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The effects of boundary topography on convection in Earth’s core
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S U M M A R Y
We present the first investigation that explores the effects of an isolated topographic ridge
on thermal convection in a planetary core-like geometry and using core-like fluid properties
(i.e. using a liquid metal-like low Prandtl number fluid). The model’s mean azimuthal flow
resonates with the ridge and results in the excitation of a stationary topographic Rossby wave.
This wave generates recirculating regions that remain fixed to the mantle reference frame.
Associated with these regions is a strong longitudinally dependent heat flow along the inner
core boundary; this effect may control the location of melting and solidification on the inner
core boundary. Theoretical considerations and the results of our simulations suggest that the
wavenumber of the resonant wave, LR, scales as Ro−1/2, where Ro is the Rossby number.
This scaling indicates that small-scale flow structures [wavenumber m ∼ O(102 − 103)] in
the core can be excited by a topographic feature on the core–mantle boundary. The effects of
strong magnetic diffusion in the core must then be invoked to generate a stationary magnetic
signature that is comparable to the scale of observed geomagnetic structures [m � O(10)].

Key words: Numerical solutions; Dynamo: theories and simulations; Magnetic anomalies:
modelling and interpretation; Core, outer core and inner core; Dynamics: convection currents,
and mantle plumes; Planetary interiors.

1 I N T RO D U C T I O N

Observations of the geomagnetic field show the presence of high-
latitude flux patches that have remained spatially fixed relative to
the mantle for approximately 400 yr (e.g. Gubbins & Bloxham
1987). Palaeomagnetic studies have sought to construct a more re-
liable time-averaged geomagnetic field by extending records back
as much as 5 Myr (Johnson & Constable 1997; Kelly & Gubbins
1997). Many workers employing palaeomagnetic data have found
significant non-zonal structure in the time-averaged field (Gubbins
& Kelly 1993; Johnson & Constable 1997; Kelly & Gubbins 1997;
Korte & Constable 2006), although some have not (Carlut &
Courtillot 1998).

Any non-zonal structure in the time-averaged geomagnetic field
would likely imply that convective structures in the core interact
with thermal, electromagnetic or topographic heterogeneities at the
core–mantle boundary (CMB). In addition, lateral variations in the
thermal conductivity of the mantle near the CMB can result in a
heterogeneous heat flux across this interface. Much work has been
devoted to understanding thermal core–mantle coupling (Bloxham
& Gubbins 1987; Zhang & Gubbins 1993; Sumita & Olson 1999,
2002; Willis et al. 2007; Aubert et al. 2008; Davies et al. 2009).

�Now at: Department of Applied Mathematics, University of Colorado,
Boulder, CO 80309, USA.

Topographic core–mantle coupling has been of interest for under-
standing the axial torques (Hide 1969; Anufriev & Braginsky 1975,
1977a,b; Moffatt 1978; Jault & Le Mouël 1989; Jault & Le Mouël
1990, 1991; Kuang & Bloxham 1993; Kuang & Chao 2001) and
the equatorial torques (Hide et al. 1996; Hulot et al. 1996) that the
fluid core exerts on the mantle. Comparatively fewer studies have
examined the explicit role that CMB topography plays in altering
the convective dynamics of the core (Bell & Soward 1996; Bassom
& Soward 1996; Herrmann & Busse 1998; Westerburg & Busse
2003). Of these works, only a single numerical study (Herrmann
& Busse 1998) and a related laboratory experiment (Westerburg &
Busse 2003) have been carried out to examine the effects of CMB
topography on the convective dynamics of the core. More work is
necessary to determine the conditions under which CMB topogra-
phy is important in the core, and whether these effects are likely to
be manifested in the structure of the observed geomagnetic field.

Topographic and thermal heterogeneities on the CMB are the re-
sult of convection occurring in the overlying mantle. Mountains and
ridges extending down into the core, for instance, can be formed by
cold, downwelling material that comes to rest on the CMB. Simi-
larly, hot plumes that detach from the CMB induce stresses in the
mantle that may drag the CMB upward towards the Earth’s surface.
Numerical simulations of mantle convection demonstrate that these
processes do occur at the CMB, though the details of the resulting
CMB structure are dependent upon the local rheological properties
of the mantle (Lassak et al. 2007; Yoshida 2008; Lassak et al. 2010).
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Seismic studies have investigated the shape of the CMB, though
the results have been strongly model-dependent due largely to the
presence of strongly heterogeneous material at the base of the man-
tle (Morelli & Dziewonski 1987; Doornbos & Hilton 1989; Rodgers
& Wahr 1993; Sze & van der Hilst 2003). These investigations have
reported topographic amplitudes as high as O(10) km. The recent
work of Tanaka (2010) finds topographic amplitudes of up to ±2 km,
an estimate that we will use in this study.

The importance of topography on the dynamics of geometrically
thin rotating fluid systems such as the Earth’s atmosphere and ocean
is well known and has motivated numerous studies (e.g. Maxworthy
1977; Charney & DeVore 1979; Legras & Ghil 1985; Wolff et al.
1991; Pfeffer et al. 1993; Weeks et al. 1997; Tian et al. 2001; Read
& Risch 2011). Indeed, coupled with variations in temperature on
the Earth’s surface, the Himalaya and Rocky mountain ranges in the
northern hemisphere represent one of the primary contributions to
the time-averaged zonally asymmetric flow in the atmosphere that
is characterized by a predominantly m ≈ 2 wavenumber (Held et al.
2002). Laboratory experiments and numerical simulations of zonal
flow interaction with topography have been successful at reproduc-
ing some of the observed large-scale structure in the atmosphere and
ocean (Maxworthy 1977; Weeks et al. 1997; Tian et al. 2001; Read
& Risch 2011). In contrast, very little is known about the dynamical
effects of CMB topography on the convective dynamics of the core.
Whereas the Rossby number (i.e. the ratio of inertia to Coriolis
force) for the atmosphere is ∼10−1, in the core the Rossby number
is closer to ∼10−6. This small value implies that the influence of
the Coriolis force within the core is very strong, which suggests
that CMB topography may influence the structure of core flow.

Core-related topographical studies have so far been limited to
sinusoidal topography of a single wavelength and to low Reynolds
numbers (i.e. the ratio of inertia to viscous forces) (Anufriev &
Braginsky 1975, 1977a,b; Bassom & Soward 1996; Bell & Soward
1996; Herrmann & Busse 1998; Westerburg & Busse 2003). Bell
& Soward (1996) examined the effects of topography in the an-
nulus model of rapidly rotating convection (e.g. Busse 1970).
They demonstrated that the buoyancy force can act directly on
the geostrophic flow when topography is present, thus driving a
mean flow at the onset of convective motions. Bassom & Soward
(1996) extended the work of Bell & Soward (1996) to the case of
a full sphere, showing that near the onset of convection topogra-
phy induces a localized form of convection adjacent to the bound-
ary. Herrmann & Busse (1998) also employed the annulus model
to examine how the critical Rayleigh number changes with topo-
graphic amplitude and topographic wavenumber, and investigated
the weakly non-linear properties of the resonant mode that is excited
by the topography.

Further work is necessary to understand how the turbulent, high
Reynolds number (∼108) flow of the core responds to CMB to-
pography that contains a range of wavelengths. For this reason, this
study focuses entirely on the interaction of chaotic non-magnetic
flows with a single Gaussian topographic feature. Gaussian topog-
raphy is useful because it is characterized by a broad range of wave-
lengths, and is therefore more likely to model realistic conditions
at the CMB. This choice of topography also allows for resonance
with any zonal flow that is produced in our simulations, provided
viscous forces are sufficiently weak (e.g. Vallis 2006).

In the present work, we employ the 2-D quasigeostrophic con-
vection model (QGCM) (e.g. Cardin & Olson 1994; Aubert et al.
2003; Morin & Dormy 2004, 2006; Gillet & Jones 2006; Gillet et al.
2007) to examine the effects of CMB topography on the convective
dynamics of the core. The use of the QGCM allows us to reach

lower Ekman number and higher Reynolds number flows than is
possible in most 3-D models of core convection. Furthermore, re-
cent work examining the time-varying geomagnetic field supports
the idea that the large scale motions of the core are dominated by
quasigeostrophic dynamics (Schaeffer & Pais 2011).

As with previous studies of topographic effects on core dynamics
(Bassom & Soward 1996; Bell & Soward 1996; Herrmann & Busse
1998; Westerburg & Busse 2003), we do not consider the effects
of a magnetic field in the present work. Cardin & Olson (1995)
employed the QGCM without boundary topography to show that a
magnetic field can significantly reduce the amplitude of the zonal
flow. Their results also showed that a magnetic field of sufficient
strength can cause a reversal of the zonal flow direction. Focusing
on the non-magnetic case with a single topographic feature thus
allows us to isolate the most basic response of the system, and will
provide a useful comparison for the more complicated case of mag-
netoconvection with boundary topography that will be investigated
in future work.

We fix the topographic width and fluid properties, although vary-
ing the rotation rate of the system, the thermal driving strength and
the topographic amplitude. Our results show that the presence of
the topography results in the excitation of a stationary topographic
Rossby wave. The wave generates a strongly longitudinally depen-
dent heat flux, and an increase in the strength of the zonal flow.
For the first time, we show that, even in the presence of convective
turbulence, topography on the CMB can create flow structures that
remain fixed relative to the mantle. Section 2 presents the QGCM
and the numerical methods used for solving the governing equa-
tions. In Section 3, we present our results, and in Section 4 we
discuss the implications for the Earth’s core.

2 M E T H O D O L O G Y

We extend the QGCM used by previous authors (Cardin & Ol-
son 1994; Aubert et al. 2003; Morin & Dormy 2004, 2006; Gillet
& Jones 2006; Gillet et al. 2007) with the inclusion of non-
axisymmetric boundary topography. The QGCM is an extension
of the original theory developed by Busse (1970) for convection in
rapidly rotating spherical shells. The primary difference between
the two models lies in the treatment of the outer bounding surfaces;
the QGCM employs spherical (curved) outer boundaries, whereas
Busse’s original asymptotic theory requires the use of small lin-
early sloping outer boundaries. Detailed comparison with labora-
tory experiments in water and liquid gallium have shown that the
QGCM captures the essential qualitative dynamics of turbulent ro-
tating convection in a spherical shell (Aubert et al. 2003; Gillet
et al. 2007), even though it is not asymptotically valid in this case.
The basic premise of the QGCM is that the rapid rotation results
in cylindrically radial and azimuthal velocity components that are
approximately invariant in the direction of the rotation axis. This
property results in ‘columnar’ convection (see Fig. 1a) (e.g. Sprague
et al. 2006; Grooms et al. 2010) that remains accurate as long as
the buoyancy forcing is not too strong (Sprague et al. 2006; King
et al. 2009, 2010). Assuming such a columnar flow, a 2-D vortic-
ity streamfunction formulation can be employed in the equatorial
plane, thereby resulting in substantial computational savings when
compared to 3-D models.

The flow domain that we consider is shown in Fig. 1(a) and con-
sists of a spherical shell ‘section’ with inner radius ri and outer
radius ro rotating with steady angular velocity �. The radius ratio is
fixed to η = ri/ro = 0.30. The equations are solved in a cylindrical
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Figure 1. (a) Schematic of the flow domain used in the current study. � is the rotation rate of the system, g is the gravitational acceleration and ri and ro are
the inner and outer radii, respectively. The equations are solved in the equatorial plane of outer cylindrical radius, so, shown in blue. The fluid motion consists
of thin columnar structures, shown in red, that remain parallel to the rotation axis [adapted from Aubert et al. (2003)]. The tangent cylinder (TC) is shown by
the shaded region tangent to the inner sphere. In this study, η = ri/ro = 0.3, so/ro = 0.85. (b) Oblique view of the bottom half of the outer spherical surface with
the Gaussian ‘ridge’ topography superposed. For clarity the amplitude of the ridge shown here is ε = −0.20. The standard deviation of the ridge’s latitudinal
extent is fixed throughout this study at σ = 0.3/

√
2.

coordinate system (s, φ, z), where the equatorial plane is located
at z = 0. As with previous work, flow within the tangent cylinder
(TC) is not considered. (The TC is the cylindrical region tangent
to the inner sphere and parallel to the rotation axis, and is shown
by the shaded region in Fig. 1a.) In this study, we consider a single
Gaussian ‘ridge’ that extends radially across the bottom boundary
as shown in Fig. 1(b). The amplitude of the ridge does not depend on
cylindrical radius, s. We, therefore, exclude the equatorial region of
the outer spherical surface by limiting the radial solution domain to
s ∈ [ri, so] to prevent the topography from intersecting the equatorial
plane. Without this restriction, the equatorial plane will no longer be
circular; such domains require numerical techniques that are con-
siderably more complex than that which we employ in the current
study. Similar restrictions have been used by Yano et al. (2005) and
Takehiro (2008) for the case of axisymmetric boundaries. Through-
out this study we set so = 0.85 ro, such that the equatorial region is
removed at a latitude of αo = cos −1(so/ro) ≈ 32◦.

The formulation for the QGCM outlined here expands upon
that of Gillet & Jones (2006) by including the effects of non-
axisymmetric boundary topography. The contained fluid is char-
acterized by a kinematic viscosity ν, thermal diffusivity κ and ther-
mal expansion coefficient α. The basic state is cylindrical heat
conduction, with the temperature on the inner and outer boundaries
held constant at T ∗

i and T ∗
o , respectively. Gravity is taken to vary

linearly with cylindrical radius, g = −gs/ro. The equations are
non-dimensionalized using d = ro − ri for the length scale, d2/κ as
the time scale and �T ∗ = T ∗

i − T ∗
o for the temperature scale. We

take the basic dimensionless conductive temperature profile Tc as
the solution to the equation

∇2Tc = 0, (1)

with boundary conditions Tc(ri) = 1 and Tc(so) = 0; where we use
the notation

∇2(·) =
[

1

s

∂

∂s

(
s
∂(·)
∂s

)
+ 1

s2

∂2(·)
∂φ2

]
. (2)

As the QGCM is not capable of modelling the axial (z) diffusion of
heat, the term ∂2/∂z2 has been omitted in eq. (2). The solution for

Tc is then given by

Tc(s) = ln(s/so)

ln(ri/so)
. (3)

The temperature distribution is decomposed as T(s, φ, t) = Tc(s) +
θ (s, φ, t), where θ (s, φ, t) is the perturbation.

With the radial (s), azimuthal (φ) and vertical (z) velocity com-
ponents denoted by u, v and w, respectively, the axial vorticity ζ

and streamfunction ψ are defined by the relations

ζ = 1

s

∂

∂s
(sv) − 1

s

∂u

∂φ
, (4)

∇2ψ = −ζ, (5)

u = 1

s

∂ψ

∂φ
, v = −∂ψ

∂s
. (6)

Henceforth, we shall refer to the axial vorticity simply as ‘the vortic-
ity’. Employing the Boussinesq approximation (Tritton 2001), the
quasigeostrophic vorticity equation and thermal energy equation
become

1

Pr

(
∂ζ

∂t
+ u

∂ζ

∂s
+ v

s

∂ζ

∂φ

)
= 2

E

∂w

∂z
− Ra

∂θ

∂φ
+ ∇2ζ, (7)

∂θ

∂t
+ u

∂θ

∂s
+ v

s

∂θ

∂φ
= −v

dTc

ds
+ ∇2θ. (8)

We refer to the references (Cardin & Olson 1994; Aubert et al. 2003;
Gillet & Jones 2006) for detailed derivations of eqs (7) and (8). The
Prandtl number, Pr, Ekman number, E and Rayleigh number, Ra,
are given by

Pr = viscous diffusion

thermal diffusion
= ν

κ
, (9)

E = viscous forces

Coriolis force
= ν

�d2
, (10)
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Ra = buoyancy force

diffusion
= gα�T d3

νκ
. (11)

The Prandtl number is fixed at Pr = 0.025 throughout our investiga-
tion. This Pr value is similar to that of liquid gallium and mercury
commonly used in studies of Rayleigh–Bénard and planetary core-
style convection (e.g. Cioni et al. 2000; Aubert et al. 2001; Aurnou
& Olson 2001; Yanagisawa et al. 2010), thus allowing for possible
comparisons with laboratory experiments (e.g. Aubert et al. 2003;
Gillet et al. 2007).

The fundamental difference between purely 2-D flows and quasi-
geostrophic flows is the presence of the vortex stretching term,
(2/E)∂w/∂z, on the right-hand side of eq. (7). This term involves two
contributions: (1) topographic (including axisymmetric and non-
axisymmetric) vortex stretching because of the change in height of
the bounding surfaces with horizontal position (s, φ) and (2) vortex
stretching because of viscous damping in the Ekman boundary lay-
ers that are present on the top and bottom solid boundaries [i.e. Ek-
man pumping (Greenspan 1968)]. Non-axisymmetric topographic
vortex stretching is because of the presence of CMB topography,
and to our knowledge has not been employed previously with the
QGCM.

Although all previous work with the QGCM has employed ax-
isymmetric topographic vortex stretching, there have been various
treatments of the Ekman pumping component of vortex stretching.
Cardin & Olson (1994) and Morin & Dormy (2004) omitted Ekman
pumping entirely. Aubert et al. (2003) and Morin & Dormy (2006)
included Ekman pumping only on the axisymmetric or zonal flow.
Gillet & Jones (2006) and Gillet et al. (2007) included an isotropic
Ekman pumping formulation that acts on all scales of fluid motion.
Similar to Gillet & Jones (2006) and Gillet et al. (2007), we employ
Greenspan’s (1968) original formulation that does not preferen-
tially act on certain scales. This formulation has also been applied
in Busse’s annulus model (Brummell & Hart 1993; Jones et al.
2003), and in mechanically driven flows (Schaeffer & Cardin 2005,
2006).

An expression for the vortex stretching term can be found by
axially averaging eq. (7). Because the vorticity is axially invariant
under the QGCM, only the vortex stretching term in eq. (7) is
affected by this operation. Therefore, we focus here only on the
derivation of the stretching term. The top and bottom bounding
surfaces are respectively defined as

hT =
√

r 2
o − s2, (12)

hB = −
(√

r 2
o − s2 + f (φ)

)
, (13)

where the topography is given by f and is restricted to being only a
function of azimuthal position φ for this study. Axial integration of
the stretching term gives∫ hT

h B

∂w

∂z
dz = wT − wB

h
, (14)

where h(s, φ) = hT − hB is the total axial height and wT and wB are
the vertical velocities at the top and bottom surfaces, respectively.
Denoting the unit vectors in the cylindrical coordinate system as
(ŝ, φ̂, ẑ), the following kinematic conditions hold on the top and
bottom boundaries

u · n̂T = u (n̂T · ŝ) + v
(
n̂T · φ̂

) + wT (n̂T · ẑ) , (15)

u · n̂B = u (n̂B · ŝ) + v
(
n̂B · φ̂

) + wB (n̂B · ẑ) , (16)

where the outward pointing surface normal unit vectors are given
by

n̂T =
[

s

ro
, 0,

hT

ro

]
, (17)

n̂B =
[
γ

s√
r 2

o − s2
, −γ

s

∂ f

∂φ
, −γ

]
, with (18)

γ =
[

s2

r 2
o − s2

+
(

1

s

∂ f

∂φ

)2

+ 1

]−1/2

. (19)

Solving for wT and wB in eqs (15) and (16) gives

wT = − s

hT
u + ro

hT
u · n̂T, (20)

wB = s

hT
u − 1

s

∂ f

∂φ
v − 1

γ
u · n̂B, (21)

and the vortex stretching term can then be written as

∂w

∂z
= wT − wB

h
= − 2s

hT h
u + 1

sh

∂ f

∂φ
v + ro

hT h
u · n̂T

+ 1

γ h
u · n̂B.

(22)

Greenspan’s (1968) generic formula for Ekman pumping then pro-
vides expressions for u · n̂T and u · n̂B:

u · n̂T,B = − E1/2

2
n̂T,B · ∇

×
(

n̂T,B × u√|n̂T,B · ẑ| + (n̂T,B · ẑ) u

|n̂T,B · ẑ|√|n̂T,B · ẑ|

)
,

(23)

allowing us to use eqs (22) and (23) to compute the vortex stretching
term throughout the domain of our model.

The topography we consider in this study consists of a single
Gaussian ridge that extends radially across the bottom boundary
and is given by

f (φ) = ε exp

[
− (φ − π )2

2σ 2

]
, (24)

where ε and σ are the amplitude and standard deviation of the
topography, respectively. The standard deviation of the ridge is fixed
throughout our study at σ = 0.3/

√
2; this value corresponds to a

‘width’ of 6 σ ≈ 73◦.
Because the Ekman numbers employed in the current study are

typically ∼9 − 10 orders of magnitude larger than values pertaining
to the core, we use non-dimensional topographic amplitudes up to
two orders of magnitude larger (0.01 ≤ |ε| ≤ 0.10) than what is
thought to represent the CMB (i.e. ε ≈ 2 km/2000 km ∼ 10−3).
This is done to compensate for the significant effects of friction in
our simulations. However, it should be noted that CMB topography
is approximately 104 times larger in amplitude than the E1/2-thick
Ekman boundary layer that is present on the CMB. In comparison,
we use topographic amplitudes that are ≈10 − 102 times larger than
the Ekman layer thickness in our simulations. With this metric, our
amplitudes may be considered small in comparison to those that
characterize the CMB.

When ε � 1, we have γ ≈ hT /ro and the effects of the topographic
ridge on Ekman pumping can be neglected. This approximation
allows for significant mathematical simplification of the Ekman
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pumping formulation such that u · n̂B ≈ u · n̂T, so that eq. (22)
becomes

∂w

∂z
= − 2s

hT h
u + 1

sh

∂ f

∂φ
v + 2ro

hT h
u · n̂T, (25)

and eq. (23) becomes

u · n̂T = −1

2
E1/2

(
hT

ro

)1/2 [
ζ + sv

2h2
T

− s

h2
T

∂u

∂φ
+ 5ros

2h3
T

u

]
. (26)

Combining eqs (25) and (26) yields a complete description of vortex
stretching in the QGCM.

No-slip boundary conditions are applied at s = ri and s = so:

∂ψ

∂s
(ri , φ) = ∂ψ

∂s
(so, φ) = 0. (27)

No-slip boundary conditions are appropriate for modelling flow in
the equatorial plane of the Earth’s core, and will be useful for com-
parison to laboratory experiments. In addition, the zonal flow struc-
ture we observe is very similar to that reported in Cardin & Olson
(1995), where a stress-free boundary condition was employed at the
inner boundary. This similarity suggests that the results presented
in this study are not unique to our choice of boundary conditions.

Dirichlet boundary conditions for the stream function can be
found by considering the volumetric flow rate per unit axial depth
of the annulus

ψ(so, φ) − ψ(ri , φ) = −
∫ so

ri

v ds. (28)

For simplicity, we set ψ(ri, φ) = ψ i = 0 and azimuthally average
eq. (28) to get

ψ(so, φ) = ψo = −
∫ so

ri

〈v〉 ds, (29)

where the azimuthal average operator is given by 〈·〉 =
1/(2π )

∫ 2π

0 (·) dφ. The relationship between 〈v〉 and the zonal vor-
ticity, 〈ζ 〉, is then given by azimuthally averaging eq. (4) to get

〈ζ 〉 = 1

s

∂

∂s
(s〈v〉) . (30)

An equation for 〈v〉 is found by azimuthally averaging the φ-
component momentum equation (e.g. Peyret 2002) to get

1

Pr

(
∂〈v〉
∂t

+
〈
u

∂v

∂s

〉
+

〈uv

s

〉)
= − 2

E
〈u〉 + ∇2〈v〉 − 1

s2
〈v〉. (31)

Two effects contribute to generating a non-zero azimuthally aver-
aged radial velocity 〈u〉: (1) circulation through the Ekman bound-
ary layers present on the top and bottom bounding surfaces and (2)
the interaction of the flow with the topographic ridge. An equation
for 〈u〉 that includes the contribution from the Ekman layers and
topography can be found by azimuthally averaging eq. (25)

∂〈w〉
∂z

= − 2s

hT

〈u

h

〉
+ 1

s

〈
1

h

∂ f

∂φ
v

〉
+ 2ro

hT

〈
u · n̂T

h

〉
. (32)

Conservation of mass then gives

1

s

∂(s〈u〉)
∂s

+ ∂〈w〉
∂z

= 0. (33)

Combining eqs (32) and (33) leads to

−1

s

∂(s〈u〉)
∂s

= − 2s

hT

〈u

h

〉
+ 1

s

〈
1

h

∂ f

∂φ
v

〉
+ 2ro

hT

〈
u · n̂T

h

〉
. (34)

If we assume ε � 1, then h ≈ 2hT and eq. (34) simplifies to

−1

s

∂(s〈u〉)
∂s

= − s

h2
T

〈u〉 + 1

2shT

〈
∂ f

∂φ
v

〉
+ ro

h2
T

〈u · n̂T〉 . (35)

The second term on the right-hand side of eq. (35) represents the
effects of the topography on the zonal velocity; this term makes it
difficult to solve for 〈u〉 explicitly. To overcome this difficulty, we
employ an explicit time-stepping scheme on the Ekman pumping
term appearing in eq. (31) that allows for decoupling between eqs
(31) and (35). For instance, if vn is the zonal velocity at time step n,
the solution of eq. (35) gives 〈u〉n, and eq. (31) can then be solved
using standard methods.

We note that in our initial investigation the topographic stress
term appearing on the right-hand side of eq. (35) was omitted in
the simulations; a reviewer subsequently alerted us to this over-
sight. It was found that when this term was absent the zonal flow
strength was observed to increase as the topographic amplitude was
increased from zero. As we discuss in Section 3, however, the zonal
flow strength generally decreases with topographic amplitude when
the topographic stress term is included. No significant change was
observed in any of the other trends reported in the present work.

To summarize, the governing equations for the QGCM are given
by

1

Pr

(
∂ζ

∂t
+ u

∂ζ

∂s
+ v

s

∂ζ

∂φ

)
= 2

E

∂w

∂z
− Ra

∂θ

∂φ
+ ∇2ζ, (36)

∇2ψ = −ζ, (37)

u = 1

s

∂ψ

∂φ
, v = −∂ψ

∂s
(38)

1

Pr

(
∂〈v〉
∂t

+
〈
u

∂v

∂s

〉
+

〈uv

s

〉)
= − 2

E
〈u〉 + ∇2〈v〉 − 1

s2
〈v〉, (39)

∂θ

∂t
+ u

∂θ

∂s
+ v

s

∂θ

∂φ
= −u

dTc

ds
+ ∇2θ, (40)

with the vortex stretching term, ∂w/∂z, given by eqs (25) and (26),
and the azimuthally averaged radial velocity, 〈u〉, given by eq. (35).
The boundary conditions for this set of equations are

∂ψ

∂s
(ri , φ) = ∂ψ

∂s
(so, φ) = 0, (41)

ψi = 0, ψo = −
∫ so

ri

〈v〉 ds, (42)

〈v(ri , φ)〉 = 〈v(so, φ)〉 = 0, (43)

θ (ri , φ) = θ (so, φ) = 0. (44)

Eqs (36) and (37) are solved subject to boundary conditions (41)
and (42), eq. (39) is solved with boundary conditions (43) and the
heat eq. (40) is solved with conditions (44).

The numerical solution of the governing equations is found by
employing M Fourier modes in azimuth, and solving the resulting
Fourier–Galerkin equations by means of a second-order accurate fi-
nite difference scheme in radius. Gauss–Lobatto (Chebyshev) points
are used to increase the radial resolution near the inner and outer
solid boundaries

s j = 1

2

[
(so − ri ) cos

π j

N
+ so + ri

]
, j = 0, . . . , N , (45)

where the total number of radial panels is N (i.e. the to-
tal number of radial grid points is N + 1). A second-order
Adams–Bashforth/backward differentiation scheme is used to ad-
vance the solution in time. We employ the influence matrix method
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to account for the lack of boundary conditions on the vorticity
(Peyret 2002); a similar methodology was recently applied in a
study of mechanically driven flows in a spherical shell geometry
(Calkins et al. 2010).

2.1 Relevant physical concepts

2.1.1 Potential vorticity and geostrophic contours

The expression for the axial stretching (25) can be rewritten as

∂w

∂z
= 1

h
u2D · ∇2Dh + 2ro

hT h
u · n̂T, (46)

where the 2-D horizontal velocity vector is u2D = (u, v), and

∇2D(·) = ŝ
∂

∂s
(·) + φ̂

1

s

∂

∂φ
(·). (47)

Substitution of (46) into the vorticity eq. (36) yields

D

Dt

(
ζ

Pr
− 2

E
ln h

)
=

(
4ro

E

)
u · n̂T

hT h
− Ra

∂θ

∂φ
+ ∇2ζ, (48)

where the material derivative D/Dt is given by

D

Dt
(·) = ∂

∂t
(·) + u2D · ∇2D (·) . (49)

The quantity q = ζ /Pr − (2/E)ln h is referred to as the potential
vorticity. The terms on the right-hand side of (49) represent Ekman
pumping, thermal buoyancy and internal friction, respectively. In the
absence of external and internal forces (including Ekman pumping),
eq. (48) becomes

D

Dt

(
ζ

Pr
− 2

E
ln h

)
= Dq

Dt
= 0, (50)

expressing the fact that q is a conserved quantity that is advected
with the flow field. We see that the stretching term −(2/E)ln h be-
comes larger for smaller values of the Ekman number, showing that
the shape of the boundaries becomes more important as E → 0.

The tendency for quasigeostrophic flows to conserve potential
vorticity results in the occurrence of a low-frequency (i.e. ��)
subset of inertial waves known as Rossby waves (Greenspan 1968).
To illustrate the basic mechanism of Rossby wave propagation,
consider an annular ring of axial fluid columns with height heq pos-
sessing zero initial vorticity and located at the ‘equilibrium’ radius
req, such that qeq = −(2/E) ln heq. Displacing a single fluid column
radially outwards to radius r+ results in a shortening of the column
height to h+, giving q+ = ζ+/Pr − (2/E)ln h+. However, eq. (50)
requires that qeq = q+, such that ζ+ = (2Pr/E) ln(h+/heq), imply-
ing that the fluid column acquires negative vorticity (as h+ < heq)
as it is displaced radially outwards. Similarly, an adjacent fluid
column that is displaced radially inwards will acquire positive vor-
ticity. The velocity field associated with the positive (i.e. cyclonic)
vortex is counterclockwise, resulting in a positive (i.e. prograde)
azimuthal velocity field near the equilibrium position req. Likewise,
the azimuthal velocity field associated with the negative (i.e. an-
ticyclonic) vortex near the equilibrium position is also prograde.
The net effect of these disturbances around the annulus is a mean
prograde drift near req, representing a travelling Rossby wave (e.g.
see fig. 5.4 of Vallis 2006).

If we now consider steady, linear motions, eq. (50) simplifies to

u2D · ∇2Dh = 0. (51)

This relationship states that fluid columns travel along lines of

Figure 2. Geostrophic contours for the Gaussian ridge employed in the
current study. The outline of the ridge is shown by the dashed black lines
and the topographic amplitude is ε = −0.10. The colour bar shows the
non-dimensional axial height.

constant height when temporal variations and non-linearities are
weak; such motion is referred to as geostrophic flow. Lines on
which h = constant are known as geostrophic contours (Greenspan
1968). For a spherical shell, the geostrophic contours are circles
of constant radius centred along the rotation axis. Fig. 2 shows the
contours associated with the topographic ridge considered in this
study. In flows with finite inertia, Rossby waves can be excited and
tend to oscillate about the geostrophic contours.

2.1.2 Rossby wave resonance

As will be discussed in Section 3, the interaction of a retrograde
zonal flow with the topographic ridge results in the excitation of
Rossby waves. A steady Rossby wave results when the (steady)
zonal flow velocity v is equal and opposite to the phase speed of the
wave. To aid in discussing some of the results of our study, we will
briefly present some of the important features of linear Rossby wave
resonance with the ridge. Many of the elements in the discussion
that follows can be found in the text by Vallis (2006).

Neglecting temporal variations and linearizing eq. (50) about the
basic state v with topography h = 〈h〉 + h̃ yields

1

Pr

(
v

s

∂ζ̃

∂φ

)
− 2

E〈h〉
(

ũ
∂〈h〉
∂s

+ v

s

∂ h̃

∂φ

)
= 0 , (52)

where all non-axisymmetric components are assumed to be small
(i.e. h̃ � 〈h〉). To further simplify the analysis, let us evaluate all
terms related to the column height h at mid-radius smid = (so+ri )/2,
and approximate a Cartesian coordinate system as s → x, sφ → y
such that

1

Pr

(
v
∂ζ̃

∂y

)
− 2

E

(
βũ + v

〈h〉mid

∂ h̃

∂y

)
= 0 , (53)

where the slope of the outer spherical surface is denoted as
β = (1/〈h〉mid)∂〈h〉/∂x . Under this approximation, the zonal flow
is now directed along the y-axis. By assuming solutions of the form
ψ̃ = ψ̂ exp[i(kx + ly)] and h̃ = ĥ exp[i(kx + ly)], and using the
relations ∇2ψ̃ = −ζ̃ and ũ = ∂ψ̃/∂y, eq. (53) gives the following
relationship

ψ̂ =
(

2 v

E〈h〉mid

)
(

v

Pr L2 − 2β

E

) ĥ, (54)

where L2 = k2 + l2. This relationship gives us the Fourier com-
ponents of the linear flow response, ψ̂ , to the presence of non-
axisymmetric boundary topography with Fourier components ĥ.
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Examination of the denominator in eq. (54) shows that an infinite
response (i.e. resonance) occurs when

L = ±
√

2β

E

Pr

v
, (55)

which we denote as the resonant wavenumber, LR. Defining the
zonal Reynolds number as Rez = v/Pr , and noting that the zonal
Rossby number is given by Ro = RezE, the resonant wavenumber
is then given by

L R = ±
√

2β

Ro
. (56)

Eq. (56) can also be written in terms of wavelength as

λR = 2π

√
Ro

2β
. (57)

Note that for the spherical geometry considered in this study, β < 0,
which corresponds to Rossby waves that propagate in the prograde
direction. The Rossby number can take both signs, where a positive
value corresponds to a prograde zonal flow and a negative value
corresponds to a retrograde zonal flow. For Ro < 0, we have a
purely real-valued resonant wavenumber which corresponds to a
stationary Rossby wave. In contrast, for a prograde zonal flow with
Ro > 0 we have

L R,Ro > 0 = ±
√

2|β|
|Ro| i, (58)

which corresponds to exponentially decaying and growing solutions
in space, for which no stationary wave is possible (Pedlosky 1987).
Thus, resonant, stationary Rossby waves can only exist when the
zonal flow is retrograde in our geometry.

Although, many simplifications have been employed to develop
eqs (56) and (57), the correct physical response is retained: larger
Rossby number flows resonate with larger wavelength topography;
smaller Rossby number flows resonate with smaller wavelength to-
pography. This behaviour is essentially a Doppler shift, and occurs
because the zonal flow stretches the wave motion over a larger dis-
tance. The streamfunction topography relationship given by eq. (54)
shows that resonance between the zonal flow and topography will
always occur provided h is composed of a range of topographic
wavelengths. The Gaussian ridge employed in the current study
has this advantage over single-wavelength sinusoidal topography
(e.g. Bell & Soward 1996; Herrmann & Busse 1998). The bound-
ary topography excites the Rossby wave, but it does not provide
the restoring force. Instead, this is accomplished primarily by the
stretching because of the spherical boundary shape, expressed in
the term β. Because of this, the resonant mode does not depend
upon the width, or standard deviation, σ , of the ridge in (56). In
addition, eq. (56) demonstrates that the resonant wavenumber does
not depend upon the topographic amplitude ε.

2.2 Relevant physical quantities

We will refer to several quantities that are useful in characterizing
the properties of the flow field and heat transfer. All time-averaged
quantities are denoted by an overline, (·), and fluctuations are de-
noted by (·)′. The temperature perturbation can, for example, be
decomposed as θ = θ + θ ′. The zonal (i.e. axisymmetric) and
non-zonal kinetic energy densities are given, respectively, by

KEz = 1

2A

∫
A
〈v〉2 dA, (59)

KEnz = 1

2A

∫
A
(ũ2 + ṽ2) dA, (60)

where the area of the domain is simply A = π (s2
o − r 2

i ), and ũ
and ṽ = v − 〈v〉 are the non-zonal velocity components. The total
kinetic energy, KE, is then defined as KE = KEz + KEnz. Zonal and
convective Reynolds numbers are evaluated using the rms velocites:

Rez =
√

2KEz

Pr
, (61)

Rec =
√

2KEnz

Pr
. (62)

To quantify the level of thermal forcing, we will refer to the
supercritical Rayleigh number

R̂a = Ra

Racr
, (63)

where the Racr is the critical Rayleigh number at which convective
motions begin.

The heat transferred across the flow domain is measured by the
Nusselt number evaluated at the inner boundary

Nui = 1 + ri log

(
ri

so

)
∂θ

∂s

∣∣∣
ri

, (64)

or at the outer boundary

Nuo = 1 + so log

(
ri

so

)
∂θ

∂s

∣∣∣
so

. (65)

In the absence of internal sources or sinks of energy, we have
〈Nui 〉 = 〈Nuo〉 = 〈Nu〉. The longitudinal variation in heat trans-
fer along the inner and outer boundary will be measured by the
fractional Nusselt numbers

δNui = Nui − 〈Nu〉
〈Nu〉 , and (66)

δNuo = Nuo − 〈Nu〉
〈Nu〉 . (67)

The maximum values are then given by

δNui,max = |Nui − 〈Nu〉|
〈Nu〉 , and (68)

δNuo,max = |Nuo − 〈Nu〉|
〈Nu〉 . (69)

The numerical resolution and various physical quantities for each
of the simulations reported in the current study are given in Table 1.

3 R E S U LT S

3.1 Flow characteristics

The critical azimuthal wavenumber, mcr, and critical Rayleigh num-
ber, Racr, that characterize the onset of convective motion are de-
termined by solving the linear governing equations for the two
Ekman numbers employed in this study. We consider the fluid to
be convectively unstable when the kinetic energy grows with time.
When no topography is present (i.e. ε = 0), we have mcr = 7
and Racr = 5.58 × 105 for E = 10−5, and mcr = 12 and
Racr = 7.94 × 106 for E = 10−6. In agreement with previous
work (Bell & Soward 1996), we find a finite mean flow at onset
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Table 1. Summary of the numerical simulations used in this study. The number of radial panels and Fourier modes are denoted by
N and M , respectively. The supercritical Rayleigh number is given by R̂a = Ra/Racr. The time-averaged convective Reynolds
number and zonal Reynolds number are denoted as Rec and Rez , respectively. The time and azimuthally averaged Nusselt
number is 〈Nu〉. The maximum percentage relative variation in Nusselt number along the inner and outer boundaries are denoted
by δNui,max and δNuo,max, respectively. The radius ratio, outer cylindrical radius and Prandtl number are fixed at η = 0.3, so =
0.3ro and Pr = 0.025, respectively.

E R̂a ε N M Rec Rez 〈Nu〉 δNui,max δNuo,max

(per cent) (per cent)

10−5 2 0 160 512 252 187 1.04 − −
10−5 8 0 320 848 2.22 × 103 2.90 × 103 1.96 − −
10−5 2 −0.1 160 512 544 297 1.16 53 26
10−5 4 −0.1 288 672 978 1.15 × 103 1.44 43 21
10−5 8 −0.1 320 848 2.71 × 103 2.70 × 103 2.20 30 21
10−6 2 0 320 700 722 635 1.09 − −
10−6 2 −0.1 384 880 1.29 × 103 769 1.24 101 17
10−6 4 −0.1 480 1280 3.60 × 103 2.25 × 103 1.81 79 19
10−6 8 0 400 1800 4.51 × 103 7.0 × 103 2.09 − −
10−6 8 −0.01 512 2240 4.56 × 103 6.86 × 103 2.04 9.3 11
10−6 8 −0.025 512 2240 4.93 × 103 6.92 × 103 2.19 22 11
10−6 8 −0.05 512 2240 5.83 × 103 6.82 × 103 2.44 38 14
10−6 8 −0.075 512 2240 7.09 × 103 6.25 × 103 2.76 47 19
10−6 8 −0.1 512 2240 8.06 × 103 5.71 × 103 3.08 55 28
10−6 8 0.1 640 2240 7.29 × 103 6.10 × 103 2.83 48 29

and observe a change in Racr with the presence of the ridge. With a
topographic amplitude of ε = −0.10, we obtain Racr = 5.78 × 105

for E = 10−5 and Racr = 8.17 × 106 for E = 10−6. For simplicity,
however, the supercritical Rayleigh number R̂a = Ra/Racr will
be based upon the critical Rayleigh number when no topography is
present.

Fig. 3 presents snapshots in time of vorticity in the equatorial
plane at E = 10−5 for two different Rayleigh numbers and for cases
without and with topography. The azimuthally averaged zonal flow
profiles are superimposed on each figure; the flow is predominantly
retrograde, with a weaker prograde jet near the outer boundary.
This zonal flow behaviour is consistent with all previous work at
low Prandtl number (Aubert et al. 2001, 2003; Gillet & Jones 2006;
Gillet et al. 2007). For R̂a = 2, vortical flow is most pronounced
in the vicinity of the topographic ridge and the downstream region
where the retrograde flow travels past the ridge. The topography
acts to increase the azimuthal heterogeneity in the flow field by
creating a localized region of intense convection. At R̂a = 2, we
see a 116 per cent increase in Rec and a 59 per cent increase in Rez .
As shown in Figs 3(c) and (d), when the supercriticality is increased
to R̂a = 8, the effects of the topography become less pronounced
at this Ekman number. At R̂a = 8, inertial effects become more
apparent, with the flow field characterized by 4–6 large cyclonic
(positive) vortices near the outer boundary and the same number
of smaller anticyclonic vortices attached to the hot inner boundary
(cyclonic vortices are shown in red; anticyclonic vortices are shown
in blue). (Movies for the cases shown in Figs 3(c) and (d) are
available online in the Supporting Information.) The presence of
the ridge at E = 10−5 and R̂a = 8 results in a slight increase in
the convective Reynolds numbers from Rec = 2220 at ε = 0 to
Rec = 2710 at ε = −0.10. These values correspond to a percentage
increase in the non-zonal Reynolds number of 22 per cent when
topography is present. Conversely, we observe an 8 per cent decrease
in the zonal Reynolds number for the topographic case at R̂a = 8.

Fig. 4 shows cases equivalent to those in Fig. 3 for E = 10−6. The
observed percentage changes in the convective and zonal Reynolds
numbers are 79 per cent and 21 per cent at R̂a = 2 and 79 per cent
and −18 per cent at R̂a = 8 for the topographic cases. These values

suggest that for lower Ekman numbers the topography can influence
the flow field for a broader range of Rayleigh numbers. Comparison
of Figs 4(c) and (d) shows that the topographic case is characterized
by more localized peaks in vorticity with the appearance of small
scale cyclonic vortices. (Movies for the cases shown in Figs 4(c)
and (d) are available online in the Supporting Information.) The
movie for the topographic case shows that many of the small scale
cyclonic vortices are generated along the inner boundary in the lee
region of the topography, where the retrograde jet detaches from
the inner boundary. The cyclonic vortices often become encapsu-
lated by a region of anticyclonic vorticity as they travel radially
outwards. ‘Shielded’ vortices of this type have also been observed
in numerical simulations of rapidly rotating convection in a plane
fluid layer (Sprague et al. 2006). The presence of a shield greatly
reduces interactions between small scale cyclonic vortices and sur-
rounding vortical structures. This results in an increased lifespan
when compared to unshielded structures.

Time-averaged stream function contours are shown in Fig. 5 for
selected cases presented in Figs 3 and 4. When no topography is
present, the time-averaged flow is purely azimuthal and results in the
circular streamlines shown in Figs 5(a) and (d) for E = 10−5 and E =
10−6, respectively. The topographic cases (Figs 5b, c, e and f) show
that the presence of the ridge results in the excitation of a standing
Rossby wave. Similar waves have also been observed in the study
of Herrmann & Busse (1998). At R̂a = 2, Figs 5(b) and (e) clearly
show the stationary wave. Associated with the stationary Rossby
wave are local regions characterized by circular streamlines, which
we refer to as eddies. The eddies near the inner boundary rotate
anticyclonically and the outer eddies rotate in a cyclonic sense.
Although both topographic cases at R̂a = 8 exhibit eddies in the
vicinity of the topography, the E = 10−6 (Fig. 5f) case shows a
larger number of stronger eddies in comparison to the E = 10−5

(Fig. 5c) case. These standing eddies are the result of the Rossby
wave whose amplitude is observed to increase with decreasing E
(i.e. lower viscous damping) for a given supercriticality.

Table 2 and Fig. 6 give the average Rossby number for the retro-
grade jet near the inner boundary, Ro, and the ‘observed’ azimuthal
resonant wavenumber, Lobs, determined from the topographic
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Figure 3. Instantaneous vorticity in the equatorial plane for E = 10−5 and (a) R̂a = 2, ε = 0; (b) R̂a = 2, ε = −0.10; (c) R̂a = 8, ε = 0 and (d) R̂a = 8,
ε = −0.10. The outline of the topographic ridge is shown in by the angled, dashed black lines in the 9 o’clock region and the azimuthally averaged zonal
velocity profile is shown by the solid black curve. Cyclonic vortices are shown in red; anticyclonic vortices are shown in blue. Movies for cases (c) and (d) are
available online.

simulations, along with the predicted value, LR, from eq. (56) based
on Ro. Lobs was determined by finding the dominant wavenumber
(excluding the axisymmetric mode m = 0) in the time-averaged
retrograde flow field. The absolute value of the predicted resonant
wavenumber, |LR|, was found by evaluating the slope parameter β =
(1/h)∂h/∂s (with ε = 0) at ri and rounding |LR| to the nearest integer
value. In agreement with eq. (56), the values of Lobs, denoted by
circles in Fig. 6, do not depend strongly on the Ekman number. The
effect of friction is to reduce the amplitude of the resonant mode
rather than alter the wavenumber. We can see evidence of this effect
by comparison of the two cases shown in Figs 5(b) and (f) that are
characterized by comparable Rossby numbers, where the resonant
mode is characterized by a slightly larger amplitude in the E = 10−6

case (Fig. 5d). Table 2 shows, however, that these two cases are
characterized by Lobs ≈ 6 because of their similar Rossby numbers.

Comparison of the last two columns in Table 2 shows that eq. (56)
systematically overpredicts the resonant wavenumber. The largest
difference between the observed and predicted values occurs at
E = 10−6 for R̂a = 2, where |L R |/Lobs ≈ 2.3. In Fig. 6, we plot
the observed resonant wavenumber Lobs and the predicted resonant
wavenumber |LR| for the data given in Table 2. Although, we have
only three different simulations for each Ekman number, we see that
Lobs does follow the predicted trend of decreasing wavenumber with
increasing Rossby number. We also note that the agreement between
observed and predicted resonant wavenumber becomes better as
the Rossby number increases (i.e. for larger R̂a); this observation
is likely because of the concomitant increase in Reynolds number.

Because viscous effects were neglected in the derivation of eq. (56),
we expect LR to provide a better estimate as the Reynolds number
increases. Nevertheless, an investigation that considers a broader
range of Rayleigh numbers is necessary to effectively test the LR ∼
Ro−1/2 scaling. Lower Ekman number simulations are thus required
to reach higher Reynolds numbers whereas maintaining relatively
low Rossby numbers.

A magnified view of the region ‘downstream’ of the ridge is
shown in Fig. 7 for the case E = 10−6, R̂a = 8 and ε = −0.10. (A
movie of the dynamics in this region is included online in the Sup-
porting Information.) As fluid parcels in the retrograde jet encounter
the topography, conservation of potential vorticity requires them to
approximately follow the geostrophic contours of the ridge towards
the inner boundary (see Fig. 2). The geostrophic contours on the
ridge near ri are cut-off by the inner boundary. As a result, the retro-
grade jet impinges on the boundary, causing the cross-section of the
jet to narrow and the jet’s magnitude to increase (cf. Fig. 5f). After
travelling over the topography, the fluid travels radially outwards
along the geostrophic contours. Inertia causes the fluid parcels to
overshoot their equilibrium position, resulting in the excitation of
the topographic Rossby wave. The wavy, thick dashed line shown in
Fig. 7 approximates the pattern of this Rossby wave. The outward
radial motion of the jet in the lee region of the topography results
in an anticyclonic (shown in blue) recirculating eddy, or ‘separation
bubble’, where the jet detaches from the inner boundary. The strong
shear present within this eddy results in the ‘roll-up’ of cyclonic
vortices along the inner core boundary (ICB), which are pulled
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Figure 4. Instantaneous vorticity in the equatorial plane for E = 10−6 and (a) R̂a = 2, ε = 0; (b) R̂a = 2, ε = −0.10; (c) R̂a = 8, ε = 0 and (d) R̂a = 8,
ε = −0.10. The outline of the topographic ridge is shown in by the angled, dashed black lines in the 9 o’clock region and the azimuthally averaged zonal
velocity profile is shown by the solid black curve. Cyclonic vortices are shown in red; anticyclonic vortices are shown in blue. Movies for cases (c) and (d) are
available online.

outwards and eventually advected away by the mean flow. Strong
shear is also present along the boundary of the Rossby wave, where
the azimuthal velocity approaches zero. This results in elongated
vortical regions that persist over time. It is common for vortices
encountering these regions to be sheared out into long tendrils,
thus producing the characteristic shape seen in Fig. 7 (denoted by
‘strongly sheared region’).

To illustrate the effects of the ridge on the strength and structure
of the zonal flow, the topographic amplitude was varied systemati-
cally over the range −0.01 ≥ ε ≥ −0.10 for E = 10−6 and R̂a = 8.
Fig. 8(a) shows a comparison of the zonal flow profiles for five dif-
ferent topographic amplitudes; the control case with no topography
(i.e. ε = 0) is also shown by the dashed black line. Each of the
profiles has been averaged in time and azimuth, and is given in units
of the Reynolds number, 〈v〉/Pr . The presence of the topographic
ridge is observed to cause a decrease in the magnitude of the retro-
grade jet near the inner boundary and an increase in the magnitude
of the outer prograde jet. We also see that there is an inward ra-
dial shift at the boundary between the retrograde and prograde jets
(i.e. the radius at which 〈v〉 = 0). These effects increase with to-
pographic amplitude and do not appear to saturate for the largest
amplitude investigated (ε = −0.10). Comparison of the control case
and the ε = −0.10 case shows that the peak zonal velocity in the
retrograde jet decreases by approximately 33 per cent, whereas the
peak velocity in the prograde jet increases by about 60 per cent.
Fig. 8(b) illustrates the change in the time-averaged convective and
zonal Reynolds numbers with topographic amplitude.

To determine if the sign of the topography is important in con-
trolling the dynamics, a simulation has been carried out with a
topographic ridge of positive amplitude (ε = 0.10) at E = 10−6 and
R̂a = 8. Topography with a positive amplitude represents a ‘valley’
on the CMB that protrudes outward into the mantle. Fig. 9(a) shows a
snapshot of the vorticity with the azimuthally averaged zonal veloc-
ity. We see that the gross characteristics are similar to the equivalent
case with negative topographic amplitude shown in Fig. 4(d). There
is an anticyclonic eddy adjacent to the inner boundary in the lee of
the topography where many of the small scale anticyclonic vortices
are produced; strongly sheared vortical regions exist that trace the
outline of the topographic Rossby wave (similar to the structures
in Fig. 7). The primary difference for positive topographic ampli-
tudes is that the flow in the retrograde jet initially travels radially
outwards because of the reversed direction of the geostrophic con-
tours. As illustrated in Fig. 9(b), this results in a stationary Rossby
wave that is shifted towards larger radius. However, the general
features of the time-averaged flow remain similar to the case with
ε = −0.10.

3.2 Heat transfer

Fig. 10 gives the time and azimuthally averaged Nusselt number
for E = 10−6 and R̂a = 8 over a range of topographic amplitudes.
In general, we observe an increase in the heat transfer as the to-
pographic amplitude is increased. The increase in Nusselt number
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Figure 5. Time-averaged stream function contours for (a) E = 10−5, R̂a = 8, ε = 0; (b) E = 10−5, R̂a = 2, ε = −0.10; (c) E = 10−5, R̂a = 8, ε = −0.10;
(d) E = 10−6, R̂a = 8, ε = 0, (e) E = 10−6, R̂a = 2 ε = −0.10 and (f) E = 10−6, R̂a = 8, ε = −0.10. The outline of the topographic ridge is shown by the
dashed black lines. The contour line intervals vary for each plot, and were chosen to increase the visibility of the flow structures.

Table 2. Azimuthal resonant wavenumber, Lobs, and
Rossby number, Ro, for the topographic cases with
ε = −0.10. For comparison, the absolute value of the
predicted resonant wavenumber, |LR|, is also given. |LR|
was rounded to the nearest integer value.

E R̂a −Ro Lobs |LR|
10−5 2 3.56 × 10−3 6 11
10−5 4 1.22 × 10−2 4 6
10−5 8 3.02 × 10−2 3 4
10−6 2 8.43 × 10−4 10 23
10−6 4 2.06 × 10−3 7 15
10−6 8 5.73 × 10−3 6 9

is associated with the presence of the recirculating regions shown
in Fig. 5(f), which transport heat radially outwards. The Nusselt
number for the maximum topographic amplitude employed in this
study, ε = −0.10, is observed to be more than 47 per cent larger
than the equivalent case without topography. In comparison, there
is only a 12 per cent increase in the Nusselt number between ε = 0
and ε = −0.10 at E = 10−5. This again demonstrates that the effect
of friction is to reduce the effect of the topography.

To illustrate the topographically induced changes in the heat
transfer, the time-averaged temperature perturbation, θ , and con-
vective heat flux, u′θ ′, are shown in Figs 11(a) and (b) for E = 10−6,
R̂a = 8 and ε = −0.10.Fig. 11(a) shows that the temperature distri-
bution is strongly azimuthally and radially dependent, with strong
perturbations present near the ridge. The wave-like nature of the

Figure 6. (a) The observed resonant wavenumber, Lobs, and the predicted
resonant wavenumber, LR, as a function of the Rossby number, −Ro. (b) The
normalized observed resonant wavenumber L∗

obs = Lobs/Ro−1/2 (circles)
and the normalized predicted resonant wavenumber |LR|∗ = |LR|/Ro−1/2

(triangles) for E = 10−5 (blue) and E = 10−6 (red) with ε = −0.10.

disturbance excited by the topography is evident in Fig. 11(b), with
strong oscillations in u′θ ′ in the vicinity of the ridge.

The longitudinal dependence of the fractional relative change in
the Nusselt number at the inner boundary, δNui, is shown in Fig. 12
for E = 10−6 and ε = −0.10 over the investigated range of Rayleigh
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Figure 7. Close-up view of the case presented in Fig. 4(d), showing the ‘downstream’ region of the topography and many of the dynamical features discussed
in the text. The wavy, thick dashed line traces the topographic Rossby wave pattern. Strong shear near the edge of the Rossby wave shear out many of the
vortical structures into long filaments. Many of the small scale cyclonic vortices (shown in red) are shed from the region denoted by the dashed ellipse along
the inner boundary. A movie is available online.

Figure 8. (a) Time and azimuthally averaged zonal velocity profiles for various topographic amplitudes. The ordinate is given in units of the local zonal
Reynolds number, 〈v〉/Pr . (b) Time-averaged convective and zonal Reynolds numbers versus topographic amplitudes. All cases are for R̂a = 8 and E = 10−6.

numbers (R̂a = 2, 4, 8). For reference, the longitudinal origin of
φ = 0◦ is located at 3 o’clock with respect to equatorial plane plots
such as Fig. 11. Using this reference value, longitude increases
in a counterclockwise fashion around the annulus. We plot −φ

along the abscissa such that the zonal flow near the inner boundary
travels from left to right with respect to the figure. The centre of
the topographic ridge is located at −φ = 180◦. In terms of the
interaction between the retrograde zonal flow and the topographic
ridge, the ‘upstream’ region is from 0◦ ≤ −φ ≤ 180◦, whereas the
‘downstream’ region is from 180◦ ≤ −φ ≤ 360◦. At R̂a = 2, there
is a peak in heat transfer centred almost directly over the ridge,
a minimum above the downstream edge of the ridge, oscillations
downstream and a large region upstream of the ridge characterized
by reduced heat flux relative to the azimuthally averaged value. The
peak in heat transfer over the ridge at φ = 180◦ is observed to

decrease and move slightly downstream for larger values of R̂a. For
R̂a > 2, the peak in heat transfer occurs downstream of the ridge at
≈240◦, and is observed to occur further downstream for larger R̂a.
In addition, the minimum in heat transfer at the downstream edge
of the ridge (−φ ≈ 217◦) appears to grow in strength and move
downstream as R̂a. The maximum per cent azimuthal difference in
the radial heat transfer for R̂a = 2, 4 and 8 is δNui,max = 101 per
cent, 79 per cent and 55 per cent, respectively.

The maximum variation in heat transfer along the inner and outer
boundary, δNui,max and δNuo,max, respectively, are given for all the
topographic simulations in Table 1. In all but one of the simulations,
we find the variation in heat transfer to be largest along the inner
boundary (i.e. δNui,max > δNuo,max). A steady increase in δNui,max

and δNuo,max with topographic amplitude is observed for the cases
shown in Fig. 10.
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Figure 9. Case with positive topographic amplitude ε = 0.10 at E = 10−6 and R̂a = 8. (a) Instantaneous vorticity in the equatorial plane with azimuthally
averaged zonal velocity profile shown by the solid black curve and (b) time-averaged stream function contours. The outline of the topographic ridge is shown
in by the angled dashed black lines in the 9 o’clock region of each figure.

Figure 10. Time and azimuthally averaged Nusselt number, 〈Nu〉, as a
function of the absolute value of the topographic amplitude, |ε|, for E =
10−6 and R̂a = 8.

4 D I S C U S S I O N

We have developed a quasigeostrophic numerical model of turbu-
lent core convection in which a single Gaussian ridge is superposed
on the outer spherical surface to model the effects of cold down-

welling mantle material impinging on the CMB. To simplify the
problem and delineate the basic response of the system, we have
not considered the effects of a magnetic field. The use of the 2-D
QGCM in our study allows for the simulation of rapidly rotating,
low-Prandtl number turbulent flows (i.e. low Ekman number, high
Reynolds number flows) that are currently out of reach to 3-D
simulations. By varying the Ekman number, the Rayleigh number
and the topographic amplitude, we have highlighted the impor-
tant fluid dynamical effects that topography can have in Earth’s
core.

The presence of the ridge results in the excitation of topographic
Rossby waves, and an increase in the convective vigour as the
topographic amplitude is increased. In agreement with previous
work at lower Reynolds numbers (Herrmann & Busse 1998), the
time-averaged flow field reveals a resonant, stationary Rossby wave
that is excited in the downstream region of the topography. The pres-
ence of this wave results in the formation of recirculating regions
that are fixed relative to the mantle. Associated with the stationary
Rossby wave is an azimuthally varying heat flux. Differences in the
Nusselt number along the inner boundary are observed to be as large
as 55 per cent for the highest Rayleigh number investigated at E =
10−6. Furthermore, we have found that the effects of topography are
similar for both positive and negative topographic amplitudes; this
result suggests that both ridges and valleys have roughly the same

Figure 11. (a) Time-averaged temperature perturbation, θ and (b) convective heat flux, u′θ ′ for E = 10−6, R̂a = 8 and ε = −0.10.
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Figure 12. Azimuthal variation in time-averaged Nusselt number along the
inner boundary (ri) for E = 10−6, ε = −0.10 and R̂a = 2, 4, 8. The vertical
dot-dashed lines demarcate the region occupied by the topographic ridge of
width 6σ . The zonal flow near the inner boundary travels from left to right
with respect to the figure.

influence on flow behaviour in the core. Furthermore, results from
a simulation employing a circular, Gaussian bump with identical
σ value show the same general features as those observed for the
Gaussian ridge topography employed in this study.

We find that the effects of the topography become more sig-
nificant as the Ekman number is reduced. This result is expected
because the presence of friction acts to reduce the amplitude of the
resonant topographic Rossby wave. In this sense, the presence of
the ridge (and the overall structure of the bounding surfaces) be-
comes less important for controlling the dynamics as the Ekman
number is increased. Because the Ekman numbers employed in the
current study are up to 10 orders of magnitude larger than that for
the core, we consider topographic amplitudes that are up to two
orders of magnitude larger than that expected for the CMB such
that the primary effects are manifested. However, if one compares
the E1/2 thickness of the Ekman boundary layer on the CMB to the
topographic amplitude ε, we have a ‘scaled’ topographic amplitude
in the core of ε

′ = ε/E1/2 ∼ 104. For the values used in our study
we have ε

′ ≈ 10 − 102. A turbulent Ekman layer may reduce this
ratio in the core to ε

′
turb ∼ 102. Thus, these values suggest that the

viscously scaled topographic amplitudes employed in our study may
be comparable to those in the core. Based on preliminary results
from simulations at lower Ekman numbers, we surmise that realistic
topographic amplitudes of ε ∼ 10−3 will have significant effects on
the convective dynamics of our simulations if we are able to reduce
the Ekman number by up to three orders of magnitude (E ≈ 10−9).
This suggests that CMB topography will influence, and possibly
even control, the flow field and heat transfer of the outer core.

Our study demonstrates that static features in the flow field can
be produced by the interaction of turbulent convective motions with
CMB topography. These steady features result from resonance be-
tween a stationary Rossby wave and the underlying topography.
A simple linear analysis shows that the resonant wavenumber, LR,
scales as LR ∼ Ro−1/2, where Ro is the Rossby number. This scaling
shows that viscous effects and the precise shape of the topography
do not play a significant role in determining the resonant mode.
Rather, the location of the topography on the CMB will determine
where the flow field is affected. More simulations are necessary to

test the veracity of this LR ∼ Ro−1/2 scaling and to determine the
necessary proportionality prefactor. For instance, if we estimate the
Rossby number for the core to be Ro ∼ 10−6, our scaling predicts
LR ∼ 103. We find that the theoretical value is typically ≈5 times
larger than the observed wavenumber (see Fig. 6). Applying this
factor reduces the resonant wavenumber in the core down to LR ≈
200. This value remains significantly larger than that which is ob-
served in the time-averaged geomagnetic field observations, where
the dominant azimuthal magnetic wavenumber is Lmag ≈ 3−8 (e.g.
Hulot et al. 2002; Jackson 2003).

The core’s large magnetic diffusivity may partially account for
the discrepancy between the observed dominant wavenumber in the
time-averaged geomagnetic field and the wavenumber predicted by
linear Rossby wave resonance theory. For instance, the magnetic
Prandtl number for the core is thought to be Pm = ν/νmag ≈ 10−6,
where νmag is the magnetic diffusivity. This extremely small value
suggests that there is a significant separation of scales between the
flow field and the magnetic structures of the core; small scale flows
may still be associated with large scale magnetic fields because of
the importance of magnetic diffusion. Thus, we hypothesize that a
high wavenumber [O(102 −103)], topographically excited resonant
mode is characterized by a much lower wavenumber [i.e. �O(10)]
magnetic signature.

Recent work has employed the quasigeostrophic approximation
to calculate the flow field in the equatorial plane of the core based on
inversions of the geomagnetic field (Pais & Jault 2008; Gillet et al.
2009). These studies, which include no boundary topography, show
a flow field that is dominated by coherent vortices and a meander-
ing retrograde mean flow. In particular, Pais & Jault (2008) observe
coherent axial vortices with an approximately equal proportion of
cyclones and anticyclones. Our simulations carried out at E = 10−6

also show an approximately equal proportion of cyclonic and an-
ticyclonic regions, though the anticyclonic vortices are generally
larger than the cyclones and exist primarily near the ICB. In addi-
tion, the topographic Rossby wave that is excited by the ridge in our
simulations results in a flow pattern that bears striking similarity to
the streamfunction contours found by Pais & Jault (2008) and Gillet
et al. (2009).

Finally, our results show that topography can produce signifi-
cant longitudinal variations in radial heat flux along the ICB (see
Table 1 and Fig. 12). Similar results were found in the laboratory
experiments of Sumita & Olson (1999, 2002), which examined the
effects of a ‘thermal ridge’ on high Rayleigh number convection
in a rapidly rotating hemispherical shell of water. Sumita & Ol-
son (1999, 2002) argued that lateral heat flux variations along the
ICB can explain the observed seismic structure of the inner core
(e.g. Niu & Wen 2001). The recent work of Alboussiére et al.
(2010) and Monnereau et al. (2010) further suggests that such het-
erogeneous thermal boundary conditions on the ICB can control
the location of melting and freezing of iron. Because topography
provides a mechanism to modulate the heat flux along the ICB, it
is possible that CMB topography controls the growth pattern of the
ICB (cf. Sumita & Olson 1999, 2002; Aubert et al. 2008; Gubbins
et al. 2011).

We have investigated the fundamental phenomena that arise in
the interaction of core-style turbulent convection with a CMB to-
pographic feature. Future work will focus on reducing the effects
of viscosity such that realistic topographic amplitudes can be used
(ε � 10−3), as well as incorporating more realistic models of CMB
topography (e.g. Tanaka 2010). We will also look at the effects of
a magnetic field, which can change the dynamics of the resonant
mode (e.g. Finlay 2007; Finlay et al. 2010).
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Movie 1. Movie showing axial vorticity at E = 10−5, R̂a = 8,
ε = 0. Time is given in units of dimensionless rotation time,
t� = tκ Pr/(2π E), where tκ is the dimensionless thermal diffusion-
scaled time. Red is positive (cyclonic) vorticity and blue is negative
(anticyclonic) vorticity.
Movie 2. Movie showing axial vorticity at E = 10−5, R̂a = 8,
ε = −0.10. Time and vorticity are defined as in Movie 1.
Movie 3. Movie showing axial vorticity at E = 10−6, R̂a = 8, ε =
0. Time and vorticity are defined as in Movie 1.
Movie 4. Movie showing axial vorticity at E = 10−6, R̂a = 8,
ε = −0.10. Time and vorticity are defined as in Movie 1.
Movie 5. Movie showing axial vorticity at E = 10−6, R̂a = 8,
ε = −0.10 in the vicinity of the topographic ridge. Time and vor-
ticity are defined as in Movie 1.
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