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Abstract

Nucleotide composition analyses of bacterial genomes such as cumulative GC skew

highlight the atypical, strongly asymmetric architecture of the recently published

chromosome of Idiomarina loihiensis L2TR, suggesting that an inversion of a

600-kb chromosomal segment occurred. The presence of 3.4-kb inverted repeated

sequences at the borders of the putative rearrangement supports this hypothesis.

Reverting in silico this segment restores (1) a symmetric chromosome architecture;

(2) the co-orientation of transcription of all rRNA operons with DNA replication;

and (3) a better conservation of gene order between this chromosome and other

g-proteobacterial ones. Finally, long-range PCRs encompassing the ends of the

600-kb segment reveal the existence of the reverted configuration but not of the

published one. This demonstrates how cumulative nucleotide-skew analyses can

validate genome assemblies.

Introduction

In bacteria, bidirectional DNA replication divides circular

chromosomes into two arms or replichores (Blattner et al.,

1997), delimited by the origin and terminus of replication.

Thus, each strand of the double-stranded chromosome is

the leading strand of replication on one arm, and the lagging

one on the other. The process of replication generates

asymmetric nucleotide biases (i.e. different for each DNA

strand): directly, by favoring some mutations on one strand,

and/or indirectly, since the leading strand encodes most

genes (see Frank & Lobry, 1999; Rocha, 2004 for review).

More precisely, the leading strand is generally enriched in

guanines and depleted in cytosines and, consequently, the

lagging strand is enriched in cytosines and depleted in

guanines. These biases may be determined by a GC skew,

which measures the ratio between the number of guanines

and the number of cytosines [(G�C)/(G1C)] on one

strand. Due to its guanine enrichment, the leading strand

thus presents a positive GC skew and, depleted in guanines,

the lagging strand presents a negative GC skew (Lobry,

1996). Therefore, a graphic representation of cumulative

GC skews along the chromosome unambiguously reveals

localization of the origin and terminus of replication in a

large majority of bacterial chromosomes. On this plot, the

guanine-rich leading strand displays a positive slope and

the guanine-poor lagging strand a negative slope; thus, the

origin and terminus of replication correspond to the mini-

mum and maximum of the curve, respectively (Grigoriev,

1998; Frank & Lobry, 2000; Guy & Roten, 2004). Because the

length of both replichores is generally similar, and because

the published chromosomal sequences generally start at the

origin of replication, cumulative GC skew plots of most

bacteria present a smooth inverted V-shape (see Fig. 1a,

right) (Grigoriev, 1998; Roten et al., 2002).

Homologous recombination occurring between inverted

sequences – such as rRNA genes or insertion sequences (IS)

– is responsible for most chromosomal inversions. These

events can be divided into three categories: (1) symmetrical

or (2) asymmetrical inter-arm inversions, and (3) intra-arm

inversions. Inter-arm rearrangements are symmetrical (1)

when the homologous sequences involved in the recombi-

nation are at a similar distance from the origin of replication

on each arm of the chromosome. Such rearrangements

conserve the inverted V-shape on cumulative GC skew plots,

since the length of the arms, the leading or lagging status of

the strands and gene orientation relative to replication are

conserved. Asymmetrical inter-arm recombination (2) is
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similar to (1) (it does not affect the leading or lagging status

of the strands nor the gene orientation relative to replica-

tion), except that the two inverted recombination sites on

each arm of the chromosome are at a different distance from

the origin, thus changing the relative lengths of the arms

once the rearrangement occurred. As a result, the displaced

terminus is not at the middle of the cumulative GC skew

plot, which presents an asymmetrical inverted V-shape, i.e.

one branch of the inverted ‘V’ is longer than the other.

Finally, some chromosomal inversions occur within a single
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arm of the chromosome (3), exchanging a guanine-rich

leading strand for a guanine-poor lagging strand. The

resulting slope of the inversion is opposite, locally disrupt-

ing the symmetrical inverted V-shape, and thus enabling a

straightforward detection of such events on cumulative

nucleotide skew curves.

Systematic GC skew analyses of more than 400 published

bacterial chromosome sequences reveal that asymmetrical

inter-arm and intra-arm rearrangements are rare [see

Comparative Genometrics website, http://www.unil.ch/

comparativegenometrics/ (Roten et al., 2002)]. For instance,

Pseudomonas aeruginosa PAO1 and Xylella fastidiosa 9a5c

chromosomes display significantly asymmetrical arm

lengths, revealing an inter-arm inversion (2) (Stover et al.,

2000; Van Sluys et al., 2003). In the case of P. aeruginosa, it

appears that the sequenced isolate was not representative

of the major bacterial population, which displays classical

symmetrical chromosome architecture (Barekzi et al., 2000).

In the case of X. fastidiosa, a complex rearrangement

involving prophages could be the source of the asymmetry

in the 9a5c strain (Canchaya et al., 2004). This asymmetry is

absent in the Temecula1 strain. Similarly, intra-arm inver-

sions were mostly reported in the highly unstable chromo-

some of Yersinia pestis (Parkhill et al., 2001; Deng et al.,

2002), but these events seem to be associated with the

genome-reduction phase presently occurring in Y. pestis

and due to the restriction of its host range (Wren, 2003). In

summary, it clearly appears that, when inversions occur,

they are most often centered on the origin of replication.

This suggests that chromosome configurations presenting

replichores of similar lengths and a conservation of gene

orientation with respect to replication are favored

(Eisen et al., 2000; Tillier & Collins, 2000; Kothapalli et al.,

2005). Consequently, cumulative skew curves different from

symmetric inverted V-shapes reveal atypical chromosome

configurations.

The Comparative Genometrics database (Roten et al.,

2002), dedicated to the analysis of whole prokaryotic

genomes, includes the nucleotide skew curves for all bacter-

ial chromosomes available at the NCBI database (Wheeler

et al., 2004). It enables the detection of chromosomes dis-

playing atypical nucleotide skew patterns, such as the one of

Idiomarina lohiensis L2TR, isolated from hydrothermal

vents in Hawaii. This deep-sea Gammaproteobacterium, able

to grow in a wide range of temperatures and salinities, seems

to draw its energy mostly from amino-acids fermentation,

rather than from usual sugar degradation pathways. In this

contribution, this atypical chromosome architecture was

precisely characterized.

Materials and methods

Sequences and document availability

Shewanella oneidensis MR-1 and the chromosome 1 of

Vibrio parahaemolyticus RIMD 2210633 sequences are avail-

able on the NCBI website (http://www.ncbi.nlm.nih.gov/)

under accession numbers NC_004347 and NC_004603,

respectively. Idiomarina loihiensis L2TR fasta sequences

(first published under accession number NC_006512) and

nucleotide counts per 1-kb window for both configurations

are available at http://www.unil.ch/comparativegenometrics/

idiomarina/index.htm.

Nucleotide skews

The sequence was divided in 1-kb windows and the GC skew

[(G�C)/(G1C)] was calculated for each window. The

cumulative GC skew corresponding to the window i is

the cumulation of the GC skews from the beginning of the

sequence to the window i (Grigoriev, 1998).

Identification of repeats

The chromosome sequence of I. loihiensis was searched for

direct and inverted repeats longer than 200 bp with REPuter

(Kurtz & Schleiermacher, 1999).

Gene-order conservation analysis by X-plot

The chromosome sequence of I. loihiensis L2TR was com-

pared with the chromosome of two related bacteria: the

chromosome of S. oneidensis MR-1 and the chromosome 1

of V. parahaemolyticus RIMD 2210633. Sequences homo-

logous in genome pairs were identified with PROMER, a

program of the MUMMER 3.18 package (Kurtz et al., 2004): a

maximal 50-nt gap allowed between two adjacent matches

Fig. 1. Nucleotide skews and plots of relative positions of homologous sequences (colinearity) in Idiomarina loihiensis and related species. In both

panels, the originally published sequence (configuration I) of I. loihiensis chromosome is on the left column, and the proposed symmetrical configuration

II is on the right column. Vertical bars indicate putative rearrangements sites, which coincide with inverted repeated sequences. Location on

chromosomes is given in Mb (x-axis on both panels, and y-axis in b). (a) Cumulative GC skew of both configurations. Scale indicates the cumulative

excess of guanine over cytosine: [(G�C)/(G1C)], calculated in 1-kb windows. (b) Gene-order conservation analysis (X-plot) by comparison of relative

positions of homologous sequences in I. loihiensis and closely related bacteria Shewanella oneidensis and Vibrio parahaemolyticus chr. 1. The pairs of

homologous sequences are represented on the plot at the intersection of their position on I. loihiensis (x-axis) and S. oneidensis (y-axis, top panel) or

V. parahaemolyticus (y-axis, bottom panel) genomes by a black cross if the segment is on the same strand on both chromosomes, and by a red circle if

they are on complementary strands.
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was selected, combined with a maximal 100-nt extension

and a maximal distance of extension attempts of 100 nt. A

direct hit is a homologous segment that is located on the

same strand (1/1 or � /� ) on both compared bacteria, an

indirect hit is when paired sequences are located on com-

plementary strands (1/� or � /1). Quality measurement

of the X-plots is obtained by correlating the distances of each

hit (whether direct or indirect) from the origin of replica-

tion on both genomes and by calculating Pearson’s correla-

tion coefficient. Comparing a genome with a related strain

that has undergone only inversions centered on the origin of

replication provides a Pearson’s correlation coefficient close

to one. Comparing two genomes whose gene orders are

completely different provides a coefficient close to zero.

Long-range PCRs

The Expand Long Template PCR System (Roche) was used

to amplify large chromosomal segments. Eight primer sets

were used for detecting each configuration (Supplementary

Tables S1 and S2). Amplifications were performed according

to manufacturer recommendations, with 500 ng of genomic

DNA and at a 58 1C annealing temperature. A single

common mix containing water, DNA template, PCR buffer,

nucleotides and enzyme was used for the 18 PCR reactions.

Primers amplifying a 11-kb region encoding general meta-

bolism genes and located outside the 0.6-Mb chromosomal

inversion were used as a positive control and water instead

of primers as a negative control.

Results and discussion

The cumulative GC skew curve performed on the 2.8-Mb-

long chromosome of I. loihiensis L2TR (Hou et al., 2004)

displays a nonsymmetrical pattern (Fig. 1a, left), whereas

those of almost all other Gammaproteobacteria are classical

(Supplementary Fig. S1) as discussed above. In the case of

I. loihiensis L2TR, the curve displays three local extrema: in

addition to the usual overall cumulative GC skew maximum

at 0.7 Mb, there is a local minimum at 1.3 Mb and a local

maximum at 1.4 Mb (Fig. 1a, left). Following the reasonable

hypothesis that the terminus of replication is actually

located approximately at the middle of the curve, on

the local maximum at 1.4 Mb, then the 600-kb chromosome

segment located between the two inflexion points of

the curve located at 0.7 and 1.3 Mb displays an opposite

slope orientation than expected, suggesting a large DNA

inversion. Confirming this view, inverted repeated (IR)

sequences of 3.4 kb were identified at the boundaries of the

putative inversion. These IRs are located between positions

688 321 and 691 693 on one end, and between positions

1 335 927 and 1 332 555 on the other. They display 3349

identical bases out of 3373 and contain genes encoding

proteins involved in general metabolism (IL631 to IL633

and IL1241 to IL1243) and an IS2 transposase (IL633.1 and

IL1239.1). They are the longest IR sequences in the I.

loihiensis chromosome, rRNA operons excepted. Because

they could be recognized by the homologous recombination

machinery, these regions might be directly involved in an

intra-arm inversion, explaining the atypical skew pattern of

the published I. loihiensis sequence. On the other hand,

unusually long homologous sequences may also be the

source of contig misassemblies. To sum up, since asymme-

trical rearrangements are not favored, the existence of a

symmetrical chromosome configuration (configuration II),

in which the 600-kb DNA segment bordered by the IR is

inverted, is proposed.

An in silico inversion of this region was consequently

performed and both I. loihiensis chromosome configurations

were compared to other Gammaproteobacteria counterparts.

Several elements support that the symmetrical configuration

II of this study is more likely to be present in natural

conditions. First of all, the cumulative GC skew curve

resulting from the proposed configuration II now displays a

symmetrical inverted V-shape (Fig. 1a, right). Using BLAST

analysis (word as 7 and standard gap penalties) (Altschul

et al., 1990), we also detected starting at position 1 387 610

(i.e. around the middle of the sequence), a 28-nt sequence

(ATTGCGTATAATGTATATTATGTTAAAT) that has 25 nu-

cleotides in common with the Escherichia coli K-12 dif

sequence. In the latter bacteria, the dif sequence is involved

in the resolution of chromosome dimers, which occurs in the

terminus region and is apparently well conserved throughout

the bacterial phylogenetic tree (for review see Lesterlin et al.,

2004). The presence of this sequence supports the proposi-

tion made above that, as in the large majority of bacterial

chromosomes, the terminus of replication is localized at the

maximum of the cumulative GC skew curve in the symme-

trical configuration II. Moreover, the terminus of replication

is actually at the middle of the chromosome sequence,

separating it into two replichores of similar sizes. Another

supporting piece of evidence, given that the terminus was

correctly identified at 1.4 Mb, is that one out of four rRNA

operons would be antioriented – i.e. transcribed in the

opposite direction than the replication – in the published

configuration, an extremely rare situation (Guy & Roten,

2004). Furthermore, the gene order of both I. loihiensis

configurations was compared with two related bacteria,

S. oneidensis and V. parahaemolyticus chr. 1 (Fig. 1b). The

comparison of the symmetrical configuration II (Fig. 1b,

right) with related bacteria is closer to the typical X shape

(see Tillier & Collins, 2000, for examples), than the compar-

isons of configuration I with the same related bacteria

(Fig. 1b, left). Consequently, Pearson’s correlation coeffi-

cients of the X-plots are significantly higher in configuration

II (Supplementary Table S3).
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Finally, to validate experimentally the existence of the

symmetrical chromosome configuration II in the I. loihiensis

genome, primers encompassing each copy of the 3.4-kb IR

were designed. Owing to the large size of repeated se-

quences, long-range PCR reactions were performed using

combinations of primers able to promote the amplification

of either the published or the symmetrical chromosome

configurations (configuration I or II, respectively) on ex-

tracted chromosomal DNA from cultures of the I. loihiensis

DSMZ reference strain (DSM 15497). PCR reactions clearly

demonstrate that the symmetrical configuration II is

present in the DNA sample (Fig. 2). On the contrary,

although each configuration was tested using eight primer

pairs, no amplification specific to the published configura-

tion I was detected in manufacturer conditions, including

when a DNA sample provided by Hou and coworkers was

used (data not shown). Nevertheless, the presence of con-

figuration I in the DNA sample cannot be completely

excluded, but, if present, its proportion would be too

low to be detected via long-range PCR. The results of the

PCR amplifications strongly suggest that the published

configuration I was not representative of the I. lohiensis

population.

In summary, it is concluded that the published sequence

of I. loihiensis L2TR represents, at best, a rare chromosomal

configuration, and that typical I. loihiensis isolates display

the symmetrical configuration II of this study. An alternative

explanation is that the unusual skew pattern of I. loihiensis

results from the misassembly of some contigs: indeed, for

rearrangements implying long inverted repeated sequences,

standard PCR verification of contig alignment (10 kb-long

PCRs, with a 1 kb overlap) could be unable to identify

misassemblies or assembly of minor configurations. Cumu-

lative GC skew plots were already able to detect such

assembly problems in Bifidobacterium longum NCC2705

(Guy et al., 2005). Standard GC skews are widely used in

genome projects. However, the cumulative representation of

GC skew seems thus to be more readable and more easily

interpreted by molecular biologists not trained in bioinfor-

matics and represent a highly useful complement for detect-

ing architecture anomalies in bacterial chromosomes.

Moreover, this fast and simple method may be performed

on raw sequence files: neither sequence annotation nor

comparison with closely related species is required. Since a

large majority of bacteria and more specifically almost all

Gammaproteobacteria display typical cumulative GC skew

curves, the information provided by this genometric tool

should be intensively exploited in bacterial genome-sequen-

cing projects, especially for those implying taxa in which no

or few other complete sequences are available. Thus, it is

proposed that these more informative cumulative skews

should be used routinely in addition to the usual noncumu-

lative circular representation (e.g. Andersson et al., 1998) in

bacterial-sequencing projects.
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