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Abstract. We are looking back on 30 years development
of periodic space partitioners (PSP) and their relations to
their periodic relatives, i.e. minimal surfaces (PMS), zero
potential surfaces (P0PS), nodal surfaces (PNS), and expo-
nential scale surfaces. Hans-Georg von Schnering and Sten
Andersson have pioneered this field especially in terms of
applications to crystal chemistry. This review relates the
early attempts to approximate periodic minimal surfaces
which established a systematic classification of all PSP in
terms space group symmetry and consecutive applications
in a variety of different fields. A consistent nomenclature
is outlined and different methods for deriving PSP are de-
scribed. Characteristic structure factor sets which solely
define PNS by can be used to discriminate structure types
of a given symmetry or even to determine complicated
crystal structures. The concept of PSP relates space group
symmetry, topology, and chemical bonding in an intri-
guing way and tessellations on PSP which can be gener-
ated in a straight forward way allow to predict new frame-
work types. Through transformation of such continuous
topological forms a new entry has been found for under-
standing and interpreting reconstructive phase transitions.
Finally we indicate the importance of PSP models for soft
matter science.

1. History and development

Minimal surfaces are a middle aged problem in mathe-
matics mostly addressed since the 19th century, but consti-
tute an eternal fascination for humans probably since the
earliest days of conscious thought. The intriguing fascina-
tion of soap bubbles is related to a deep feeling of har-
mony and beauty, the priming of which we simply do not
know [1]. It may be due to a comprehensive intuitive un-
derstanding of the world without concrete knowing just
like the feeling of harmony which is created by the golden
ratio and five-fold symmetry. Why does the most irrational
number1 induce such a state of comfort in human minds?
We do not know, just as nobody knows why the fine struc-

ture constant approaches more and more the value 1/137,
the denominator being 33rd prime number. To solve this
question was the last great goal of Wolfgang Pauli who
was not only a great physicist and mathematician but also
stressed the importance of intuitive solutions to physical
problems, amongst others by dreaming [2].

A mathematical treatment of minimal surfaces goes
back to Lagrange’s work in the 18th century which re-
sulted in the Euler-Lagrange equation [3]. In the 19th cen-
tury the experiments of J. Plateau contributed much to
mathematical research on such objects and led to the for-
mulations of Plateau’s problem which turned out to be un-
solvable in general analytical form. The quest for deriving
minimal surfaces and periodic minimal surfaces as well as
for their analytical formulation increased by the end of the
19th century especially by H. A. Schwarz [4] and in the
beginning of the 20th century by D. Hilbert [5]. Hilbert was
not only one of the greatest mathematicians of modern age
but also a mathematical purist who outlawed experiments
for mathematicians. Despite this he exempted one, namely
the soap bubble experiment because of the difficulties with
Plateau’s problem [6].

By the midst of the 20th century some institutions ex-
plored possible applications for Periodic Minimal Surfaces
(PMS) like the American space agency NASA under the
leadership of the mathematician H. A. Schoen [7]. Schoen
derived the so-called Gyroid PMS which belongs to the
highest 3D space group no 230 but misassigned it to the
direct subgroup no. 214. In his report he poses with a
model of the surface but he does not look very happy,
presumably because the difficulties of treating such a pro-
blem in a mathematically rigorous way. The interest of
researchers and engineers in PMS is straightforward be-
cause one of their characteristics is to span a 3D frame by
the least surface area possible, that is the by least amount
of material, by the lowest weight, and eventually by the
highest specific strength, etc. In addition, it seemed likely
that such forms constitute most stable construction schemes
because of their optimal form. Seemingly that project was
given up or postponed by NASA because of enormous
obstacles for useful realization at that time.

Simultaneously, artists explored that field. A number of
architects and artists began to work with local and periodic
minimal surfaces in the 1950ies (Fig. 1). F. Otto started to
develop light-weighted constructions by help of soap bub-
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ble experiments [8]. Another architect, Michael Burt, de-
veloped extensively models and based his constructions to
a large extent on minimal surface and especially on Peri-
odic Minimal Surface and Voronoi cell approaches [9, 10].

The artist Angel Duarte deeply explored minimal sur-
face objects for designing a specific kind of sculptures
since the 1970ies [13]. He very often constructed an outer
frame of a surface patch by a metal frame and then filled
in straight metal rods such that they most closely related
to the real minimal surface of the boundary frame. In a
more design-based approach Peter Pearce utilized minimal
surface techniques for creating objects of arts but also of
daily use.

Although some objects like Fermi surfaces in physics,
like clathrate structures in structural chemistry, and vesi-
cle/micelle in tenside research did exemplify the impor-
tance of Minimal Surfaces as well as Periodic Minimal
Surfaces as topological representations of quite different
phenomena (Fig. 2) it was not until the beginning of the
1980ies that the general meaning of Periodic Minimal Sur-

faces and other Periodic Space Partitioners (PSP) for peri-
odic matter was noted in natural sciences. It should be
noted, PSP can be periodic hyperbolic surfaces, but need
not be.

It was Sten Andersson, an ingenious structural chemist
who initiated a general attempt to correlate crystal structures
and PMS with enthusiastic scientific power [14]. This was
the starting point of systematic investigations which lead
to a general relation of space groups and periodic minimal
surfaces and related periodic surfaces.

2. Homogeneous sphere packings &
continuous networks – atoms on wire
Gitterkomplexe – lattice complexes

The term lattice complex was coined by Paul Niggli and
later adopted by Carl Hermann into the International Ta-
bles of Crystallography [16]. A more precise specification
of the term was given later [17]. Lattice complexes may
be developed by one representative point set (Wyckoff set)
of a space group [18]. The analysis of all characteristic
Wyckoff (which have no free parameter) sets in all space
groups results in 25 invariant lattice complexes, 12 invar-
iant lattice complexes for non-characteristic ones and 106
non-invariant lattice complexes [16]. Placing an entity, i.e.
point, spin, atom etc. on such Wyckoff site develops into a
representation of the lattice complex. A well known exam-
ple yield the sets 1a and 1b in the space group Pm�33m
each of which generate a cubic primitive graph when con-
nected. The two graphs set up isomorphous interpenetrat-
ing networks which are shifted by the vector 1=2

1=2
1=2

against each other. The two graphs are merged into one
set by the super group Im�33m through the set 2a which
carries the special lattice complex symbol I. Historically
this is being used to designate body centering and in the
general nomenclature I ¼ P*, where the star denotes the
shift vector of 1=2

1=2
1=2 of the former subsets. The lattice

complex graphs can be located either in the labyrinths of
the according to a PNS partitioned space or on that PNS.
Some examples of open frameworks and their enveloping
surfaces are shown in Fig. 3.
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Fig. 1. Examples from architecture and from
arts for utilization of minimal surfaces: (left) –
Michael Burt [11]; (upper – right) – Frei Otto,
soap bubble model; (lower – right) – Frei Otto,
Tanzbrunnen Köln [12].

Fig. 2. (a) Fermi surface of copper, (b) Fermi surface of rubidium,
(c) framework of soap bubbles, (d) model of the zeolite MAZ) [15].



If one expands such point sets into their dedicated Wir-
kungsbereiche [20], Dirichlet [21] domains, or Voronoi [22]
polyhedra then a connected structure develops which, in
general, has an orientable periodic surface in three dimen-
sions (Fig. 4). Such Periodic Wirkungsbereich Surfaces
(PWS) are polygonal approximants to curved hyperbolic
surfaces.

A quite versatile systematic approach to PWS is based
on the so-called circle and sphere packings which origin-
ally were derived from the concept of Bauverbände or
homogeneous frameworks due to Hellner et al. [23]. In a
crystal structure, the Dirichlet domains around certain sites
touch most fundamentally (with the largest surface area)
along vectors to the closest neighbors. Accordingly, one
can construct the space group specific frameworks also
through packings of touching spheres of the same size.
This is the reason why they have been called homoge-
neous sphere packings (HSP). In general, these sphere
packings are not dense. There are 199 distinct HSP for the
cubic crystal system, 394 for tetragonal, 170 for hexago-
nal and yet unknown numbers for lower symmetry HSPs
[24]. Crystallography and structure chemical formalisms in
form of general networks reminded very much to PMS. It
should be noted that A. F. Wells has given a quite compre-
hensive survey of 2D and 3D nets which are realized in
crystal structures, at a time [25]. Another large overview
of mostly interpenetrating sets occurring in intermetallic
phases is contained in W. B. Pearson’s book on intermetal-
lic compounds [26].

3. Methods of construction

Due to the enormous difficulties in deriving and calculat-
ing new PMS through Gauss mapping and solving Weier-
strass equations from scratch it was eligible to develop
another approach. Beyond such general obstacles, a clear
connection to space group symmetry was still missing un-
til the midst of the 1980ies. The notion that a field approach
instead of a surface centered view can lead to similar peri-
odic forms though not necessarily with minimal surface
properties opened the way for a direct derivation of peri-
odic hyperbolic surfaces from space groups. The first at-
tempts in this direction utilized Coulombic fields in which
periodic equipotential and zero surfaces (P0Ps) were calcu-
lated and finally represented. Indeed, the simplest charge
distribution in the corresponding symmetry groups Fd�33m,
Pm�33m, and Ia�33d did yield the Schwarz D, Schwarz P, and
Schoen’s G (gyroid) surfaces. It became immediately clear
how to proceed: the P0PS corresponding to Schwarz’s P
surface is calculated from a cesium chloride-kind of charge
distribution (Fig. 6a, [27, 107]). While both the plus and the
minus potential spaces belong to space group Pm�33m, the
P0PS must have higher symmetry due to the fact that ne-
gative and positive spaces are congruent and only shifted
by 1=2

1=2
1=2 with respect to each other. A surface having

topologically identical spaces on both sides is called a ba-
lanced surface. In such a case additional symmetry elements
have to be on that surface which exchanges topologically
both spaces. These belong to a set of twofold axes which
of course do not appear in Pm�33m but in the supergroup
Im�33m (Wyckhof set 48i). Twofold axes running along the
surface must necessarily be identical with straight lines on
the surface. These straight lines set up on the one hand the
wireframes for the minimal surface soap skin experiment,
on the other they delimit the smallest asymmetric unit of
the unit cell which, through rotations, inversions, and mir-
roring, develops into the complete surface. The symbolic
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Fig. 3. Some open frameworks (a) silicon net in the ThSi2 structure;
(b) silicon net in the SrSi2 structure; (c) diamond net and enveloping
surface parallel to the D surface; (d) hypothetical framework follow-
ing the G surface [19].

Fig. 4. (a) Dirichlet domains and Gyroid surface in space group
Ia�33d; (b) Dirichlet domains and P surface in space group Im�33m; pro-
jection of the clathrate I structure visualizing domains around the ca-
tion centers (big spheres); (d) polyhedral display of the clathrate II
structure.



description for generating such a surface was formulated
initially as P0PS:

Schwarz P or P* P
ðþÞ
ð1aÞ

^ P
ð�Þ
ð1bÞ or cl ðP I 1=2

1=2
1=2 I PÞ

by referring to the lattice complex notation. It says that
two primitive (P) lattice complexes which are related by a
body centering carry the charges given in the superscript
(þ1) and (�1) and are located in the Wyckoff sites given
as subscripts. The short symbol for such a body centered
combination is the *.

In an attempt to relate the coding of different PS and to
allow better comparison we rewrite to

P0PS: Schwarz P or P* Pm�33m < ð000Þþ1;

ð1=2
1=2

1=2Þ
�1 > Im�33m

starting with the generating space group symmetry, fol-
lowed by brackets h i and ending with the resulting P0PS
space group symmetry. The brackets h i contain the infor-
mation about the location (x, y, z) of the charge and its
magnitude and sign as an superscript [28]. In general, from

P0PS: H < ðxþ; yþ; zþÞþ1; ðx�; y�; z�Þ�1 > G

it is clear that the additional symmetry elements of G with
respect to it’s subgroup H must be part of the P0PS and
must be invariant parts of the P0PS [27]. This led already in
the beginning to an instantaneous classification of 24 P0PS
and related PMS many of which were new and not yet
known at that time.

At this point it should be noted that balanced surfaces
establish black and white groups which are appropriate
descriptors for physical situations like antiferromagnetic
spin structures. Clearly, this insight right in the midst of
the 1980ties paved the way for a systematic derivation of
balanced periodic surfaces through group-subgroup rela-
tions [16] which was the necessary prerequisite [29] for
the later systematic work of Fischer and Koch [30]. Con-
secutively a primary table of P0Ps was derived from sys-
tematic analysis of black and white symmetry groups [31].

It is also an interesting, yet unanswered question, how
three dimensional n-periodic surfaces develop in n-color
groups, i.e. triply periodic surfaces in three-color groups.
Fogden and Hyde give an example of a balanced triply
periodic surface on their homepage [31] while Holyst sim-
ply derives tripling of space by generating parallel surfaces.
This, of course, can be done in an infinite manner and
only emphasizes the necessary laminate-like nature of per-
iodic 2D surfaces filling 3D space [32].

Since P. P. Ewald’s centennial work on lattice sums it
was clear that Coulombic interactions can be represented
both in real (by the summation over the Coulomb formula)
and in reciprocal space (by summation over structure fac-
tors which are derived from a charge distribution). While
the real space sum does not converge, the reciprocal does
quickly. Felix Bertaut proposed in the 1950ies to comple-
tely represent the periodic Coulomb summation by a short
Fourier series [33] and he was able to show that just a few
principle structure factors close to the origin, i.e. with
smallest k-vectors can cope for sufficiently precise calcula-
tion of Madelung constants and Madelung parts of lattice

energy (MAPLE). It is also interesting to note, that Ber-
taut published a formula for MAPLE which consists of
two terms: a structure dependent term which consists of a
few principal structure factors or most fundamental Bragg
reflections, and a structure independent term only taking
into account the existence of discrete charges qi at a mean
distance R (negative term on the right):

U ¼ l
P

h

F2
hj2

h

h2
� 3

5
� 1

R

P
i

q2
i :

The first term adds concrete topological information
through a short series of charge structure factors which are
defined according to [34]

FðhÞ ¼ V
Ð1
0

qðrÞ e2piðhrÞ dr :

The charge density function F(h) consists only of the
structure dependent part.

qðxÞ ¼ 1

V

ðþ1

�1

FðhÞ e�2piðhxÞ dh :

By the end of the 198oies there was a correspondence
with Bertaut through whether or not only one structure
factor set representing properly the space group in ques-
tion was simply a representative of symmetry, free of phy-
sical meaning or still a representation of Coulombic fields.
Well, it turned out that it is both, dependent on which
glasses are worn [35]. The generation of Schwarz P sur-
face by the set of reciprocal vectors {100} with amplitude
1.0 and phase angle a ¼ 0 (consisting of the vectors 100,
001, and 010 to properly represent cubic symmetry) does
not contain any physical information and thus can only
generate a spatial representation of Pm�33m symmetry where
the trace of density q ¼ 0 belongs to both negative and
positive density and thus enters into the supergroup Im�33m.
However, if one assigns a reciprocal charge unit to the
amplitude then a representation of the Coulombic field re-
sults which, of course is topologically completely identical
to the aforementioned unphysical representation. So, just
like cubic harmonic functions being on the one hand func-
tions of electron orbitals of the atoms, they are on the
other hand, in a much more general sense, representations
of the group of the sphere (¼ point group K) without any
specific physical meaning. The first large set of PNS was
published 1990 [36, 37] and is given in the Table 1.

4. Definitions

In the following we shall use the PNS calculated as

Rð r!Þ ¼
PN
n¼1
j SðhnÞ j k

n
cos ð2phnr� aðhnÞÞ ¼ 0

Where SðhnÞ ¼
P

i
di exp ð2pihnriÞ is the geometric struc-

ture factor; di stands for a dimensionless d-function,

kn ¼ jYnj
jhj

� �2
is a decay function; h and r are the vectors

in reciprocal and direct space, h ¼ ha*þ kb*þ lc* (in
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Table 1. Representations of some Periodic Nodal Surfaces (notation after Fischer & Koch [36], jSj ¼ structure factor amplitude, a ¼ phase angle, X ¼ 2px etc. w ¼ jjkj2=jkj2).

Symbol
after [24]

Symbol
after [24]

hkl jSj �w a Generating space
group

f(x, y, z) ¼ 0 Symmetry
of surface

Symbol after [28]

P* P 100 1 0 Pm�33n cos X þ cos Y þ cos Z ¼ 0 Im�33m Pm�33m < ð100Þ10 > Im�33m

F* 111 1 0 Fm�33m cos X � cos Y � cos Z ¼ 0 Pm�33m Fm�33m < ð111Þ10 > Pm�33m

D* D 111 1 0

�p=4

Fd�33m
(origin at �3 m)
Fd�33m
(origin at �43 m)

cos (X � Y) � cos Z þ sin (X þ Y) � sin Z ¼ 0

cos X � cos Y � cos Z þ sin X � sin Y � sin Z ¼ 0

Pn�33m Fd�33m < ð111Þ10 > Pn�33m

Fd�33m < ð111Þ1�p=4 > Pn�33m

Y** Y*, G 110 1 p=2 I4132 sin X � cos Y þ sin Y � cos Z þ cos X � sin Z ¼ 0 Ia�33d I4132 < ð110Þ1p=2 > Ia�33d

IP2-J* I-WP 110
200

1
1

0
p

Im�33m 2 � [cos X � cos Y þ cos Y � cos Z þ cos X � cos Z] � [cos 2X þ cos 2Y þ cos 2Z] ¼ 0 Im�33m Im�33m < ð110Þ10ð200Þ1p > Im�33m

S* S 211 1 p=2 I-43d cos 2X � sin Y � cos Z þ cos X � cos 2Y � sin Z þ sin X � cos Y � cos 2Z ¼ 0 Ia�33d I�443d < ð112Þ1p=2 > Ia�33d

C(D*) C(D) 311 1 0

�p=4

Fd�33m
(origin at �3 m)
Fd�33m
(origin at -43m)

cos (3X þ Y) � cos Z � sin (3X � Y) � sin Z þ cos (X þ 3Y) � cos Z þ sin (X � 3Y) � sin Z
þ cos (X � Y) � cos 3Z � sin (X þ Y) � sin 3Z ¼ 0
cos 3X � cos Y � cos Z � sin 3X � sin Y � sin Z þ cos X � cos 3Y � cos Z
� sin 3X � sin Y � sin Z þ cos X � cos Y � cos 3Z � sin X � sin Y � sin 3Z ¼ 0

Pn�33m Fd�33m < ð113Þ10 > Pn�33m

Fd�33m < ð113Þ1�p=4 > Pn�33m

P*J* C(P) 100
111

1
1

0
0

Pm�33m cos X þ cos Y þ cos Z þ 4 � cos X � cos Y � cos Z ¼ 0 Im�33m Pm�33m < ð100Þ10ð111Þ10 > Im�33m

C(Y**) 110
310

3
2

p=2
p=2

I4132 3 � [sin X � cos Y þ sin Y � cos Z þ cos X � sin Z] þ 2 � [sin 3X � cos Y þ cos X � sin 3Z
þ sin 3Y � cos Z � sin X � cos 3Y � cos 3X � sin Z � sin Y � cos 3Z] ¼ 0

Ia�33d I4132 < ð110Þ3p=2ð310Þ2p=2 > Ia�33d

C(S*) C(S) 200
321
231

2
1
1

0
p
p

Ia�33 cos 2X þ cos 2Y þ cos 2Z þ 2 � [sin 3X � sin 2Y � cos Z þ cos X � sin 3Y � sin 2Z
þ sin 2X � cos Y � sin 3Z] þ 2 � [sin 2X � cos 3Y � sin Z þ sin X � sin 2Y � cos 3Z
þ cos 3X � sin Y � sin 2Z] ¼ 0

Ia�33d Ia�33 < ð200Þ20ð321Þ1pð231Þ1p > Ia�33d

I2-Y** 211
220

1
1

0
0

Ia�33d �2 � [sin 2X � cos Y � sin Z þ sin X � sin 2Y � cos Z þ cos X � sin Y � sin 2Z]
þ cos 2X � cos 2Y þ cos 2Y � cos 2Z þ cos 2X � cos 2Z ¼ 0

Ia�33d Ia�33d < ð211Þ10ð220Þ10 > Ia�33d

C(I2-Y**) 211
220

1
1

p
0

Ia�33d þ2 � [sin 2X � cos Y � sin Z þ sin X � sin 2Y � cos Z þ cos X � sin Y � sin 2Z]
þ cos 2X � cos 2Y þ cos 2Y � cos 2Z þ cos 2X � cos 2Z ¼ 0

Ia�33d Ia�33d < ð211Þ1pð220Þ10 > Ia�33d

W* 210 1 0 Pm�33n cos 2X � cos Y þ cos 2Y � cos Z þ cos X � cos 2Z � [cos X � cos 2Y þ cos Y � cos 2Z
þ cos 2X � cos Z] ¼ 0

Im�33m Pm�33n < ð210Þ10 > Im�33m

Y* Y 111
210

1=
ffiffiffi
2
p

1
�p=4

p
P4332 þ[cos X � cos Y � cos Z þ sin X � sin Y � sin Z] þ [sin 2X � sin Y þ sin 2Y � sin Z

þ sin X � sin 2Z þ cos X � sin 2Y þ cos Y � sin 2Z þ sin 2X � cos Z] ¼ 0
I4132 P4332 < ð111Þ1=

ffiffi
2
p

�p=4ð210Þ1p > I4132

(YYxxx)* C(Y) 111
210

1=
ffiffiffi
2
p

1
3p=4
p

P4332 �[cos X � cos Y � cos Z þ sin X � sin Y � sin Z] þ [sin 2X � sin Y þ sin 2Y � sin Z
þ sin X � sin 2Z þ cos X � sin 2Y þ cos Y � sin 2Z þ sin 2X � cos Z] ¼ 0

I4132 P4332 < ð111Þ1=
ffiffi
2
p

3p=4 ð210Þ1p > I4132

Fxxx* �Y 111
210

1
1

0
p

Pa�33 þ2 � cos X � cos Y � cos Z þ [sin 2X � sin Y þ sin X � sin 2Z þ sin 2Y � sin Z] ¼ 0 Ia�33 Pa�33 < ð111Þ10ð210Þ1p > Pa�33

(FFxxx)* C(�Y) 111
210

1
1

p
p

Pa�33 �2 � cos X � cos Y � cos Z þ [sin 2X � sin Y þ sin X � sin 2Z þ sin 2Y � sin Z] ¼ 0 Ia�33 Pa�33 < ð111Þ1pð210Þ1p > Pa�33

Fxx-P2Fx F-RD 111
220

2
1

0
p

Fm�33m 4 � cos X � cos Y � cos Z � [cos 2X � cos 2Y þ cos 2X � cos 2Z þ cos 2Y � cos 2Z] ¼ 0 Fm�33m Fm�33m < ð111Þ20ð220Þ1p > Fm�33m

Q* ST1 01.1 1 0 P6222 (cos X – 2 cos Y) � cos Z �
ffiffiffi
3
p
� sin Z � (cos (X � Y) � cos X) þ cos (X � Y) � cos Z ¼ 0 P6422 P6222 < ð011Þ10 > P6422
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Fig. 5. Shape of selected Periodic Nodal Surfaces and positions of the extreme points of the function RðrÞ: yellow side of each points out to the
positive values of RðrÞ, the blue side points out to the negative values; red isosurface visualizes the positions of the maximal, green isosurface
shows the position of the minimal values of RðrÞ.



short form h ¼ ha*) and ~rr ¼ xaþ ybþ zc (in short form
r ¼ xa, respectively; aðhnÞ is the symmetry related phase

shift of SðhnÞ.
In accordance with the definition above, the complete

symbol of a PNS, for example

I4=mcm < ð110Þ10; ð121Þ0:2p > I4=mcm ;

starts with the generating space group symmetry, followed
by brackets h i and ends with the resulting PNS space
group symmetry [36, 37]. The brackets h i contain the in-
formation about the representative vectors (hkl)jSja with
their phases and amplitudes that have to be used in the
Fourier transform in order to develop the desired PNS.
This set is derived by permutation of hkl according to-
space group symmetry.

The ease of deriving PNS by the help of selected sets
of structure factors S(h) raised the question of how to se-
lect those S which are characteristic for a given space
group. This was insofar important as the extinction condi-
tions alone are not sufficient to decide on this problem
because a low-indexed S(hkl, a) set may generate a higher
symmetry than the space group in question. So for all cu-
bic body centered groups the sets S(110, a) are only char-
acteristic for Im�33m and for I4132, respectively, discrimi-
nated by the value of a. The first characteristic set for
I432 as well as for I23 is S(321, a) only. It is even more
surprising that for the cubic primitive groups Pn�33n, Pn�33
and P23 no single characteristic structure factor is found
with shorter /h/ than S(421, a)! A complete survey of
characteristic sets was worked out by von Schnering how-
ever not yet published completely [38]. The shape of the
selected PNS and the positions of the extreme points of
the according sum functions are presented in Fig. 5.

5. PNS, exponential scale and other approaches

S. Anderson formulated the concept of shape description
using exponential scale equations and applied it on crystal
shapes [39], cubosomes [40], basic sphere packings and
fundamental crystal structures [40–43]. According to his
approach, objects with translational symmetry can be de-
scribed in exponential form (ES) with the following equa-
tions or their combinations:

ES1 ðrÞ ¼
PN
n¼1

exp ð2phnrÞ;

ES2 ðrÞ ¼ exp
PN
n¼1

exp ð2phnr

� �
:

Here hn and r are vectors in reciprocal and direct space,
and N is the number of reciprocal vectors used for summa-
tion. For the description of given objects, the isosurfaces
of ES1 or/and ES2 with appropriate values were utilized.

The zero-electrostatic-potential areas separate the posi-
tively and negatively charged domains within an array of
electric charges, e.g. a crystal structure. These PSPs are
called Periodic Zero Potential Surfaces (P0PS) or Zero
Equipotential Surfaces (ZEPS). For the last definition a
generation method was developed by means of Jacobi the-

ta functions [44, 45]. Mathematically, this representation is
close to the exponential surfaces introduced by Sten An-
dersson.

More for practical reasons A. L. Mackay developed a
method for numerical binding of the minimal surface [46].
The calculation procedure starts with a table of the z coor-
dinates (as a function of x any y) of an approximate sur-
face, e.g. a PNS. Then in each point (x, y) the first and
second derivatives of z with respect of x and y are calcu-
lated. They are further implemented in the Laplace-Young
equation for the calculation of a new z value which gives
a new surface with the divergence value closer to zero.
These operations are repeated until convergence criteria
with respect of the area and integrated Gaussian curva-
tures are achieved. The integrated Gaussian curvature ob-
tained from the boundary conditions serves as a check on
the whole calculation. On this way a final table of x, y, z
coordinates of the points of a minimal surface is produced.

In some cases, the isovalues of exponential scale (ES)
equations reveal surfaces, which topologically are very si-
milar to the PNS. So, implementing the vector (100) with
its equivalents for the cubic symmetry into the equation
ES1 and using 7.56 as the function value gives a isosur-
face ([40], p. 85 ff) which has similar topology to the PNS
Pm�33m < (100) > Im�33m, which is, in turn, very similar to
the minimal surface P [47]. A detailed analysis of both
systems of surface generation (PNS and exponential scale)
reveals their immanent relation. The ES equations in gen-
eral can be represented as weighted sums of the PNS
equations either with the multiplied reciprocal vectors mhn

or as weighted sum of the PNS equations raised to the
power of m, where m is an integer value equal to the num-
ber of the summands reduced by 1. So, the shape of the
isosurface with ES1 ¼ 81N/64 is identical to that of the
weighted sum of PNS’s with the multiplied reciprocal vec-
tors, mhn. An interesting by-product of the analysis above
was the conclusion that the extreme values for both equa-
tions types can not be found analytically but only by the
numerical way [48].

6. Minimal structure factor sets defining
structure types

Taking the list of known structure types it is quite interest-
ing to investigate what would be the smallest number of
fundamental sets S(hn) to discriminate all structures of a
specific symmetry group. Let us choose cubic face cen-
tered structure types belonging to the diamond group Fd�33m
[49] as listed in Pearson’s Handbook [50]. Of course, the
basic PNS which can be generated in the space group of
diamond is of general validity for all the structure types
that crystallize with that symmetry. In that sense, PNS
may serve as an important tool in understanding the rela-
tions of those structures in a hierarchical sense, that is with
increasing complexity. However, the fact that the level of
the description has not taken into account the atomic sites
imposes some extensions of the concept and some other
point of view, if we want to understand which variations
are permitted around a basic organizer such as the D* sur-
face. If the zinc-blende structure is the “natural” realiza-
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tion of the symmetry recipe of the D* surface, the so-called
aristotype, what about other representatives of this sym-
metry like the spinel type or some extremely complex one
like that of Mg2Al3?

To be more precise, out of the large number of struc-
tures crystallize with space group Fd�33m, only the repre-
sentative variants of the structure types were chosen for
comparison. The structure types were then compared on
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Structure
type

111 220 222 311 331 333 400 422

cF16
NaTl

0 1
�

0 0 0 0 1
�

1
þ

cF24
MgCu2

0.10
�

0.33� 0.67
þ

0.57
þ

0.10
þ

0.57
�

0.33
þ

0.33
þ

cF32
CsNbN2

0.25
�

0.50
�

0.50
þ

0.25
þ

0.25
þ

0.25
�

0 0.50
þ

cF48
TiS2

0.20
�

0
�

0.33
�

0.16
þ

0.12
þ

0.07
�

1
þ

0
�

cF56
spinel

0.16
�

0.19
�

0.22
�

0.20
þ

0.13
�

0.07
þ

0.63
þ

0.11
þ

cF64
Li2TiS4

0.02
þ

0 0 0.10
þ

0 0.10
�

1
þ

0

cF80
As2O3

0.28
�

0.10
�

0.36
�

0.02
�

0.33
�

0.21
�

0.01
þ

0.32
�

cF80
ThZr2H7

0.10
�

0 0.20
þ

0.10
þ

0.10
þ

0.10
�

0.60
�

0

cF96
Ti2Ni

0.06
�

0.006
þ

0.071
�

0.014
þ

0.133
þ

0.472
þ

0.026
þ

0.274
�

cF120
Mn4Co7Sb4

0.056
�

0.061
þ

0.0093
þ

0.034
�

0.033
þ

0.072
�

0.072
þ

0.072
�

cF128
Li13In3

0.024
�

0.004
�

0.006
þ

0.008
�

0.04
�

0.07
þ

0.008
�

0.004
�

cF128
BaGe2S5

0.06
þ

0.112
�

0.194
�

0.055
þ

0.198
þ

0.200
þ

0.160
þ

0.248
�

cF128
Ti2NiH
as Ti2Ni

0.015
þ
�

0.120
�
þ

0.071
þ
�

0.052
�
þ

0.037
þ
þ

0.416
þ
þ

0.020
þ
þ

0.080
�
�

cF144
Dy5Pd2

0.21
�

0.158
�

0.031
�

0.053
�

0.199
þ

0.315
þ

0.046
þ

0.108
�

cF160
Na24Si136

0.062
�

0.058
þ

0.072
�

0.039
�

0.052
�

0.258
�

0.101
�

0.157
þ

cF184
V2Al20

0.044
þ

0.013
þ

0.007
þ

0.023
�

0.007
�

0.028
�

0.012
þ

0.034
�

cF216
Li2P2N5

0.22
�

0.115
�

0.031
�

0 0.04
þ

0.04
�

0.53
þ

0.23
�

cF464
Na35Cd24Ga56

0.031
þ

0.011
�

0.009
þ

0.017
�

0.012
�

0025
�

0.009
þ

0.005
�

cF464
Na17Ga29In12

0.051
þ

0.01
�

0.009
þ

0.023
�

0.011
�

0.027
�

0.005
þ

0.008
�

cF1192
NaCd2

0.037
þ

0.003
þ

0.012
þ

0.006
�

0.095
�

0.001
�

0.004
þ

0.016
þ

cF1832
Mg2Al3

0.172
�

0.112
�

0.011
þ

0.04
�

0.009
þ

0.052
þ

0 0.004
þ

Table 2. Structure types with diamond group
symmetry and their characteristic sets of
structure factors S(hn). In lines: amplitudes jSj
and signs/phase angles, þ ! a ¼ 0�, � ! a
¼ 180�.



the basis of the occupied positions which were all repre-
sented by one atom type (carbon). The development of
complexity was worked out by using the PNS approach
under preservation of the underlying basic topological es-
sence of the group. The calculation of the structure factors
was then performed according to the following sequence:

1. Standardize all structure types to one setting [19].
2. Generate all the positions and assign a uniform scat-

tering factor (carbon).
3. Calculate a scale factor according to S(000), which

corresponds to the total number of positions.
4. Generate a sufficiently large number of S(hn) of

shortest hn length, i.e. increasing Miller indices hkl,
which are close to the centre of reciprocal space and
carry general topological information.

5. Only consider S(hn) with large amplitudes.
6. Finally, the size of the complete set of S(hn, a) was

reduced with respect to the length of hn in order to
find the smallest set which allows us to discriminate
all investigated structure types by their phase sets
alone.

The result is that a series of eight sets S(hn, a) with smal-
lest hn vectors is sufficiently large to discriminate structure
types from cF16 and cF1832, from 16 to 1832 atoms per
unit cell! There is only one exception which is the two
cF464 types which are differently classified in data bases
and look quite different concerning their crystal structure
plots (Table 2). However, comparison of the Wyckoff sites
reveals that they are practically isostructural.

This means that very few basic S(hn, a) sets allow to
discriminate topologically different frameworks of the same
symmetry. Furthermore, the 8 structure factor sets of Ta-
ble 2 generate for each of the 20 structure types a different
separable PNS.

7. Use for structure determination

Applying a larger number of reflections as it usually ne-
cessary for a PNS, an envelope surface may be generated
which roughly describes the shape of the protein molecule
and defines the boundary between the molecule and the
solvent [50]. Such surfaces and a PNSs are mathemati-
cally easily related, despite a PNS usually does not have a
closed form. This similarity was reason enough to adopt
the term ‘structure envelope’ also for PNS [51].

Applying a special algorithm for the sensible phase de-
termination for the generating reflections, the resulting
PNS was hoped to describe in zero approximation the
electron density in the crystal structure determined. Com-
bining this result with any of the direct-space methods of
crystal structure determination, the variety of the possible
structure-fragment positions, orientations and conforma-
tions may be strongly reduced. This technique was suc-
cessfully applied to the determination of the crystal struc-
tures of zeolites and molecular compounds [52].

The maxima and the minima of the PNS equation re-
flect the positions suitable for the structural units with op-
posite charges. This feature may be used for generating of
a starting model for crystal structure determination routines,
which are not based on traditional direct methods [53].

8. Geometry, topology, and bonding

Periodic Nodal Surfaces generated from the shortest Bragg
vectors h in reciprocal space reveal different features of the
structural relationships or atomic interactions. As for atomic
interactions, a PNS either emphasizes that part of the space
where a distinct kind of chemical bonding takes place or
separates of the space parts with different kinds of predomi-
nant chemical bonding. In the simplest case a PNS separates
the cations and the anions in a crystal structure: the often
referenced so-called P surface Pm�33m < ð100Þ10 > Im�33m
separates ions of different charge in the CsCl-type crystal
structures (Fig. 6a). In the more complex crystal structures
of intermetallic clathrates a-Eu8Ga16Ge30, b-Eu8Ga16Ge30

[54], and Ba6Ge25 [55], an appropriate PNS separates the
cations located in the cavities of the framework anions,
revealing the interaction between the both structure com-
ponents (Fig. 6b–d). This general feature is further recog-
nizable in the case of both modifications of BaAl2Ge2. In
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a� b�

c� d�

e� f�

Fig. 6. Periodic Nodal Surfaces separating differently charged regions
in the crystals structures of CsCl (a), a-Eu8Ga16Ge30 [54] (b), b-
Eu8Ga16Ge30 [54] (c), Ba6Ge25 [55] (d), a- and b-BaAl2Ge2 [56] (e),
(f).



the b polytype PNS separates the cations from the layered
anion, in the a polytype a topologically similar PNS sepa-
rates a three-dimensional anion from the embedded cations
(Fig. 6e, f [56]).

A very good measure for atomic interactions which can
be compared by PNS is given by the electron localizability
approach [57–61, 108]. By topological analysis of the
Electron Localizability Indicator (or Electron Localization
Function) different atomic interactions can be indentified
and ascribed to the distinct space parts within a crystal
structure. An appropriate PNS separates the structure re-
gions with different chemical interactions. A prominent
example was found in RhBi4 [62, 63]. The regions with
the covalent Rh––Bi interactions forming hyperbolic layers
are separated from the regions with the lone-pair interac-
tions between these layers by the Giroid PNS (Fig. 7a). In
the structurally related intermetallic compounds CuAl2
[64] and PdGa5 [28, 66], the transition metals are coordi-
nated by Al or Ga forming tetragonal antiprisms. Within
these antiprisms, the multicentre bonding is prevalent. Be-
tween the antiprisms, the two-centre Al––Al or Ga––Ga
bonds are formed. Both regions with different bonding
kind are separated by an PNS (Fig. 7b, c). In the recently
found binary compound Mg3Ru2, ruthenium atoms form a
3D polyanion, which is separated by a PNS from the mag-
nesium substructure [67]. Besides the ionic interactions
between both substructures, the PNS visualizes the geo-
metric place for the multicentre interaction between mag-
nesium and ruthenium (Fig. 7d). A special feature of the
defect clathrate-I structure of Ba8Ge43&3 are the lone
pairs of Ge around the defects in the ordered superstruc-
ture [68]. Also in such topologically extremely complex
situation is it possible to visualize the arrangement of the
lone pairs by help of a PNS (Fig. 7e).

Interestingly there is an approach in plane wave theory
to explain structural stability which relates somehow to
the concept of PNS. One uses the Fourier transform of the
pair correlation function which is a function of distance but
isotropic in 3D and thus structure independent, and reads
it out at h vectors of the principle structure factors (closest
to the origin of reciprocal space G). Only structures having
structure factor sets which can read out considerable nega-
tive energy contributions from the continuous pair correla-
tion function are stable. This was used long time ago by
Heine et al. to explain the stability of the a-gallium struc-
ture over an fcc lattice (Fig. 8).

These days, it is quite obvious, that in a plane wave
expansion of the wave function of a crystalline solid, the
major energy contributions will be found by those plane
waves which correspond to strong principle structure fac-
tors.2 However, little work has been dedicated to correla-
tions of single plane waves or plane wave sets with actual
structural features, up to now. In a recent paper, H. Aoki
et al. derive a Schrödinger-like equation for PMS, calcu-
late band structures and show principle plane wave states
[70]. Though very interesting and in a way fundamental

for PNS research, this contribution, is more a mathemati-
cal than a physical one because the states and bands being
derived are basically representations of the PMS in the
group theoretical sense. Unless concrete electron numbers
and effective potentials are specified, direct physical mean-
ing must be lacking. Analyzing their band structure for
Schwarz’s P surface in Fig. 9 we find that the bands be-
long to only two sets through their degeneracy at certain k
vectors. The lower energy bands crossing points a–e con-
stitute a set of six bands which are folded by the smaller
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Fig. 7. Periodic Nodal Surfaces separating regions with different che-
mical interactions in the crystal structures: (a) covalent Rh––Bi inter-
actions within the tetragonal antiprisms [RhBi8] and van-der-Waals
interactions between the hyperbolic layers of antiprisms [62, 63]; (b),
(c) multicentre Pd––Ga and Cu––Al interactions within the antiprisms
[PdGa10] and [CuAl8] and two-centre bonds between the antiprisms
in PdGa5 [28] (b) and CuAl2 [64] (c); (d) Ru––Ru interaction in the
polyanionic part and magnesium cations in Mg3Ru2 [66]; (e) lone pair
arrangements around the defects in the Ge framework and the main
part of the framework in Ba8Ge43&3 [67].

2 In case of different atom types with large differences in electron
number the argument better applies to the so-called normalized struc-
ture factors E which are more or less free of the influence of form
factors or scattering curve differences of the individual atoms.



Brillouin zone but would just be one band in the 6-fold
zone corresponding to the patch outlined in blue in Fig. 9k.
Bands starting at point f constitute a set of 12 bands which
could still be unfolded in the 12-fold zone corresponding
to the patch marked red in Fig. 9k.

The individual states displayed in Fig. 9a–f are all tri-
ply degenerate except (a), for obvious reasons. As seen in
the band structure a–e belong together with nodal plane
development perpendicular to {100} directions. The set f
develops with nodal planes perpendicular to {110} direc-
tions. In this respect, they can also be derived from trigo-
nometric functions of special structure factors by a classi-
cal Fourier transform.

For realistic physical systems, i.e. an electronic struc-
ture of a crystalline compound, the band structure in Fig. 9
could host a maximum of 36 (valence) electrons and
would lead to metallic properties at any position of the
Fermi level. It would be important to investigate whether
such crystal states or bands discriminate from ordinary
states which do not relate directly to a PMS or PNS of
higher symmetry than the rest of the bulk structure, in
other words whether electronic states near a balanced PMS
discriminate from the rest of the states.

9. Inventing new networks

Symmetry adapted hyperbolic surfaces are representatives
both of a given symmetry group and of a connected topol-
ogy. In this respect they go beyond a mosaic description
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Fig. 8. (top) k dependence of structure factors for the a-gallium and
the alternative fcc arrangement; (bottom) Fourier transform of pair
correlation function for Ga––Ga interactions. According Heine and
Weaire, that structure which assembles most energy from the pair
potential curve through its k-vectors or structure factors hn is the
more stable one [68].

h� g�

a� b�

i�

c� d�

k�

e� f�

Fig. 9. Band structure of the P surface after [70]: (a)–(f) wavefunction for k points given in the band structure (g), (h) PNS of the P surface; (i)
the 48 fundamental tiles of the P surface shown as a modulated PNS according to section 8; (k) unit cell of the band structure (g, in grey) and
smaller cells unfolding the six-fold (blue) and the twelve-fold degenerate bands (red).



of arrangements in space, like for example atoms in a
structure. Every structural scientist knows that the notion
of the atomic sites leaves a lot of freedom for interpreta-
tion of the way in which atoms are kept together to ar-
range as they do. The question of chemical bonding on
local and on global scales is a wide field of interpretation
and modeling at different levels of sophistication. Ab initio
methods have the great appeal that they do not impose
many constraints on the way atoms would rearrange if
boundary conditions of a given ensemble change. However,
the approximations which have to be taken for scanning
full configurational space are not trivial and may lead to
false predictions. Nonetheless, many artificial or hitherto
unknown arrangements can be tested for kinetical survival
with a remarkable accuracy.

Still, “science in mind” does not work in configurational
space and scientists mostly rely on plausibility based on
what they already know. In this respect, it is important to
have guidelines along which imagination can extent. The
concept of PSP is a deeply structural one, unifying sym-
metry and topology. It allows for well ordered ways of
extending structural knowledge into the more complex,
into the unknown. One such approach was given recently
where interference of differently complicated PNS was
shown to be a useful tool for inventing new structures in a
systematic way. The approach is fairly simple and basi-
cally a merger of a more fundamental PNS’ sayP

h
jSðh0Þj cos ½2pðh0rÞ � aðh0Þ� ¼ 0

with a slightly more modulated PNS’’P
h
jSðh0Þj cos ½2pðh0rÞ � aðh0Þ�

þ jSðh00Þj cos ½2pðh00rÞ � aðh00Þ� ¼ 0 ;

where jSðh00Þj is about 10% of jSðh0Þj and jh00j > jh0j.

As a PNS’’ by definition exhibits more structural de-
tails it has modulations which pop out PNS’. This gener-
ates systematic patterns or tilings on PNS’ which are apt
for interpretation (Fig. 10).

10. Phase transitions – structural development
in time

The achievements in connecting periodic hyperbolic sur-
faces to the chemical structure of matter were soon followed
by the idea of using this novel kind of structural description
to elucidate mechanisms of reconstructive phase transitions.

In contrast to 2nd order phase transitions, 1st order re-
constructive phase transitions involve generally larger scale
rearrangements and are mechanistically much more de-
manding because there is no strict symmetry control as for
the former. For 2nd order transitions a distinct group-sub-
group relation is a prerequisite, such that the transition
proceeds according to one and only one irreducible repre-
sentation of the subgroup. The symmetrical relations be-
tween structures connected through 1st order transitions
are more distant, and allow for a large variety of displace-
ments of atoms or building blocks required to achieve the
actual structural transition.

The application of PES to the investigation of recon-
structive phase transitions is an attempt to replace the
methodical complexity of having n particles in configura-
tional space by an envelope surface to the structures in
question. In that case PES are mostly more useful than
PMS or PNS because they allow for a better adaptation of
structure and surface. There is a huge number of transfor-
mation pathways to be considered possible at first sight,
but most of them will not come into play either because
they involve too much activation energy, or because the
atomic displacements are too big to compete with a small
number of transitions fulfilling both requirements: low ac-
tivation barrier and short diffusive if not just only displa-
cive movements of the basic particles. Starting from topo-
logical criteria puts the focus in the first instance not on
energy considerations (and thus on thermodynamics) but on
the magnitude of displacements (i.e. ultimately kinetics)
and can therefore provide complementary information.

Whereas the advantage of this approach being compu-
tationally quite inexpensive is nowadays continually de-
creasing in importance, the origin of its computational
economy remains of unvarying relevance: It is the fact that
important information gathered in the diffraction patterns
is being actually used instead of being discarded and re-
placed by blind computational power.

There are two principal alternatives in which periodic
hyperbolic surfaces can be used in a phase transition study.
Either the structure in question can be embedded in the
surface such that all atoms are lying on the surface, or the
surface can be chosen such as to envelope the structural
network. The first approach has been applied to the auste-
nite-martensite transformation by Hyde and Andersson
[71–72], but the underlying transformation of the gyroide
surface is a Bonnet-type transformation and as such very
specific. The results cannot be generalized to systems where
connectivity changes during the transition, i.e. to recon-
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Fig. 10. Four tilings on the G surface as PNS’. It is easy to construct
nets from these patterns and cast them into hypothetical chemical
frameworks.



structive phase transitions. Therefore the second approach
seems more promising for the investigation of 1st order
transformations.

First attempts date back to early P0PS work with H.-G.
von Schnering in the 1980ies. He knew that the sodium
chloride and the cesium chloride types are transformable
into each other just by a change of the c/a ratio from 1.22
to 2.44 in the trigonal setting. Consequently that transition
was modeled by – at that time – quite crude and labor-
ious graphical methods. Even though the lowest energy
trajectory proceeds through another channel (no. 12 in Ta-
ble 3) we were quite enthusiastic to find a concerted move-
ment of all atoms from one structure to the other. Consid-
ering that one could guess the size of the volume which
should undergo the transformation it was clear that the
model could refer to everything between a tiny nucleus
and a macroscopic volume, respectively. The nucleation,
though is much more likely, because of the excitation of
only a few atoms at a time. The first attempt to apply the
older P0PS approach of von Schnering and Nesper to the
NaCl-to-CsCl type transition was undertaken by Oehme
[73]. The more general concept of PES as enveloping func-
tions was first used by Leoni et al. in order to tackle recon-
structive phase transitions [74] in the silica phase diagram,
between carbon allotropes, and between several disilicide
structure types.

One of the first actual examples was the study of the
quartz-to-tridymite transition in the silica phase system,
where PESs are used to envelope the structural networks
of starting and final phases [74]. Linear interpolation be-
tween the two enveloping surfaces according to

f ðtransitionÞ ¼ v � f ðphase AÞ þ ð1� vÞ � f ðphase BÞ ;
where

v ¼ ½0 . . . 1�
leads to a gradual transformation from starting to final sur-
face. Changes in the surface genus are interpreted as

changes in network connectivity (i.e. in bonding), thus the
evolution of one surface into the other reflects the changes
in network geometry and topology of the two underlying
structures for any given point on the transformation co-
ordinate. In case of the quartz-to-tridymite transition, in-
spection of the intermediate surface leads to the proposal
of an intermediate structure related to the a-B2O3 and the
a-ThSi2 structure types. However, the transition model
does not unambiguously account for the oxygen migration
paths since at surface ruptures (network cleavages) the pre-
sumed oxygen location inside the Si––Si connection tun-
nels can of course not be maintained in such cases. How-
ever, the trace of the Si movements allow to select oxygen
candidates from the closer silicon environment to estimate
the transition geometries and mutual oxygen movements.

Consecutively, other systems were investigated in a si-
milar manner. The transitions between the cubic SrSi2 and
the a-ThSi2 type and their relations to the diamond struc-
ture were closely examined [75]. Moreover, the importance
of a suitable choice of corresponding cell settings for the
limiting structures is pointed out by means of a specific
example.

Modeling of reconstructive phase transitions via PES is
continued, and deepened with respect to reciprocal space
considerations [76]. In the well-known B1––B2 transition
several mechanistic propositions have been followed and
compared.

Despite the abovementioned difficulties we were able
to propose a new transition pathway for the quartz-to-
tridymite transformation with a 5-coordinate transition state
at two neighboring Si centers including oxygen displace-
ments. A surprising result was worked out for the trans-
formation between cubic SrSi2 and a-ThSi2. The whole
three-dimensional [Si�] framework collapsed to acetylene-
analogue Si2�2 units which after a rotation of dumb-bells in
space, reconnect to the other 3D framework [Si�]. Another
striking result was obtained for the switch from hexagonal
graphite-to-hexagonal diamond (lonsdaleite). The lonsda-
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Table 3. Phase transitions analyzed by means of PMS or PNS.

1 Transition Space groups Underlying concept Literature

2 B1 – B2 (NaCl––CsCl) Fm�33m – Pm�33m P0PS [77]

3 Quartz – Tridymite P6422(P6222) – P63/mmc PES [73]

4 Tridymite – Cristobalite P63/mmc – Fd�33m PES [45]

5 Cubic SrSi2 – a-ThSi2 Fd�33m – I41/amd PES, 2 pathways [74]

6 Cubic Diamond – rhombohedral Graphite Fd�33m – R�33m PES

7 Hex. Graphite – hex. Diamond (Lonsdaleite) P63/mmc – P63/mmc PES

8 Cubic Diamond – hex. Graphite Fd�33m – P63/mmc PES, 2 pathways

9 B1 – B2 (NaCl––CsCl) Fm�33m – Pm�33m PNS

10 a-Sn – b-Sn Fd�33m – I41/amd PES [75]

11 Tin Dioxide
CaCl2 type – a-PbO2 type
a-PbO2 type – PdF2 type
CaCl2 type – PdF2 type

Pnnm – Pbcn
Pbcn – Pa�33
Pnnm –Pa�33

PES [75]

12 B1 – B2 (NaCl––CsCl) Fm�33m – Pm�33m PES, 3 Pathways [75]

13 b-Quartz – Keatite P6422(P6222) – P43212 PES [76]

14 a-Eu8Ga16�xGe30þx – b-Eu8Ga16�xGe30þx Pm�33m – I�443m PNS [54]

15 a-BaAl2Ge2 – b-BaAl2Ge2 Pnma – I4/mmm PNS [56]



leite form is preferably found at meteorite craters hinting
at a shockwave transition. Comparing the two tunnel sys-
tems embedding the lonsdaleite framework and that of the
other PES side, respectively, reveals that the “empty side”
has the topology of hexagonal graphite. The opposite is
true for the hexagonal graphite structure. In other words
the carbon atoms of hexagonal graphite just have to pass
over into the void space and thus form the denser lonsda-
leite.

Using the examples of the transformation of b-quartz-
to-keatite as well as several transitions in the tin dioxide
phase system, a novel way of deducing common unit cells
through suitable mutual orientation by analysis of the
most intense reflections of the limiting structures in ques-
tion was developed. Lately, important progress has been
made on the problem of selecting common unit cells for
the two limiting structures. This is subject to two partial
problems: (i) Determination of matrices for the mutual or-
ientational transformation of the unit cells; (ii) Choice of
the optimal size of the supercell. Both can be derived
from following reciprocal space considerations. (i) Most
prominent structure factors with smallest hn vectors (lar-
gest d-values) are rotated to map best onto each other. This
yields the inverse rotation matrix for optimal real space
mapping. (ii) The size of the hn vector sphere which al-
lows for the best structure factor mapping determines the
size of the super structure [76]. The argument for mapping
most prominent structure facture sets is, of course, keep-
ing most prominent atomic planes intact or leave them as
little changed as possible. The quartz-to-keatite transition
was published in the last issue of this journal [77].

The intermetallic clathrate Eu8Ga16�xGe30þx undergoes
a structural transition in dependence on temperature and
composition. The crystal structure of the high-temperature
b-phase corresponds to clathrate I type (space group
Pm�33n, Pearson symbol cP54), that of the low-temperature
a-phase is of clathrate VIII type (space group I�443m, cI54).
The organization of both structures is described with a
PNS (Fig. 6). The structural relationship between the clath-
rate I and clathrate VIII structural patterns is successfully
described with periodic minimal surfaces approximants.
The description of the structural transition is formulated in
terms of a linear interpolation between the two enveloping
surfaces shown in Fig. 6 and visualizes a global transfor-
mation of the two four-connected covalent frameworks
formed by Ga and Ge. Even the critical phenomena, like
the local break of few bonds in the starting arrangement,
the existence of three-connected atoms in the intermediate
structural arrangements, and the formation of new bonds
in the final arrangement in order to restore the four-con-
nected pattern, are sufficiently reflected by the topology of
the PNS used for the description [54].

A similar situation was observed between the modifi-
cations of the intermetallic phase BaAl2Ge2 [56]. The re-
versible, reconstructive phase transition between the low-
temperature a-phase (space group Pnma, a-BaCu2S2 type)
and the high-temperature b-phase (space group I4/mmm,
BaZn2P2 type) is modeled with the help of PNS (cf.
Fig. 6). A change from the layered b-phase to the 3D net-
work of the a-phase upon an increase of the puckering of
the layers and the appearance of new bonds between them

is well visualized by the observed topological features of
the PNS during the transformation.

Assuming a concerted route of the structural transfor-
mation, the description of the transformation mechanism
by means of continuous change of the enveloping peri-
odic surface offers clear transparent views on the local
changes of the crystal structure during the transformation.
Further investigations of the structural transformations in
particular in halides of the alkaline metals allying molecu-
lar dynamics in combination with the sampling approach
revealed that these are proceeding via formation of the
low-dimensional nucleation centers and are not following
the concerted route. But even in this case, the PNS-
derived pathways deliver reasonable starting situations
and allow to find the final configuration more efficiently
[78–81].

11. Applications to soft matter problems

In soft matter research PMS are widely being applied to
understand the creation and transformations of self-orga-
nized structures. This concerns liquid crystals, tenside so-
lutions, amphiphile dispersions, and other related systems.
Formation of micelles goes already beyond simple nuclea-
tion and may be understood as the start of a phase separa-
tion. Self-organized isolated or continuous compartments
as vesicular double-membrane structures are dominated by
surface tension. So it is not surprising that they tend to
follow minimal surface requirements [82]. Corresponding
phase systems have been derived and it is interesting to
note that on increase of concentration of amphiphile mole-
cules in solution only after passing a wide range of iso-
lated compartmentation, induction of bicontinuous struc-
tures like hexagonal or cubic phases turn up (Fig. 11). In
case of upcoming structural order a few Bragg reflections
may be observed which allow to trace back the general
PMS arrangement [83–85]. However, they are broad and
only a few of the smallest hn vectors.

Besides surface tension, mean and Gaussian curvatures
are important measures for the energy of bicontinuous ar-
rangements as well as for the classification of periodic
hyperbolic surfaces which was worked out especially by
Helfrich and coworkers [86]. The classification of curva-
tures is not an all in all easy process and several different
approaches have been applied. We did inspect the count-
ing box method which is used in the approximation of
fractal behavior. The concept of fractal dimension is intrin-
sically related with the self-similarity property. For natural
objects this can only be evaluated at final resolution thus
they cannot display “ideal” fractal behavior. For obvious
reasons – at increasing resolution there will always a lim-
iting resolution of a natural object – practically all Ri-
chardson-Mandelbrot log-log curves based on real objects
or processes appear concave. At low resolution a log-log
curve might appear to be straight but a concave curve al-
ways shows up if the resolution is increased. Rigaut [87]
derived a new mathematical model for determining asymp-
totic fractals which offers advantages compared with pre-
vious definitions [88]. Chermant and Bignon [89–91] were
the first to note that the contours of most natural objects
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show concave Richardson-Mandelbrot log-log plots, in-
stead of linear ones (ideal fractality). Classic fractality is
the ideal realization of a more general concept [92]. Ri-
gaut [93] has conjectured that most linear Richardson-
Mandelbrot log-log plots that have been published were
taken from objects explored at low resolution.

We did apply the box counting method to selected sur-
face examples to check the numerical results (Fig. 12).
Most of the structures are not self-similar at all, but some
others can exhibit a certain degree of self-similarity. Any-
way the evaluation of D (see below) is a useful tool to
evaluate the change in complexity during a transformation.
The box-counting procedure has been applied at a resolu-
tion low enough to detect the difference in curvature be-
tween different objects [94]. In Fig. 13 an example of the
method is shown applied on two 2-dimensional functions.
The number of boxes is regulated by a power law of the
form

ND ¼ ND
E ;

where ND is the number of colored boxes. In order to
evaluate the coefficient D, one can start from the follow-
ing functions:

y3 ¼ N3
E

is the number of boxes in the raster and

yD ¼ ND
E

is the number of boxes in the raster touching the function.
The ratio is:

y3

yD
¼ N3

E

ND
E

¼ N3�D
E ;

consequently

log
y3

yD
¼ ð3� DÞ log NE ;

and

D ¼ 3� log
y3

yD
� 1

log NE

Let us consider three well known surfaces – cylinder, G
and P surfaces. Their equations are shown in Table 4. None
of them is self-similar so they are not fractals. Neverthe-
less, defining some convenient resolutions, the box-count-
ing procedure can be applied. Following the suggestion of
Rigaut [92], one can limit the resolution to a range in
which the substantial differences in terms of curvatures are
captured. It is interesting to note that the D value is fairly
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Fig. 11. (a) Phase diagram of egg lecithin, (b) smectic phase of oleic acid under polarized light; (c) starfish vesicles under the light microscope,
(d) simulation of the self-separation of a spherical vesicle to a starfisch and finally to four independent vesicles, (e) simulation of a one dimen-
sional separation of a bicontinuous P surface to a 2D layered variant [94].



stable for certain ranges of C parameters. When it starts to
change considerably, it seemingly has to do with the rela-
tion of object and box sizes (cf. Table 5). The graphical
representation of this development is shown in Fig. 13.

12. Outlook

Topological analysis is a naturally preferred strategy of
humans as predominantly visual creatures. The generality
of periodic topological forms, especially of periodic sur-
faces can only be presaged until now. Such forms appear
on different scales in completely different connections to
matter and dynamics and generate a stunning intensity of
attraction. They even have shown up as one-dimensional
models for elementary particles, so-called skyrmions in
which topological genus and charge are unified [95–98].
It has also been proposed that skyrmions may be useful
models for describing magnetic metals [99]. Templated
synthesis and self-organization in soft matter constitute en-
abling expertise for future nano materials and nano device
research. It is still not finally clear to what extent plane
wave decomposition of band structures and PSP topology
can be correlated. This may also be true for lattice dy-
namics considerations. Although it may appear that choos-
ing PSP approaches for understanding chemical and phy-
sical problems is discretionary to the author however we
strongly believe that Paul Dirac statement applies: “This
result is too beautiful to be false; it is more important to
have beauty in one’s equations than to have them fit ex-
periment” [100]. Finally it should be mentioned that the
existence of emergent properties is highly discussed in
many fields from theoretical physics to neuroscience and

Periodic Space Partitioners (PSP) and their relations to crystal chemistry 707

Fig. 12. (top) Schematic representation of the box counting method
in a 1D case; (bottom) – 2D surfaces for C ¼ 0, 1, and 2, cylinder,
P surface, and Gyroid surface.

Fig. 13. Dependence of the value of D on the parameter C for cylin-
der, P and G surfaces.

Table 4. Analytical expressions for the surfaces Cylinder, G, and P.

Surface Expression

Cylinder x2 þ y2 � C ¼ 0

G cos y sin x þ cos z sin y þ cos x sin z � C ¼ 0

P cos x þ cos y þ cos z � C ¼ 0

Table 5. Parameter D for the functions of Table 4 performed in a
raster of size ¼ 4 h ranging between 40 and 160 and error d.

C G surface P surface Cylinder d

0 2.359 2.240 1.021 0.04

0.05 2.357 2.238 1.554 0.04

0.1 2.360 2.235 1.652 0.04

0.15 2.352 2.233 1.716 0.04

0.2 2.357 2.230 1.770 0.04

0.25 2.347 2.228 1.815 0.04

0.3 2.353 2.226 1.844 0.04

0.35 2.353 2.223 1.854 0.04

0.4 2.343 2.219 1.869 0.04

0.45 2.348 2.215 1.879 0.04

0.5 2.341 2.212 1.895 0.04

0.6 2.338 2.205 1.915 0.04

0.7 2.332 2.197 1.926 0.04

0.8 2.322 2.187 1.951 0.04

0.9 2.313 2.173 1.961 0.04

1 2.301 2.148 1.970 0.04

1.1 2.285 2.105 1.983 0.04

1.2 2.262 2.068 1.993 0.04

1.5 1.494 1.985 2.018 0.04

2 2 1.877 2.053 0.04



brain-mind research [101–104]. Emergent states by defi-
nition would have to be ensemble states and such could
find representations only by models of the ensemble as a
whole.
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[99] U. K. Rössler, A. N. Bogdanov, C. Pfleiderer, Spontaneous
skyrmion ground states in magnetic metals, Nature 2006, 442,
797–801.

[100] http://www.dirac.ch/PaulDirac.html.
[101] R. B. Laughlin, A Different Universe: Remaking Physics from

the Bottom Down, Basic Books, New York, 2005.
[102] A. C. Scott, The Nonlinear Universe: Chaos, Emergence, Life,

Springer 2010.
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