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Abstract

Membrane proteins are relatively challenging targets for structural and other biophysical studies.

Insufficient expression in various expression systems, inherent flexibility, and instability in the deter-

gents that are required for membrane extraction are the main reasons for this limited success.

Therefore, identification of suitable conditions andmembrane protein variants that can help stabilize

functional protein for extended periods of time is critical for structural studies. Here, we describe a

western blot-based assay that simplifies identification of thermostabilizing conditions for membrane

proteins. We show successful testing of a variety of parameters such as additive lipids, ligands and

detergents.
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Membrane proteins, such as G protein-coupled receptors (GPCRs),
transporters such as P-glycoprotein and ion channels, make up rough-
ly 20–30% of encoded proteins in the genomes of various organisms,
and are highly sought-after drug targets. In spite of their pharmaco-
logical relevance, structural studies on these proteins remain limited.
One reason is their inherent flexibility and instability in detergents dur-
ing extraction and purification. Recent technological advances in
membrane protein engineering, such as alanine scanning mutagenesis,
protein fusions, fluorescence size-exclusion chromatography (FSEC)
and nanobodies, combined with advances in crystallography such as
lipid cubic phase crystallization and microfocus beamlines, have con-
tributed extensively to the growth of membrane protein structures
(Kawate and Gouaux, 2006; Serrano-Vega et al., 2008; Ashok
et al., 2013).

However, identification of suitable variants and conditions for
membrane proteins based on thermostability is still a bottleneck for
structural studies. Typically, variants and conditions are identified
through the use of (i) radioligands to assess activity as a function of
temperature (Dore et al., 2011), (ii) FSEC (Hattori et al., 2012) and/or
(iii) the thiol-specific fluorophore N-[4-(7-diethylamino-4-methyl-
3-coumarinyl)phenyl]maleimide (CPM), which fluoresces when
covalently bound to internal cysteines that become exposed upon

denaturation (Alexandrov et al., 2008). Each of these techniques has
their drawbacks. The CPM assay is high throughput but requires a puri-
fied membrane protein which is often difficult to obtain in sufficient
quantities. The radioligand binding assay requires a radiolabeled ligand,
which can be costly to produce or simply unobtainable. FSEC can be
performed with unpurified samples, but the protein must be tagged
with a fluorophore such as green fluorescent protein. A similar
SEC-based assay which relies on either intrinsic tryptophan fluorescence
or absorbance at 280 nm has been described, but this method requires
purified membrane protein (Mancusso et al., 2011). In addition, each of
these methods requires instrumentation that is not normally available in
a standard biochemistry laboratory. Given these impediments, alterna-
tive assays for identifying variants and crystallization conditions may
prove invaluable for difficult membrane protein targets.

Here, we describe a western blot-based assay to study the thermal
stability of membrane proteins, which does not require either purifica-
tion or radioligands. Nordlund and co-workers have already demon-
strated the potential of evaluating drug/ligand binding to soluble
proteins in cells and lysates using western blotting (Martinez Molina
et al., 2013). We hypothesized that a modified method could be used
for assessing thermostabilization of membrane proteins. Using the
human adenosine A2a receptor StaR2 (thermostabilized in the
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antagonist-bound conformation) as a test case, we show that a number
of parameters such as ligands, detergents, additive lipids and receptor
variants can be assessed for their effects on membrane protein
thermostability.

Figure 1A shows an overview of the protocol used in our assay. For
detailed methods, please refer to the Supplementary data. Briefly, in-
sect cell membranes expressing an N-terminally FLAG-tagged human
adenosine A2a receptor StaR2 were produced and extensively washed
as described previously (Dore et al., 2011; Liu et al., 2012).
Membranes were solubilized in lauryl maltose neopentyl glycol
(LMNG) and clarified by centrifugation. To test our membrane pro-
tein thermostability determination assay, we compared binding of
ZM241385, a high affinity adenosine A2a receptor sub-type-specific
antagonist, to no ligand. Samples were incubated on ice for 30 min
after addition of ligand and aliquoted into PCR tubes. Samples were
then heated for 30 min at different temperatures, except for the control
samplewhich was kept on ice. After heating, samples were centrifuged
at 20 000 × g to remove aggregated protein. The amount of protein
remaining in the supernatant was compared with the control
sample through western blotting with an anti-FLAG antibody.
Bands from western blots were detected and quantified using a
ChemiDoc™ XRS+ imaging system (Bio-Rad) and Image Lab™
software (Bio-Rad), respectively. Representative blots are shown in

Supplementary Fig. S1. Data were analyzed using a non-linear regres-
sion method in Graphpad.

In this assay, we define melting temperature (Tm) as the tempera-
ture where 50% of the receptor is unfolded after 30 min. As expected,
addition of ZM241385 increased the thermostability of StaR2 by
9 ± 1°C when compared with no ligand (apo) (Fig. 1B and Table I).
We also tested two additional ligands, the adenosine A2a receptor an-
tagonists theophylline and xanthine amine congener (XAC).We chose
to test antagonists rather than agonists because of their preferential
binding to StaR2. In protein stability assays, higher affinity ligands sta-
bilize the protein more than ligands with only moderate affinity
(Chaires, 2008). We observed a similar trend in our stability assays,
which show that melting temperature is affinity-dependent (Table I).
Theophylline, which has the weakest affinity of all three ligands tested,
had the smallest effect on stabilization (Tm 63 ± 1°C), followed by
XAC (Tm 66 ± 1°C) and then ZM241385 (Tm 66 ± 1°C), correlating
well with their reported affinities for the receptor (Dore et al.,
2011). A dose-dependent increase in stability of the receptor was ob-
served using isothermal denaturation experiments (Supplementary
Fig. S2).

Many class A GPCRs are known to bind cholesterol, which in turn
confers stability on the receptor (Hanson et al., 2008). The adenosine
A2a receptor is no exception—cholesterol and its derivatives, like

Fig. 1 Schematics of the protocol and representative results: (A) flow diagram of the method used in this article. (B) Melting curve analysis of StaR2 solubilized with

lauryl maltose neopentyl glycol yields amelting temperature (Tm) of 57 ± 1 °C (n = 4) in the absence of ligand, whereas addition of the ligand ZM241385 stabilizes the

receptor (Tm = 66 ± 1°C (n = 4)), by a total of 9 ± 1°C. (C) StaR2 solubilized in n-dodecyl β-D-maltoside in the presence of ZM241385 gave a Tm of 62 ± 1°C (n = 6) in the

absence of CHS, and is further stabilized in the presence of CHS by 2 ± 1 °C.
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cholesteryl hemisuccinate (CHS), stabilize adenosine A2a receptor, and
a high-resolution structure shows receptors bound to cholesterol mo-
lecules (Weiss and Grisshammer, 2002; Liu et al., 2012). To test if our
method can recapitulate these earlier studies, membranes were solubi-
lized in the presence or absence of CHS. We show that the presence of
CHS increased the thermal stability of StaR2 by 4°C (Fig. 1C and
Table I), demonstrating that this method can be used to test the effect
of additive lipids.

Detergents are known to play a vital role in the stability of mem-
brane proteins, with a strong correlation between detergent chain
length and stability. Membrane proteins in general are stable in long-
chain detergents, but are relatively unstable in short-chain detergents.
We assessed a panel of detergents of varying chain length to study their
effect on the thermostability of StaR2. In all of these detergent stability
assays, StaR2 was solubilized in the indicated detergents in the pres-
ence of the ligand ZM241385. Consistent with previous observations,
an increase in detergent chain length correlated with an increase in
StaR2 stability (Table I). Octyl β-D-glucopyranoside (β-OG), the
shortest detergent with a chain length of eight, has a melting tempera-
ture of 48 ± 2°C, followed by decyl maltoside (DM) (Tm 56 ± 2°C),
n-dodecyl β-D-maltoside (DDM) (Tm 62 ± 1°C) and LMNG (Tm

66 ± 1°C). Experiments with increasing detergent concentration
yielded the same melting temperature (Supplementary Table SII).

Our method is able to detect the known stabilizing effect of sodium
chloride on StaR2 (Jaakola et al., 2008; Katritch et al., 2014) (Table I).
To check if the assay is sensitive enough to observe specific binding of
sodium in the receptor, we performed a stability assay with KCl.
Unfortunately, we were unable to detect any significant change in
melting temperature in the presence of KCl (Table I).

We verified the ability of our assay to detect differences in thermo-
stability between StaR2, a thermostabilized variant of adenosine A2a

receptor, and a wild-type-like adenosine A2a receptor (WT adenosine
A2a receptor) truncated at the same location as the StaR2 construct.
Two detergents that showed highest stability for StaR2 were used

(LMNG andDDM). The assay was conducted in the presence of the lig-
and ZM241385. Our assay was able to detect the thermostability of the
StaR2 construct relative to the WT adenosine A2a receptor. WT adeno-
sine A2a receptor solubilized with LMNG showed a Tm of 51 ± 2°C,
whereas StaR2 had a Tm of 66 ± 1°C (Table I). DDM-solubilized WT
receptors possessed a Tm of 40 ± 2°C, which is 22°C less than StaR2
(Tm62 ± 1°C). These results confirm earlier findings that StaR2 is a better
candidate for biophysical and crystallization studies than WT receptor.
Protein engineering techniques, such as alanine scanning mutagenesis,
fusion protein insertion, and, more recently, directed evolution, have
been critical for the success of structural studies of GPCRs and transpor-
ters (Jaakola et al., 2008; Lebon et al., 2011; Penmatsa et al., 2013;
Egloff et al., 2014). Thus, screening for suitable engineered variants of
membrane proteins is also vital. Here, we examined the possibility of test-
ing receptor variants for thermostability using awestern blot-based assay
previously used for assessing ligand binding to soluble proteins in cells
and lysates.

This protocol can also be easily modified for other membrane pro-
teins, such as ion channels and transporters. For example, we have
tested this method on human equilibrative nucleoside transporter 1
(ENT1) in DDM–CHS detergent and are able to show that an inhibi-
tor has a stabilizing effect on the transporter (Supplementary Fig. S3
and Table SIII). In addition, we observed that CHS stabilizes the trans-
porter as previously reported (Supplementary Table SIII) (Rehan and
Jaakola, 2015). Although western blotting is prone to errors during
gel loading and transfer, this method is simple and can be adapted
in any biochemistry laboratory without the need for specialized equip-
ment. The only requirement for this method is a specific antibody that
recognizes the target protein. Even when protein-specific antibodies
are not available, one can introduce epitopes such as FLAG and
myc through recombinant DNA technology.

This method is particularly useful in cases where radioligands are
not commercially available for the receptors. Traditional protein stabil-
ity assays such as CD spectroscopy melting curve analysis and differen-
tial scanning calorimetry require large amounts of purified proteins.
This method circumvents purification altogether, and does not rely on
the presence of specific residues as is the case with CPM assay.

In this assay, we tested protein stability as a function of tempera-
ture, but this method can also be used to test membrane protein stabil-
ity against other variables, such as an increase in the concentration
of chaotrophic salts like urea or guanidium hydrochloride, or
even pH.

This method can also be used to assess the stability of proteins iso-
lated from native membranes, and that have so far failed to be func-
tionally expressed in a heterologous expression system. One such
case is the cation channel of sperm. These are ion channels which
are exclusively present in sperm membranes, and have so far eluded
functional expression in other systems (Singh and Rajender, 2015).
Given the limited availability of sperm membranes, this method may
prove invaluable in these specific cases.

Although we have explored this assay with the goal of identifying
stabilized membrane proteins for structural studies, it can also be used
to monitor drug engagement with membrane proteins like the original
cellular thermal shift assay (Martinez Molina et al., 2013). We hope
this method helps speedmuch-needed structural and other biophysical
studies of membrane proteins by providing a fast, easy-to-implement
assay for identifying stable variants and stabilizing conditions.

Supplementary data

Supplementary data are available at PEDS online.

Table I. Thermostability of adenosine A2a StaR2 and WT under a

variety of conditions

Condition Apparent Tm (°C) (n ≥ 4)

Cholesterol (determined in 0.5% DDM)
No CHS 62 ± 1
With 0.01% CHS 64 ± 1

Detergents (0.5%)
β-OG 48 ± 2
DM 56 ± 2
DDM 62 ± 1
LMNG 66 ± 1

Ligands (determined in 0.5% LMNG)
No ligand (Apo) 57 ± 1
Theophyline (1 mM) 63 ± 1
XAC (100 µM) 66 ± 1
ZM241385 (100 µM) 66 ± 1

Salt
1. KCl (0.25 M) 62 ± 1
2. NaCl

0.1 M 61 ± 2
0.25 M 64 ± 1
0.8 M 67 ± 1

WT
DDM (0.5%) 40 ± 2
LMNG (0.5%) 51 ± 2

n, number of repetitions.

Defining thermostability of membrane proteins 541

http://peds.oxfordjournals.org/lookup/suppl/doi:10.1093/protein/gzv049/-/DC1
http://peds.oxfordjournals.org/lookup/suppl/doi:10.1093/protein/gzv049/-/DC1
http://peds.oxfordjournals.org/lookup/suppl/doi:10.1093/protein/gzv049/-/DC1
http://peds.oxfordjournals.org/lookup/suppl/doi:10.1093/protein/gzv049/-/DC1
http://peds.oxfordjournals.org/lookup/suppl/doi:10.1093/protein/gzv049/-/DC1


Acknowledgements

The authors thank Shahid Rehan for ENT1 membranes and A. Pia Abola for
assistance with manuscript preparation. We would like to acknowledge grants
from the Biocenter Oulu (University of Oulu, Finland), the Academy of Finland
(132138) Sigrid Juselius Foundation and the FP7 Marie Curie European
Reintegration Grant (IRG 249081) to V.-P.J. Y.A. thanks the National doctoral
program in informational and structural Biology and FBMM for funding.

References

Alexandrov,A.I., Mileni,M., Chien,E.Y., Hanson,M.A. and Stevens,R.C.
(2008) Structure, 16, 351–359.

Ashok,Y., Nanekar,R.T. and Jaakola,V.P. (2013) Methods Enzymol., 520,
175–198.

Chaires,J.B. (2008) Annu. Rev. Biophys., 37, 135–151.
Dore,A.S., Robertson,N., Errey,J.C., et al. (2011) Structure, 19, 1283–1293.
Egloff,P., Hillenbrand,M., Klenk,C., et al. (2014) Proc. Natl Acad. Sci. U.S.A.,

111, E655–E662.
Hanson,M.A., Cherezov,V., Griffith,M.T., Roth,C.B., Jaakola,V.P., Chien,E.Y.,

Velasquez,J., Kuhn,P. and Stevens,R.C. (2008) Structure, 16, 897–905.

Hattori,M., Hibbs,R.E. and Gouaux,E. (2012) Structure, 20, 1293–1299.
Jaakola,V.P., Griffith,M.T., Hanson,M.A., Cherezov,V., Chien,E.Y.,

Lane,J.R., Ijzerman,A.P. and Stevens,R.C. (2008) Science, 322,
1211–1217.

Katritch,V., Fenalti,G., Abola,E.E., Roth,B.L., Cherezov,V. and Stevens,R.C.
(2014) Trends Biochem. Sci., 39, 233–244.

Kawate,T. and Gouaux,E. (2006) Structure, 14, 673–681.
Lebon,G., Warne,T., Edwards,P.C., Bennett,K., Langmead,C.J., Leslie,A.G.

and Tate,C.G. (2011) Nature, 474, 521–525.
Liu,W., Chun,E., Thompson,A.A., et al. (2012) Science, 337, 232–236.
Mancusso,R., Karpowich,N.K., Czyzewski,B.K. and Wang,D.N. (2011)

Methods, 55, 324–329.
Martinez Molina,D., Jafari,R., Ignatushchenko,M., Seki,T., Larsson,E.A.,

Dan,C., Sreekumar,L., Cao,Y. and Nordlund,P. (2013) Science, 341,
84–87.

Penmatsa,A., Wang,K.H. and Gouaux,E. (2013) Nature, 503, 85–90.
Rehan,S. and Jaakola,V.P. (2015) Protein Expr. Purif., 114, 99–107.
Serrano-Vega,M.J., Magnani,F., Shibata,Y. and Tate,C.G. (2008) Proc. Natl

Acad. Sci. U.S.A., 105, 877–882.
Singh,A.P. and Rajender,S. (2015) Reprod. Biomed. Online, 30, 28–38.
Weiss,H.M. and Grisshammer,R. (2002) Eur. J. Biochem., 269, 82–92.

542 Y.Ashok et al.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


