarization fol-
lowing an AP (43—45), shape the dendritic Ca®* spikes (46)
and influence the release of neurotransmitters (47). Achieving
a better understanding of the role of Kcnmal channels is im-
portant not only for furthering our knowledge of the involve-
ment of these channels in physiologic processes but also for
pathophysiologic conditions that have been demonstrated by
recent discoveries implicating these channels in neurologic
disorders. Indeed, autism and mental retardation have been
linked to haploinsufficiency of the Slol gene and decreased
Kcenmal channel expression (48). In addition, Kcnmal
channel mutations have been identified through genetic
screening of a family with generalized epilepsy and paroxys-
mal dyskinesia (14).

In conclusion, our experiments indicate that Tmprss3 defi-
ciency causes a selective lack of functional Kecnmal channels.
Future experiments will be required to clarify the exact
mechanism by which Tmprss3 regulates the abundance of
functional Kenmal channels in IHCs. However, the data pre-
sented here already strongly suggests that Tmprss3 must be
considered as an important factor for the proper functioning
of hair cells.

MATERIALS AND METHODS
Animal handling

The care and use of animals followed the animal welfare
guidelines of the ‘Institut National de la Santé et de 1a Recherche
Medicale’ (Inserm), under the approval of the French ‘Ministere
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de I’Alimentation, de I’ Agriculture et de la Péche.” All efforts
were made to minimize the number of animals used and their
suffering. Tmprss3'2%** mice were described previously by
Fasquelle et al. (9).

Preparation of mouse inner ear extracts for
proteomics analysis

Cochleae were isolated from 15 10-day-old mice of each geno-
type (WT and mutant) in cold PBS, and the bone was
removed. The dissected cochleae were rinsed in water and
wiped with paper before being placed in a microcentrifuge
tube and weighed. The cochleae pellets were then frozen in
liquid nitrogen and stored at —80°C. According to their
weight, the pellets were resuspended in a defined volume of
buffer (100 /10 mg of tissue) containing 8 M urea, 2 M thio-
urea, 4% w/v CHAPS, 65 mwm dithioerythritol (DTE), 40 mm
Tris and protease inhibitors (Roche Diagnostics, Meylan,
France) and sonicated for 3 x 10 s pulses at 20 kHz (Vibracell
72446, Fisher Scientific, Illkirch, France). After solubilization
at room temperature (RT) on a rotating wheel for 2 h, the
samples were centrifuged at 20 000g for 30 min, and the
supernatants were collected and stored at —80°C until use.
The amount of protein was estimated using a modified Brad-
ford method (49).

2D-GE of proteins

Precast IPG strips (18 cm) with a non-linear immobilized pH
3—10 gradient were rehydrated with 70 g of protein sample
in 8 M urea, 2M thiourea, 4% w/v CHAPS, 65 mm DTE,
0.0025% v/v bromophenol blue, and 1% v/v IPG buffer (3—
10) overnight (50). Isoelectric focusing (IEF) was carried
out on the Ettan™ IPGphor™ IEF system at 20°C using a gra-
dient mode to a total amount of 50 kVh. After the first dimen-
sional run, the proteins were reduced (65 mm DTT in 6 M urea,
50 mm Tris—HCI, pH 8.8, 30% v/v glycerol, 2% w/v SDS and
0.001 v/v bromophenol blue) and then alkylated for 10 min in
a similar buffer containing 135 mm iodoacetamide instead of
DTT. Subsequently, the proteins were separated in the
second dimension on homemade 12% SDS-polyacrylamide
gels using an ISO-DALT electrophoresis unit at a constant
voltage of 120 V at 10°C overnight. Analytical gels were
stained with a Sypro Ruby fluorescence dye (Bio-Rad, Hercu-
les, CA, USA) according to the manufacturer’s instructions. At
least five biologic replicates per genotype (Tmprss3”” and
Tmprss372°%X) were performed simultaneously to guarantee re-
producible results. Each biologic sample was composed of a
pool of six individual cochleae corresponding to three animals.

Image analysis

Gels were digitalized individually with a Typhoon 9400 laser
scanner (GE Healthcare Life Sciences, Piscataway, NJ, USA)
at 50 wm resolution with a photo multiplier tube voltage
adjusted for maximum range without signal saturation.
Images were stored as 16-bit gel files and then analyzed
using the Progenesis Samespot™ software v3.0 (Nonlinear Dy-
namics, Durham, UK). Images were warped for accurate align-
ment and spots were then detected automatically. Progenesis
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Samespot™ is based on the concept of recursive gel matching,
which means that each gel in a matching set is used recursive-
ly as ‘reference gel’ once during the matching process. The
quality of the automatic match was evaluated critically in
each case, and if necessary, corrections were made manually.

Statistics

All statistics and figures were computed using the ‘R/Biocon-
ductor’ statistical open source software (51) and the JMP v8
software (SAS Institute, Inc.). The differential intensity levels
of protein spots between the Tmprss3”” and Tmprss3'25%*
samples were analyzed by the non-parametric Wilcoxon rank
sum test (also called the Mann—Whitney U-test). A P-value
less than 0.05 was considered statistically significant. The
area under the curve (AUC) receiver operating characteristic
(ROC) was also calculated with the ROC package, and an
AUC ROC value greater than 0.800 was considered significant.

Hierarchical ascendant clustering (HAC) analysis
Hierarchical ascendant clustering (HAC) is a method of cluster
analysis based on a pairwise distance matrix, which builds a
hierarchy of clusters with sequentially agglomerative and div-
isive approaches. We used this method to organize the map
and to group the spots according to the nearest level of inten-
sity. For this analysis, raw data were mean centered, and the
Pearson correlation matrix and average linkage were chosen
as parameters.

Protein identification

Spots of interest were excized from preparative gels with a
Propic robot (Perkin-Elmer, Wellesley, MA, USA). All sub-
sequent steps were done automatically using a Multiprobe 11
robot (Perkin-Elmer). Spots were first washed with 300 wl of
water and then 300 pl of 25 mm NH4HCOj;. Destaining was
performed twice in the presence of 300 wl of 50% aceto-
nitrile in 25 mm NH4HCO3;. Gel pieces were then dehydrated
twice using 300 pl of 100% CH;CN and finally dried at 37°C
for 1 h. Eight microliters of a trypsin solution (Sequencing
grade modified trypsin, Promega, Madison, USA) at a con-
centration of 0.0125 pg/pl in 25 mm NH4HCO; was added
to every spot. Digestion was performed overnight at 37°C
and stopped by the addition of 2 pl of 2% formic acid.
Digests were sonicated in an ultrasonic bath for 10 min,
and supernatants were transferred into HPLC polypropylene
tubes.

Protein digests were analyzed using a high-capacity ion
trap mass spectrometer (Esquire HCT; Bruker Daltonik
GmbH, Bremen, Germany) and interfaced with a nano-HPLC
Chip-Cube system (Agilent Technologies, Santa Clara, USA).
The chips contained both the pre-column and the column
(Zorbax 300SB-C18; Agilent Technologies). Samples were
first loaded onto the 4 mm enrichment cartridge at a flow rate
of 4 pl/min using 0.1% formic acid. After pre-concentration,
peptides were separated on the column (75 pm diameter and
43 mm length) at a flow rate of 0.3 wl/min using a 15 min
linear gradient from 3 to 80% acetonitrile in 0.1% formic
acid and eluted into the mass spectrometer. A capillary
voltage of 1.8-2.1kV in the positive ion mode was used

together with a dry gas flow rate of 4.5 I/min at 250°C. A
first full-scan mass spectrum was measured in the 310—1800
m/z range, followed by a second scan at higher resolution to
measure precisely the mass of the three major ions in the previ-
ous scan. Finally, a third scan was performed to acquire the
collision-induced MS/MS spectra of the selected ions. MS/MS
raw data were analyzed using the data analysis software
(Bruker Daltonik GmbH, Bremen, Germany) to generate the
peak lists. The NCBI non-redundant database (NCBInr,
release 20101018) was queried locally using the Mascot
search engine (v. 2.2.04; Matrix Science, London, UK) with
the following parameters: Mus for the taxonomy, trypsin as
the enzyme, one missed cleavage allowed, carbamidomethyla-
tion of Cysteine as a fixed modification, oxidation of Methio-
nine as a variable modification, and 0.6 Da mass accuracy in
both MS and MS/MS. Under these conditions, individual ion
scores above 38 indicated identity or extensive homology
(P < 0.05), and proteins were validated once they showed at
least 1 peptide over this threshold.

Protein interaction data and network visualization

The gene names of the identified proteins were used to
perform GO enrichment analysis using the Ontologizer soft-
ware. This Java Web Start application allows the statistical
analysis of sets of proteins or genes of interest mapped onto
GO terms (http://compbio.charite.de/ontologizer) (52). GO an-
notation files (gene_association.wb and gene_ontology_edi-
t.obo) were downloaded from www.geneontology.org in
October 2011. The ontologizer was run using the following
parameters: biologic process, parent—child union and the Ben-
jamini—Hochberg statistical test. Biologic processes showing
P-values below 0.05 were considered statistically significant.
The ontologizer allows visualization of data as a directed
acyclic graph highlighting all significantly enriched GO
terms, in turn linked to the genes/proteins of interest.

PPI data were combined with our set of identified proteins
to build a functional network. Full PPI datasets were avail-
able from two different open source literature-curated
protein interaction databases: IntAct (http://www.ebi.ac.uk/
intact/site/index.jsf; dated March 28 2011) and the Biological
General Repository for Interaction Datasets (BioGRID;
http://thebiogrid.org/; version 3.1.74). PPI networks were
generated using Cytoscape (53), an open source software
(http://www.cytoscape.org/; version 2.8.1). The gene names
of all identified proteins were imported into IntAct via
its Cytoscape plug-in. BioGRID datasets from Mus musculus
(file BIOGRID-ORGANISM-Mus_musculus-3.1.74.tab)
were imported into Cytoscape via the BioGRID plug-in (Bio-
gridPlugin2). Proteins were represented by nodes and the inter-
actions by edges. Then, for each of identified proteins, the direct
interacting neighbors were identified (length = 1). Finally, the
PPI networks from the IntAct and BioGRID databases were
merged with an advanced merge network plug-in and displayed
with Cytoscape using the edge-unweighted spring embedded
style. The selection of subnetworks was based on the degree
of connectivity of a significant number of identified proteins.
Highly connected proteins were named ‘hubs proteins.’



Immunohistochemistry and confocal imaging

Cochleae were extracted from the temporal bones of 12-, 13-
or 14-day-old mice and fixed in cold 4% paraformaldehyde for
1 h with shaking. After several washes in PBS, organs of Corti
were isolated from the stria vascularis and modiolus and incu-
bated in a goat serum dilution buffer (GSDB) (16% normal
goat serum, 450 mm NaCl, 0.3% Triton X-100, and 20 mm
phosphate buffer, pH 7.4) at RT for 1 h. Anti-Kcnmal rabbit
antibody (Sigma Aldrich, St. Louis, MO, USA), anti-APOA1
goat antibody (Novus Biologicals, Cambridge, UK) that was
successfully used in mouse (54,55) and anti-parvalbumin
mouse antibody (Swant, Marly, Switzerland) were diluted in
GSDB at 1/2000, 1/500 and 1/750, respectively and applied
overnight at 4°C with shaking. After washing with washing
buffer (450 mm NaCl, 20 mm phosphate buffer pH 7.4 and
0.3% Triton X-100) (6x 10 min with shaking), the organs of
Corti were incubated with goat anti-rabbit and goat anti-mouse
antibodies, respectively, coupled with Alexa Fluor-594 and
-488 (Jackson ImmunoResearch Laboratories, Suffolk, UK)
diluted at 1/3000 in GSDB for 1h 30 at RT with shaking
and protection from light. A 5 min supplementary incubation
was carried out after the addition of Hoechst (FluoProbes,
Interchim, Montlugon, France) at 1/200. After three 10 min
washes each in a washing buffer, the organs of Corti were
washed for 10 min in 5 mm phosphate buffer, pH 7.4, placed
onto a glass microscope slide in a DaKo fluorescent mounting
medium (DakoCytomation, Trappes, France) and covered with
a thin glass coverslip. Confocal images were acquired using a
laser scanning confocal microscope LSM 510 (Zeiss, LE
PECQ, France) with argon and helium—neon lasers for excita-
tion. Oil immersion objectives with a magnification of 63 x
were used, and Z-stacks were acquired using a step size of
1.5 pm. Three-dimensional reconstruction images were made
using the Imaris software. No immunoreactivity was detected
in the absence of the primary antibodies.

The intensity of APOA1 immunolabeling was quantified
from red green blue confocal images using custom-made
program written in MATLAB (The Mathworks). The APOAI-
labeled voxels (red channel) localized in IHC cytoplasm
(green channel) were (i) isolated using parvalbumin immuno-
labeling as a mask and (ii) used to calculate the mean inten-
sity. Mean intensities were calculated in Tmprss3”” (n = 3)
and Tmprss372°* animals (n=4) and compared with
Mann—Whitney—Wilcoxon test. These numbers correspond
to the number of measurements. Each measurement contains
at least five hair cells.

As mouse cochlea length has been found to average 6 mm
(56), including the basal (3 mm), the middle (2 mm) and the
apical (1 mm) coils, and as the IHCs have already degenerated
at P12, the counting of the number of IHCs expressing
Kcnmal channels was achieved in middle turn (separated
into two, M1 and M2) and in the apical turn (A).

Patch-clamp recordings

After cervical dislocation of the Tmprss3”” and Tmprss3¥25%

mice (postnatal day 13, P13), IHCs of the apical coil of freshly
dissected organs of Corti were patch clamped at RT in whole-
cell configuration. The pipette solution contained (in mm) 135
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KCI, 10 Hepes buffer, | MgCl,, 2 Mg-ATP, 0.3 Na-GTP and 5
ethyleneglycol-bis(B-aminoethyl ether)-N,N,N’,N'-tetraacetic
acid. The extracellular solution contained (in mm) 144
NaCl, 5.8 KCI, 0.9 MgCl,, 10 HEPES, 1.3 CaCl, and 10
p-glucose. The solutions were adjusted to pH 7.2 with osmo-
larities between 290 and 310 mOsmol/l. All chemicals were
obtained from Sigma (Sigma Aldrich). The EPC-10 amplifier
(HEKA, Lambrecht, Germany), controlled by the Patchmaster
software (HEKA), was used for recording measurements. For
K™ currents, series resistance (R,) compensation was applied
to 60%. The voltage was corrected offline for the voltage
drop across uncompensated series resistance. Currents were
low-pass filtered at 5 kHz and sampled at 50 kHz. All voltages
were corrected for liquid junction potentials calculated
between the pipette and the bath (4 mV). Currents were leak
corrected using a p/10 protocol (usually 10 leak pulses with
amplitudes of 20% of the original pulse from a holding
potential of —104 mV). Cells that displayed a membrane
current exceeding —50 pA at —74 mV were discarded from
the analysis.
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