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EXPONENTIAL SUMS OVER POINTS OF ELLIPTIC
CURVES WITH RECIPROCALS OF PRIMES

ALINA OSTAFE AND IGOR E. SHPARLINSKI

Abstract. We consider exponential sums with x-coordinates of points qG and
q−1G where G is a point of order T on an elliptic curve modulo a prime p and q
runs through all primes up to N (with gcd(q, T )= 1 in the case of the points q−1G).
We obtain a new bound on exponential sums with q−1G and correct an imprecision
in the work of W. D. Banks, J. B. Friedlander, M. Z. Garaev and I. E. Shparlinski on
exponential sums with qG. We also note that similar sums with g1/q for an integer
g with gcd(g, p)= 1 have been estimated by J. Bourgain and I. E. Shparlinski.

§1. Introduction. Let p ≥ 5 be a prime and E be an elliptic curve defined
over a finite field Fp of p elements given by an affine Weierstraß equation

E : Y 2
= X3

+ AX + B

with some A, B ∈ Fp, see [1, 3, 21].
We recall that the set of all points on E forms an abelian group, with the

“point at infinity” O as the neutral element, and we use ⊕ to denote the group
operation. As usual, we write every point P 6=O on E as P = (x(P), y(P)).

Let E(Fp) denote the set of Fp-rational points on E . We recall that the
celebrated result of Bombieri [4] implies in particular an estimate of order p1/2

for exponential sums with functions from the function field of E taken over all
points of E(Fp). More recently, various character sums over points of elliptic
curves have been considered in a number of papers, see [2, 7, 9, 10, 14–
16, 18, 20] and references therein; many of these estimates are motivated by
applications to pseudorandom number generators on elliptic curves [19].

Let G ∈ E(Fp) be a point of order T , in other words, T is the cardinality of
the cyclic group 〈G〉 generated by G in E(Fp).

We also denote

e(z)= exp(2π iz) and em(z)= e(z/m),

and consider the sums

Sa(N )=
∑
q≤N

q prime
gcd(q,T )=1

ep(ax(q−1G)), a ∈ Fp, (1)
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22 A. OSTAFE AND I. E. SHPARLINSKI

where the parameter q varies over prime numbers. We estimate these sums
(uniformly over a 6≡ 0 (mod p)), provided that N and T are sufficiently large
compared to p. Since our results are based on those of [17], they apply only to
ordinary curves, see [1, 3, 21] for a definition of ordinary elliptic curves.

We note that the sums Sa(N ) are elliptic curve analogues of the exponential
sums with reciprocals of primes 1/q that have been considered in [5, 11, 12] and
with g1/q for g ∈ Fp that have been considered in [6].

In particular, in the most interesting case of T = p1+o(1) (that is, when G
generates a large subgroup of E(Fp)) we obtain the bound

|Sa(N )| ≤ (N p−1/256
+ N 5/6 p5/12)N o(1) (2)

which is non-trivial if pC
≥ N ≥ p5/2+ε for some fixed C and ε > 0.

Furthermore, for N ≥ p323/128 the bound (2) simplifies as

|Sa(N )| ≤ N 1+o(1) p−1/256. (3)

One can use our bounds in a standard fashion to obtain an asymptotic formula
for the number of solutions to the congruence

x(q−1
1 G)+ · · · + x(q−1

k G)≡ c (mod p) (4)

in primes q1, . . . , qk ≤ N , which is an analogue of the congruence

q−1
1 + · · · + q−1

k ≡ c (mod p)

studied in [11]. We do not derive all possible results of this kind but simply give
one example which relies on the bound (3).

We remark that the sums

Ta(N )=
∑
q≤N

q prime

ep(ax(qG)), a ∈ Fp, (5)

have been considered in [2]. However, the proof of [2, Theorem 6] unfortunately
contains an imprecision. Here we present an estimate on Ta(N ) which can be
obtained by the same method as our bound on Sa(N ).

§2. Preparations.

2.1. Notation. We use Z∗M to denote the unit group of the residue ring ZM
modulo a positive integer M .

As usual, let µ be the Möbius function. Let 3 denote the von Mangoldt
function which we recall to be defined for positive integers n by

3(n)=

{
log q if n > 1 is a power of a prime q,

0 otherwise

with log being the natural logarithm.
Throughout the paper, the implied constants in symbols “O” and “�”

may occasionally depend on the integer parameters r and s, and are absolute
otherwise (we recall that U � V and U = O(V ) are both equivalent to the
inequality |U | ≤ cV with some constant c > 0).
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EXPONENTIAL SUMS WITH RECIPROCALS OF PRIMES 23

2.2. Vaughan identity. We decompose3 by means of the Vaughan identity,
given for example in [8, Ch. 24], which we use in the following form.

LEMMA 1. For any complex-valued function f (n) and any real numbers
U, V > 1 with U V ≤ N, we have∑

n≤N

3(n) f (n)�61 +62 +63 +64,

where

61 =

∣∣∣∣∑
n≤U

3(n) f (n)

∣∣∣∣,
62 = (log U V )

∑
k≤U V

∣∣∣∣ ∑
`≤N/k

f (k`)

∣∣∣∣,
63 = (log N )

∑
k≤V

max
w≥1

∣∣∣∣ ∑
w≤`≤N/k

f (k`)

∣∣∣∣,
64 =

∣∣∣∣ ∑
k`≤N

k>V,`>U

3(`)
∑

d|k,d≤V

µ(d) f (k`)

∣∣∣∣.
2.3. Single sums. We also need the following result which is proved in [17,

Theorem 6].

LEMMA 2. Let E be an ordinary curve defined over Fp and let G ∈ E of
order T . Then for any d ≥ 1 fixed pairwise distinct integers e1, . . . , ed and
positive integers r, s ≥ 2, uniformly over a ∈ F∗p and b1, . . . , bd ∈ Z, we have
the bound ∑

n∈Z∗T

ep(ax(n P))eT (H(n))� T 1−2ηr,s+κd,r,s pηr,s+o(1),

where the rational function H is given by

H(X)= b1 X e1 + · · · + bd X ed ,

and

ηr,s =
1

4(4r + s)
and κd,r,s =

2(d − 1)s + 1
4rs

.

Taking d = 1 and e1 =−1 in Lemma 2 and using the standard reduction
between complete and incomplete sums, see [13, §12.2], we obtain the following
estimate.

COROLLARY 3. Let E be an ordinary elliptic curve defined over Fp and let
G ∈ E(Fp) be a point of order T . Then for any integers r, s ≥ 2, real numbers
H1 < H2 and integer a not divisible by p, the following estimate holds:∑
H1<n≤H2

gcd(n,T )=1

ep(ax(n−1G))�

(
H2 − H1

T
+ 1

)
T 1−1/2(4r+s)+1/4rs p1/4(4r+s)+o(1).
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24 A. OSTAFE AND I. E. SHPARLINSKI

2.4. Double sums. We need an estimate of certain double exponential sums
that follows directly from [2, Theorem 3].

LEMMA 4. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T . Then, for all subsets K, L⊂ Z∗T , sequences
αk and β` of arbitrary complex numbers, supported on the sets K and L,
respectively, and all a ∈ F∗p, the following bound holds:∑

k∈K

∑
`∈L

αkβ`ep(ax(k−1`−1G))� ABT 5/6(#K#L)1/2 p1/12+o(1),

where
A =max

k∈K
|αk | and B =max

`∈L
|β`|.

Proof. We define the subsets of Z∗T

K∗ = {k−1
: k ∈K}, L∗ = {`−1

: ` ∈ L}.
Using these notations, we obtain∑

k∈K

∑
`∈L

αkβ`ep(ax(k−1`−1G))=
∑

k∈K∗

∑
`∈L∗

αk−1β`−1ep(ax(k`G)).

Now applying [2, Theorem 3], we obtain the desired result. 2

We now immediately derive the following corollary.

COROLLARY 5. Let E be an ordinary elliptic curve defined over Fp, and
let G ∈ E(Fp) be a point of order T . Then, for arbitrary positive integers K , L,
sequences αk and β` of arbitrary complex numbers, supported on the intervals
[1, K ] and [1, L], respectively, and all a ∈ F∗p, the following bound holds:∑

k≤K
gcd(k,T )=1

∑
`≤L

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))

� ABT 5/6(K T−1/2
+ K 1/2)(LT−1/2

+ L1/2)p1/12+o(1),

where
A = max

1≤k≤K
|αk | and B = max

1≤`≤L
|β`|.

Proof. We split the sum into at most (K/T + 1)(L/T + 1) double sums with
at most min{K , T }min{L , T } terms obtaining from Lemma 4 that∑

k≤K
gcd(k,T )=1

∑
`≤L

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))

� ABT 5/6
(

K

T
+ 1

)(
L

T
+ 1

)
(min{K , T }min{L , T })1/2 p1/12+o(1).

Since for any R > 0

max{R, T }(min{R, T })1/2 = R1/2T 1/2(max{R, T })1/2
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EXPONENTIAL SUMS WITH RECIPROCALS OF PRIMES 25

we derive(
R

T
+ 1

)
max{R1/2, T 1/2

} � T−1 max{R, T }max{R1/2, T 1/2
}

= R1/2T−1/2 max{R1/2, T 1/2
}

≤ R1/2T−1/2(R1/2
+ T 1/2).

The result now follows. 2

We now use the idea of [12] which allows us to vary the limit of summation
for `.

LEMMA 6. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T . Then, for arbitrary positive integers K , L,
a sequence of positive integers Lk with Lk ≤ L, 1≤ k ≤ K , sequences αk and
β` of arbitrary complex numbers, supported on the intervals [1, K ] and [1, L],
and all a ∈ F∗p, the following bound holds:∑

k≤K
gcd(k,T )=1

∑
`≤Lk

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))

� ABT 5/6(K T−1/2
+ K 1/2)(LT−1/2

+ L1/2)p1/12+o(1) log L ,

where
A = max

1≤k≤K
|αk | and B = max

1≤`≤L
|β`|.

Proof. We have∑
`≤Lk

αkβ`ep(ax(k−1`−1G))

=

∑
`≤L

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))
1
L

∑
−(L−1)/2≤s≤L/2

∑
w≤Lk

eL(s(`− w))

=
1
L

∑
−(L−1)/2≤s≤L/2

∑
w≤Lk

eL(−sw)

×

∑
`≤L

gcd(`,T )=1

αkβ`eL(s`)ep(ax(k−1`−1G)).

Since for |s| ≤ L/2 we have∑
w≤Lk

eL(sw)= ηk,s
L

|s| + 1
,

for some complex numbers ηk,s � 1, see [13, Bound (8.6)], we conclude
that for |s| ≤ L/2 and k ≤ K there are some complex numbers γk,s = ηk,sαk
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26 A. OSTAFE AND I. E. SHPARLINSKI

such that ∑
k≤K

gcd(k,T )=1

∑
`≤Lk

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))

=

∑
−(L−1)/2≤s≤L/2

1
|s| + 1

×

∑
k≤K

gcd(k,T )=1

∑
`≤L

gcd(`,T )=1

γk,sβ`eL(s`)ep(ax(k−1`−1G)).

Using Corollary 5, we derive the desired result. 2

Finally, we are ready to derive our main technical tool of this section.

LEMMA 7. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T . Then, for arbitrary positive integers H, K , L,
sequences αk and β` of arbitrary complex numbers, supported on the intervals
[1, K ] and [1, L], and all a ∈ F∗p, the following bound holds:∑

H≤k≤K
gcd(k,T )=1

∑
`≤L/k

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))

� ABT 5/6
(

L

T
+

K 1/2L1/2

T 1/2 +
L

H1/2T 1/2 + L1/2
)

p1/12+o(1)(KL)o(1),

where
A = max

1≤k≤K
|αk | and B = max

1≤`≤L
|β`|.

Proof. Defining some values of αk as zeros we write∑
H≤k≤K

gcd(k,T )=1

∑
`≤L/k

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G))

=

J∑
j=I

∑
e j
≤k≤e j+1

gcd(k,T )=1

∑
`≤L/k

gcd(`,T )=1

αkβ`ep(ax(k−1`−1G)),

where I = blog Hc and J = blog K c. So, by Lemma 6, we get∑
H≤k≤K

gcd(k,T )=1

∑
`≤L/k

gcd(k,T )=1

αkβ`ep(ax(k−1`−1G))

� ABT 5/6 p1/12+o(1) log L
J∑

j=I

(LT−1
+ L1/2e j/2T−1/2

+ Le− j/2T−1/2
+ L1/2)

≤ ABT 5/6 p1/12+o(1) log L(JLT−1
+ eJ/2L1/2T−1/2

+ Le−I/2T−1/2
+ JL1/2).

Since H � eI
≤ eJ

� K , we immediately obtain the desired result. 2
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EXPONENTIAL SUMS WITH RECIPROCALS OF PRIMES 27

§3. Main results.

3.1. Sums over primes. In this subsection, we combine Lemma 1 with the
bounds of Corollary 3 and Lemma 4 to estimate the sums Sa(N ) defined by (1).

THEOREM 8. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T . Then, for every a ∈ F∗p and integers r, s ≥ 2,
we have∣∣∣∣ ∑

n≤N
gcd(n,T )=1

3(n)ep(ax(n−1G))

∣∣∣∣≤ (N1+ N 5/6T 1/3 p1/12)N o(1),

where

1= T−1/2(4r+s)+1/4rs p1/4(4r+s).

Proof. We remark that the result is trivial if T ≤ p1/2 or N ≤ T 7/3. Hence
we can always assume that

T > p1/2 and N ≥ T 7/3
≥ p. (6)

Let U, V > 1 with U V ≤ N and apply Lemma 1 with the function f (n)=
ep(ax(n−1G)). By the prime number theorem, we have

61 =

∣∣∣∣ ∑
n≤U

gcd(n,T )=1

3(n) f (n)

∣∣∣∣≤∑
n≤U

3(n)�U. (7)

We now write
62 =62,1 +62,2

where

62,1 = (log U V )
∑

k≤N/T
gcd(k,T )=1

∣∣∣∣ ∑
`≤N/k

gcd(`,T )=1

ep(ax(k−1`−1G))

∣∣∣∣
62,2 = (log U V )

∑
N/T≤k≤U V
gcd(k,T )=1

∣∣∣∣ ∑
`≤N/k

gcd(`,T )=1

ep(ax(k−1`−1G))

∣∣∣∣.
Next, for any k ≥ 1 with gcd(k, T )= 1 the point kG has also order T in

E(Fp); thus Corollary 3 provides the bound

62,1 = (log U V )
∑

k≤N/T
gcd(k,T )=1

∣∣∣∣ ∑
`≤N/k

gcd(`,T )=1

ep(ax(k−1`−1G))

∣∣∣∣
≤ N o(1)

∑
k≤N/T

(
N

kT
+ 1

)
T1

≤ N 1+o(1)1
∑

k≤N/T

1
k

= N 1+o(1)1.
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28 A. OSTAFE AND I. E. SHPARLINSKI

To estimate 62,2 we use Lemma 7:

62,2 ≤ T 5/6(N T−1
+ N 1/2U 1/2V 1/2T−1/2

+ N 1/2)p1/12 N o(1).

Since under the conditions (6)

1≥ T−1/2(4r+s) p1/4(4r+s)
≥ T−1/6 p1/12 and N T−1

≥ N 1/2

for T ≥ p1/2 and r, s ≥ 2, we derive

62 ≤ N 1+o(1)1+ N 1/2+o(1)U 1/2V 1/2T 1/3 p1/12. (8)

Similar to the estimate of 62,1, we also have

63 ≤ N o(1)
∑
k≤V

(
N

kT
+ 1

)
T1.

Thus
63 ≤ (N + V T )1N o(1). (9)

We now turn to the estimate of 64. For every positive integer k let

A(k)=

∣∣∣∣ ∑
d|k,d≤V

µ(d)

∣∣∣∣.
Since k, `≤ N , we have

A(k)≤ τ(k)� N o(1) and 3(`)≤ log `≤ N o(1),

where τ(k) is the number of integer positive divisors of k.
Then,

64 =

∣∣∣∣ ∑
k`≤N ,gcd(k`,T )=1

k>V,`>U

A(k)3(`)ep(ax(k−1`−1G))

∣∣∣∣
=

∣∣∣∣ ∑
V≤k≤N/U
gcd(k,T )=1

∑
U≤`≤N/k
gcd(`,T )=1

A(k)3(`)ep(ax(k−1`−1G))

∣∣∣∣.
Applying Lemma 7 we derive

64 ≤ T 5/6(N T−1
+ N T−1/2U−1/2

+ N T−1/2V−1/2
+ N 1/2)p1/12 N o(1)

≤ T 5/6(N T−1
+ N T−1/2U−1/2

+ N T−1/2V−1/2)p1/12 N o(1) (10)

since, as we have noticed, N T−1
≥ N 1/2 under the conditions (6).

Combining (7), (8), (9) and (10), and recalling that 1≥ T−1/6 p1/12, we find
that∣∣∣∣∑

n≤N

3(n)ep(ax(nG))

∣∣∣∣≤U + (N + V T )1N o(1)
+ (91 +92 +93)N

o(1),
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EXPONENTIAL SUMS WITH RECIPROCALS OF PRIMES 29

where

91 = N 1/2T 1/3U 1/2V 1/2 p1/12,

92 = N T 1/3U−1/2 p1/12,

93 = N T 1/3V−1/2 p1/12.

Choosing U = V = N 1/3, we obtain∣∣∣∣∑
n≤N

3(n)ep(ax(nG))

∣∣∣∣≤ (N + N 1/3T )1+ N 5/6+o(1)T 1/2 p1/12.

Since under the conditions (6) we have

N ≥ N 1/3T and N 5/6T−1/2
≥ N 1/2,

the desired result follows. 2

Using partial summation we immediately derive the following corollary from
Theorem 8.

COROLLARY 9. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T . Then, for every a ∈ F∗p and integers r, s ≥ 2,
we have

|Sa(N )| ≤ (N1+ N 5/6T 1/3 p1/12)N o(1),

where
1= T−1/2(4r+s)+1/4rs p1/4(4r+s).

We see that if T = p1+o(1) then taking r = 4 and s = 16 in Corollary 9 we
derive the bound (2).

Furthermore, if N ≥ T 2 p1/2+ε and T ≥ p1/2+ε for some fixed ε > 0 then
taking sufficiently large r = s we obtain

|Sa(N )| ≤ N 1+o(1) p−δ

where δ > 0 depends only on ε.

3.2. Congruences with primes. Here we study the congruence (4). As we
have mentioned, we only consider the case in which the bound (3) applies.

Let π(N ) be the number of primes q ≤ N as usual.

THEOREM 10. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T = p1+o(1). Then, for N ≥ p323/128 and any
fixed integer k ≥ 3 the congruence (4) has

Rk(N , c)=
1
p
π(N )k + O(N k+o(1) p−1−(k−2)/256)

solutions.
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30 A. OSTAFE AND I. E. SHPARLINSKI

Proof. We recall that for any integer m ≥ 1 we have the identity

1
m

∑
λ∈Zm

em(λv)=

{
1 if v ≡ 0 (mod m),

0 if v 6≡ 0 (mod m).

Therefore, for any integer h, the number of solutions to the congruence (4) can
be written as

Rk(N , c) =
1
p

∑
q1,...,qk≤N

qi prime
gcd(qi ,T )=1

∑
λ∈Fp

ep

(
λ

( k∑
j=1

x(q−1
j G)− c

))

=
1
p

∑
λ∈Fp

ep(−λc)
k∏

j=1

∑
q j≤N

q j prime
gcd(q j ,T )=1

ep(λx(q−1
j G))

=
1
p

∑
λ∈Fp

ep(−λc)Sλ(N )
k .

Separating the term π(N )k/p corresponding to λ= 0 we obtain∣∣∣∣Rk(N , c)−
1
p
π(N )k

∣∣∣∣≤ 1
p

∑
λ∈F∗p

|Sλ(N )|
k . (11)

Since under the conditions of the theorem the bound (3) holds, we derive∑
λ∈F∗p

|Sλ(N )|
k
≤ (N 1+o(1) p−1/256)k−2

∑
λ∈F∗p

|Sλ(N )|
2

≤ (N 1+o(1) p−1/256)k−2
∑
λ∈Fp

|Sλ(N )|
2
= (N 1+o(1) p−1/256)k−2 pW,

where W is the number of solutions to the congruence

x(q−1
1 G)≡ x(q−1

2 G) (mod p).

For every prime q1 ≤ N we have at most 2(N/T + 1)= N p−1+o(1) possibilities
for q2, thus W � N 2 p−1+o(1), from where we obtain∑

λ∈F∗p

|Sλ(N )|
k
≤ N k+o(1) p−(k−2)/256 (12)

and after the substitution in (11) the desired result follows. 2

One can easily see that under the conditions of Theorem 10 we have the
asymptotic formula Rk(N , c)= (1+ o(1))π(N )k/p for any k ≥ 3. We now
consider the moments

Mk,ν(N )=
∑
c∈Fp

∣∣∣∣Rk(N , c)−
1
p
π(N )k

∣∣∣∣2ν,
for which we obtain a non-trivial estimate starting with k = 2.
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THEOREM 11. Let E be an ordinary elliptic curve defined over Fp, and let
G ∈ E(Fp) be a point of order T = p1+o(1). Then, for N ≥ p323/128 and any
fixed integers k ≥ 2, ν ≥ 1 we have

Mk,ν(N )≤ N 2kν+o(1) p−2ν+1−(kν−2ν+1)/128.

Proof. As in the proof of Theorem 10, we have

Rk(N , c)−
1
p
π(N )k =

1
p

∑
λ∈F∗p

ep(−λc)Sλ(N )
k .

Therefore,

Mk,ν(N ) =
1

p2ν

∑
c∈Fp

∑
λ1,...,λ2ν∈F∗p

ep(−(λ1 + · · · + λ2ν)c)

×Sλ1(N )
k
· · · Sλ2ν (N )

k .

Thus we obtain

Mk,ν(N ) =
1

p2ν−1

∑
λ1,...,λ2ν∈F∗p
λ1+···+λ2ν=0

Sλ1(N )
k
· · · Sλ2ν−1(N )

k Sλ2ν (N )
k .

Since under the conditions of the theorem the bound (3) holds for every sum
Sλ j (N ) above, which we apply to Sλ2ν (N ), we derive

Mk,ν(N ) ≤
1

p2ν−1 (N
1+o(1) p−1/256)k

∑
λ1,...,λ2ν−1∈F∗p
λ1+···+λ2ν−1 6=0

|Sλ1(N )|
k
· · · |Sλ2ν−1(N )|

k

≤
1

p2ν−1 (N
1+o(1) p−1/256)k

∑
λ1,...,λ2ν−1∈F∗p

|Sλ1(N )|
k
· · · |Sλ2ν−1(N )|

k

=
1

p2ν−1 (N
1+o(1) p−1/256)k

(∑
λ∈F∗p

|Sλ(N )|
k
)2ν−1

.

Using (12) we conclude the proof. 2

Theorem 11 (taken with k = 2 and, say, ν = 1) immediately implies that
under the same conditions we have R2(N , c) > 0 for all but at most p127/128+o(1)

elements c ∈ Fp.

§4. Comments. As we have noticed, the proof of [2, Theorem 6] contains a
gap as the double sums which appear in the proof are sometimes over sets which
are not subsets of ZT and thus [2, Theorem 6] does not apply. However using
the estimate ∣∣∣∣ ∑

H1<n≤H2

ep(ax(nG))

∣∣∣∣≤ (H2 − H1

T
+ 1

)
p1/2+o(1), (13)
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see [2, Lemma 5], instead of Corollary 3, and also a full analogue of Lemma 7
with k` instead of k−1`−1, one can easily derive the following analogue of the
estimate of Corollary 9 for the sums Ta(N ) given by (5): for every a ∈ F∗p we
have

|Ta(N )| ≤ N 1+o(1)T−1 p1/2
+ N 5/6+o(1)T 1/3 p1/12.
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