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ABSTRACT

Motivation: Data independent acquisition mass spectrometry has

emerged as a reproducible and sensitive alternative in quantitative

proteomics, where parsing the highly complex tandem mass spectra

requires dedicated algorithms. Recently, targeted data extraction was

proposed as a novel analysis strategy for this type of data, but it is

important to further develop these concepts to provide quality-con-

trolled, interference-adjusted and sensitive peptide quantification.

Results: We here present the algorithm DIANA and the classifier

PyProphet, which are based on new probabilistic sub-scores to clas-

sify the chromatographic peaks in targeted data-independent acqui-

sition data analysis. The algorithm is capable of providing accurate

quantitative values and increased recall at a controlled false discovery

rate, in a complex gold standard dataset. Importantly, we further dem-

onstrate increased confidence gained by the use of two complemen-

tary data-independent acquisition targeted analysis algorithms, as well

as increased numbers of quantified peptide precursors in complex

biological samples.

Availability and implementation: DIANA is implemented in scala and

python and available as open source (Apache 2.0 license) or pre-

compiled binaries from http://quantitativeproteomics.org/diana.

PyProphet can be installed from PyPi (https://pypi.python.org/pypi/

pyprophet).

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Accurate and precise quantification of proteins is a critical com-

ponent of life science and systems biology applications. The pre-

vailing method for quantification of complete proteomes was

until recently data-dependent acquisition (DDA), also referred

to as shotgun mass spectrometry (MS). Shotgun MS can provide

extensive maps of the measurable and expressed proteomes of a

large numbers of organisms, tissues, organs and organelles.

However, 550% of identified peptides are typically shared

between two replicate shotgun MS injections (Tabb et al.,

2010), requiring multiple injections of the same sample to repro-

ducibly measure peptides in all samples (Liu et al., 2004; Vincent

et al., 2013; Bailey et al., 2014). The limited analytical reprodu-

cibility observed in shotgun MS has fuelled the development of

targeted MS strategies such as selected reaction monitoring

(SRM), to increase reproducibility and specificity compared

with shotgun MS (Wolf-Yadlin et al., 2007).

To perform targeted MS strategies requires a priori deter-

mined information on how to target a given peptide sequence.

Such information typically consists of the peptide sequence, the

preferred charge state, the empirical or predicted high perfor-

mance liquid chromatography (HPLC) elution time, as well as

the relative intensities and masses of the n most prominent frag-

ments. The construction of these MS assays requires a substan-

tial effort, which has resulted in the assembly of public

repositories of peptides and MS assays, to simplify further stu-

dies (Desiere et al., 2006; Picotti et al., 2008; Farrah et al., 2012;

Karlsson et al., 2012). Although the targeted MS strategies such

as SRM provides reproducible and accurate protein quantifica-

tion, the throughput is normally limited to up to a few hundred

peptides per injection (Picotti et al., 2009; Waldemarson et al.,

2012), limiting the technique for whole-proteome studies.
Data-independent acquisition MS (DIA-MS) was originally

used to improve peptide identification rates (Purvine et al.,

2003; Plumb et al., 2006; Panchaud et al., 2009), but lately work-

flows using DIA-MS combined with targeted data extraction

have been described in attempts to combine the reproducibility

of SRM with the throughput of shotgun MS (Gillet et al., 2012;

Weisbrod et al., 2012; Egertson et al., 2013). Data acquisition in

DIA-MS relies on deterministic splitting of the survey scan pep-

tide-ion mass range into one or more subsets, followed by co-

fragmentation of all precursor masses in one entire subset, while

leaving the de-convolution of the peptide ions in these complex

MS2 spectra to the post-acquisition analysis. The acquisition

method yields complete MS2-retention time maps, compared

with the discontinuous maps of shotgun MS, and can be seen

as a complete digitization of the sample as seen by the mass

spectrometer.
Targeted extraction DIA-MS has the sensitivity, precision, re-

producibility and dynamic range to allow deep large-scale meas-

urement of the proteomes of biological systems (Collins et al.,*To whom correspondence should be addressed.
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2013). However, the strategy’s data analysis needs further im-

provement, and currently only a few tools exist that are capable

of large-scale robust targeted extraction DIA-MS analysis

(Bernhardt et al., 2012; Egertson et al., 2013; R €ost et al.,

2014). The poor availability of data analysis tools limits robust-

ness, as users are blindly exposed to any potential error in the

particular algorithm used, and lowers sensitivity, as parts of the

proteome might be unreachable due to the potential preferences

of a given algorithm. For example, the combination of multiple

algorithms in shotgun MS has been shown to increase the

amount of peptide-spectrum matches with up to 50% compared

with a single algorithm (H€akkinen et al., 2009; Jones et al., 2009;

Nahnsen et al., 2011; Shteynberg et al., 2013).
We have previously described algorithms for detection of the

correct signals in SRM chromatograms based on fragmentation

patterns (Teleman et al., 2012), and we hypothesized that these

concepts can further improve the targeted data analysis in DIA

data, and also provide complementarity towards existing tools.

Here, we investigate this by combining the DIA-MS targeted ana-

lysis strategy with our previous efforts in SRM data analysis, and

present a new algorithm and software for automated analysis of

DIA-MS data. The algorithm, called DIANA, introduces a new

functionforcomputingchromatographicpeaksub-scoresbasedon

expected ratios between fragments, as well as a new interference-

correctedmeasureofquantity.These factors, togetherwith thenew

semi-supervised classification tool PyProphet, increase the

amounts of peptide quantifications and enable more accurate

quantifications in complex samples. Finally, we also demonstrate

that DIANA is complementary to the previously published

OpenSWATH software (R €ost et al., 2014), and that the combin-

ation of results from the two engines can further improve on the

confidence in and number of peptide quantifications.

2 METHODS

The DIANA analysis workflow has similarities to classical shotgun MS

data analysis workflows. For each target peptide ion, chromatograms are

extracted, followed by chromatogram peak detection and scoring by sev-

eral sub-scores. The same procedure is applied to a large number of decoy

peptides to allow for significance estimations, analogous to shotgun MS/

MS database searching (Elias and Gygi, 2007). In addition, a number of

retention time peptides are targeted using the same method, which are

used to normalize retention times for the peptide-ion assays in the current

injection. Target and decoy peptide peaks are then subjected to a semi-

supervised learner to merge the sub-scores into a final score, to select the

best peak in each chromatogram, and to estimate false discovery rates

(FDRs).

Input MS data to DIANA should be in mzML format (Martens et al.,

2011) with optional MS-numpress (Teleman et al., 2014) and gzip com-

pression. Apart from the raw MS data, three assay lists in TraML format

(Deutsch et al., 2012) are required; one with target assays, one with decoy

assays and one with retention time normalization assays.

2.1 Targeted data extraction

DIANA is based on a targeted data analysis approach, which in turn

requires targeted data extraction. During acquisition, the mass spectrom-

eter systematically collects one MS1 spectrum followed by MS2 spectra of

preselected subsets of the MS1 range (Fig. 1A). For the targeted extrac-

tion of a peptide ion, DIANA relies on an MS assay consisting of a

number of channels, describing the most prevalent fragments and the

most prominent natural isotopes of the peptide (Fig. 1B).

Chromatograms for each channel are extracted from the MS1 and rele-

vant MS2 spectra, using a given window size and deconvolution function,

to give a multi-channeled measurement of the targeted peptide ion

(Fig 1C). The extracted chromatogram for a channel is here referred to

as a trace, and all the traces for a peptide-ion assay will be collectively

called a peptide-ion assay trace (Fig. 2).

2.2 Peak detection and initial scoring

Each trace under analysis is smoothed by taking the second level Laplace

eight-point wavelet decomposition, and a baseline is also calculated as the

maximum of 1.0 and the median of a 20-point sliding window, resulting

in a minimum value of 1. The smoothed trace is partitioned by its local

minima, resulting in a number of peak candidates (Fig. 2A). These are

considered further if the smoothed curve intensity at the apex (local max-

imum for the candidate) is larger than twice the baseline at the same time.

Peak candidates from the different channels in the peptide-ion assay

trace are then grouped if peak candidate apices are maximally 1 data
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Fig. 1. Overview of DIA-MS and targeted extraction. (A) The instrument

typically performs a single full-range MS1 scan, followed by a number of

MS2 scans on subsets of the precursor range. (B) For the targeted ex-

traction and analysis, a peptide ion assay is used, with information on the

prevalent isotopes and fragments for the peptide. Assay isotopes (C) and

fragments (D) are extracted from the MS1 and relevant MS2 spectra to

get chromatograms related to the target peptide ion

A

B

C

Fig. 2. Nomenclature for chromatogram extraction and peak picking.

Target fragments and isotopes can be thought of as data channels (A), a

ratio between two channels a ratio channel (B), and themeasurements for a

channel are called a trace. Local maxima in channels are called peak can-

didates (A); of which several aligned is a multi-channeled peak. (C) For all

peaks a Boolean peak-validation object is computed. The peak-validation

object displays the data points that are close to the target ratios (within the

target tolerance window), which is an indication of a correct peak
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point (Fig. 2A) off, and filtered to only leave peaks (Fig. 2A) with at least

two fragment candidate peaks, or at least one fragment candidate peak

that has a sufficiently large area (default cutoff 25.0).

Peaks are initially scored by four different scores—the fragment

Markov ratio probability (FMRP), the fragment correlation score

(FCS), the isotope Markov ratio probability (IMRP) and the isotope

correlation score (ICS). As indicated by the names, the scores represent

two types of calculations (Markov ratio probability (MRP) and correl-

ation score) for two types of inputs (fragments and precursor isotopes).

2.3 Markov ratio probability

MRP is here introduced as a type of P-value that can be calculated for

sections in an n-channeled input, with the goal to find sections where the

ratio between each pair of channels maintains a target value. In our case,

the channels and ratios are either peptide fragments and an empirical

fragmentation pattern, or peptide isotopes and a natural isotope distri-

bution. To calculate the MRP for a peak of width w data points, first all

the pairwise ratio channels (Fig. 2B) between the channels are calculated

as previously described (Teleman et al., 2012), followed by the computa-

tion of a Boolean peak-validation object (Fig. 2C). This object consists of

Boolean vectors of length w: the vectors vi, 0 � i5 n, correspond to the

input channels ci, and the vectors wi,j, i5j� n correspond to the ratio

channels ri,j, giving a total of m vectors, m=n+ n � n� 1ð Þð Þ=2. The pur-

pose of the peak-validation object is to specify in detail which data points

in each channel and ratio channel that provide evidence of the target

relationship. For a description of the population of the peak-validation

object, see the Supplementary Methods.

With the peak-validation object, a P-value is calculated for each ratio

channel using a two-state Markov model (see Supplementary Methods

for motivation). The states represent agreement or non-agreement with

the target ratio, and the likelihoods for the four state-transitions in the

model are chosen by frequency counting of the measured state-transitions

using all data points in the ratio channel that are inside any peak. If the

peak has t of w data points in agreement with the target ratio in a ratio

channel, the P-value is calculated as the likelihood of getting t or more

data points in agreement given the above Markov model. These P-values

are combined to one according to Kost and McDermott (Kost and

McDermott, 2002), as they are calculated on pair-wise ratios and there-

fore dependent. This final P-value is the MRP.

2.4 Interference correction/signal estimation

The peak-validation object is a detailed map of the data points in the

channels believed to support the target ratios, but inversely also a map of

possibly noisy data points. These noisy data points will heavily influence

the reported quantity if some high-abundant alternative ion is causing the

deviation. Therefore, for any data point that is not validated according to

the peak-validation object, we calculate an estimated intensity as the

average of all validated channels at that time, multiplied by the expected

ratios. If this estimated intensity is less than half the measured one, the

estimated intensity is used in place of the measured.

2.5 Correlation sub-score

As a complement to the MRP, a correlation sub-score is calculated using

the corrected assay trace over the peak. The Pearson correlation between

each pair of corrected traces is computed, and the correlation score is

calculated as the mean of these correlations. The correlation score is

calculated separately for the precursor isotope traces (ICS) and the frag-

ment traces (FCS).

2.6 Retention time normalization

Once the first four sub-scores are calculated, the FMRP is used to select

the best peak (lowest FMRP) in each decoy and retention time assay

trace, and q-values are calculated using a simple non-parametric

method (K€all et al., 2008). Retention time peptide peaks at q-value

515% are selected. For these a linear regression is made for measured

versus expected retention time. To correct for possible false positive iden-

tifications, peaks with residuals outside 3 standard deviations are dis-

carded, and the linear regression is performed again on the remaining

peaks. The linear transformation specified by the regression is used to

map the expected (assay) retention times for all target- and decoy-assays

to the specific chromatographic profile of this injection, and a retention

time score is calculated as the absolute deviation of a peak apex from the

adjusted expected retention time. This supports assay libraries with iRT

retention times (Escher et al., 2012), although any linear retention time

scale can be used.

2.7 Semi-supervised classification with PyProphet

Using the above five sub-scores, decoy and target peaks are used to per-

form semi-supervised learning, using the new tool PyProphet. PyProphet

is a Python reimplementation of mProphet (Reiter et al., 2011), using

optimized C code and NumPy (http://numpy.org) calculations to de-

crease computation times and memory usage by several orders of mag-

nitude for large input sets. Apart for optimizations, PyProphet also

extends the original mProphet functionality with (i) multiple inner lear-

ners from SkLearn (Pedregosa et al., 2011) like stochastic gradient des-

cent, logit and support vector machine (SVM), apart from the original

linear discriminant analysis, (ii) non-parametric and log-normal null-dis-

tribution models, (iii) q-value calculation according to Storey (Storey,

2002) and (iv) traditional cross-validation. To account for the non-gaus-

sian sub-score null distributions, DIANA uses a SVM with an rbf-kernel,

and the non-parametric null model. DIANA uses a traditional cross-val-

idation where all samples are used for learning, instead of the random

sampling cross-validation used by mProphet and OpenSWATH.

2.8 Implementation

The software representing the DIANA algorithm is packaged into a set of

stand-alone Java Virtual Machine 1.6 command line applications. These

can be run individually, or combined and scheduled using a small toolbox

of python programs that is also provided. All software exists as self-

contained binary packages, which can be downloaded from http://quan

titativeproteomics.org/diana, and should be compatible with any operat-

ing system. PyProphet is a stand-alone Python tool, which can be in-

stalled from PyPi (https://pypi.python.org/pypi/pyprophet/0.9.1) or

downloaded and compiled from source from https://github.com/fick

ludd/pyprophet. For installation of PyProphet, we currently recommend

a Linux environment.

2.9 Analysis of gold standard dataset and Streptococcus
pyogenes dataset

Vendor data files and assay lists were obtained from (R €ost et al., 2014).

Decoys for the gold standard dataset were generated by shuffling each

target peptide trice, giving 1026 decoy assays, whereas a random sub-

sample of 3000 Streptococcus pyogenes peptide ions were shuffled once to

give 3000S.pyogenes decoy assays. Decoy generation was performed

using an in-house tool called DecoyGenerator, which shuffles the peptide

amino acid sequence randomly, but preserves the c-terminal amino acid.

Data files were processed through the DIANA workflow, using an in-

house MS-Numpress enabled Msconvert build (essentially performing

equally to msconvert in current ProteoWizard builds (Chambers et al.,

2012)). Chromatograms were extracted with a �20ppm uniform extrac-

tion window, using DianaExtractor, unless other window sizes are indi-

cated. Apart from additionally using the three most abundant precursor

isotopes, the extracted fragments and retention time peptides were as

previously described (R €ost et al., 2014). In PyProphet we used weighted
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classes, 10 iteration traditional cross-validation (xeval.type=split), all

peptides were used in the cross-validation, and an rbfSVM inner learner

with 1 GB cache size was used. The non-parametric null distribution was

used with Storey FDR calculation (Storey, 2002), and mProphet (Reiter

et al., 2011) statistics calculation and sampling. Applied data analysis was

done using custom R scripts, mainly using reshape and ggplot2 packages.

3 RESULTS

Targeted data extraction for the analysis of complex DIA-MS

data was recently demonstrated as a promising data analysis

strategy. With the goal to further explore and improve this strat-

egy, we have designed a new peak detection algorithm, as well as

four new peak sub-scores—FMRP, FCS, IMRP and ICS.

Analogous to previous published work on SRM data analysis

(Teleman et al., 2012), the sub-scores consider the data channels

in a pair-wise manner to provide robustness toward interfering

signals from non-targeted compounds. All sub-scores are used to

calculate a q-value, which allows the user to determine the

strength of the found evidence for a certain peptide, and to

filter the results at a target FDR.
To evaluate DIANA performance, we used the gold standard

water and yeast background datasets from the OpenSWATH

publication (R €ost et al., 2014). The gold standard dataset con-

sists of 342 detectable stable isotope labeled peptides, diluted in

10 concentrations from 1:1 to 1:512 in water and yeast lysate

backgrounds, yielding 20 separate samples, analyzed in tripli-

cates, resulting in 60 DIA-MS maps. Targeted extraction of

the spiked-in peptide traces from the 60 DIA-MS maps gener-

ated 20 520 extracted chromatograms, which were analyzed

manually in the OpenSWATH publication (R €ost et al., 2014).

3.1 Parameter optimization and quantity calculation

Before analyzing the 60 DIA-MS maps from the gold standard

dataset using DIANA, we selected a subset of six DIA-MS maps

(yeast background, dilutions 1:2 to 1:64) to optimize the chro-

matogram extraction parameters. We tested extraction window

sizes of �5, �10, �20, �40 and �80ppm from the theoretical

mass, using either uniform or top-hat extraction profiles, result-

ing in 10 extracted chromatogram sets per map. Each chromato-

gram set was scored and classified using DIANA and the gold

standard target and decoy assays, and evaluation was based on

the amount of significant peptides at 1% FDR. The �20ppm

uniform window resulted in the highest number of significant

peptides in the more diluted samples (Supplementary Fig. S1)

and was used for the rest of this study. Note that the selected

extraction window shape and size should be close to optimal for

any measurement using the same method on the same instru-

ment. Other DIANA parameters (Supplementary Table S1 for

A B C

D E F

Fig. 3. Validation of DIANA of gold standard data set compromising 342 manually analyzed peptides in 60 injections. (A) ROC-curve of DIANA and

PyProphet semi-supervised classification. (B) Evaluation of true FDR according to the manual analysis as a function of estimated FDR by DIANA.

(C) Coefficients of variation calculated on the three technical replicates for each peptide and dilution level. Precision is similar to manual analysis. (D-E)

Linearity of peptides. Log-log scale linear regression on each peptide and dilution series reveals confidently high coefficients of determination (r2) and

intercepts and slopes close to theoretical values (0.0 and 1.0), with performance identical to manual analysis
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full list) are treated as constants for MS methods similar to the

used method, and do not need to be changed. For example,

DIANA is robust with respect to the retention time mapping

parameters (Supplementary Figs S2 and S3).
Larger extraction windows could decrease the accuracy of

quantification because of a higher risk of co-extraction of inter-

fering compounds, but linear regression of measured versus the-

oretical quantities showed excellent linearity, with r2 values for

the interference corrected extracted ion current (XIC) of40.92

for 75% of the peptides, as well as median slope of 0.89� 0.32

(median� SD) and median intercept of –0.13� 0.18

(Supplementary Fig. S4). DIANA reports three measures that

can be used to represent the quantity of a peptide: the XIC of

the measured fragments, the XIC of the measured precursor iso-

topes and the interference-corrected XIC of the measured frag-

ments. The interference-corrected XIC values gave higher r2

values compared with the raw XICs of the fragments or the

isotopes, and they also resulted in slopes and intercepts closer

to their expected theoretical values (Supplementary Fig. S4).

Therefore the interference corrected XIC is used as the measure

of quantity throughout this article.

3.2 DIANA compared with gold standard

To evaluate the performance of DIANA, we analyzed the com-

plete 60 DIA-MS gold standard data using the optimized param-

eters and original assays. The results were comparable to those

from manual analysis performed previously (R €ost et al., 2014). At

a 1% FDR, DIANA detected 7004 out of 7689 manually detected

peptides in water, and 4786 out of 5716 peptides in yeast, repre-

senting sensitivities of 91.1% and 83.7%, respectively. A pseudo-

roc curve of sensitivity versus false positive rate results in an area

under the curve (AUC) of 0.92 (Fig. 3A). As the presumed correct

peak in a few cases was not the highest scoring of the peaks for

that assay, the sensitivity did not reach 1.0 even at the maximal

score cutoff. The gold standard dataset also enabled the evalu-

ation of the quality of FDR estimations. DIANA estimated the

true FDR according to the gold standard reasonably well, with

exact estimation at 10% FDR, underestimation for lower FDRs

and overestimation for higher FDRs (Fig. 3B).
For the purpose of hypothesis-driven quantitative experi-

ments, the precision and accuracy of a method is equally import-

ant to classification power. Precision calculations for DIANA

and manual analysis yielded similar coefficients of variation

(CV) across the technical replicates, with median CVs of

14.3% and 13.5% in water and 9.0% and 8.0% in yeast, respect-

ively (Fig. 3C). Orthogonally, reported quantities from DIANA

are also as accurate as manual analysis, and closely follow the

theoretical dilutions. In log-log scale, 95% of peptide dilutions

have r240.96 in both water and yeast (0.964 and 0.968 with

DIANA, 0.972 and 0.960 with manual) (Fig. 3D). Apart from

r2, the slope and intercept of a linear regression can be used to

evaluate quantification. We normalized peptide quantities by

division of the most concentrated sample followed by log2 trans-

form. As theoretical log2 concentrations were set to [–9, –8, . . . ,

0], slopes should theoretically be 1 and intercepts 0. Log-log scale

intercepts had a median value of 0.18� 0.25 and 0.02� 0.10

(DIANA) compared with 0.19� 0.25 and 0.03� 0.11 (manual)

for water and yeast backgrounds (Fig. 3E), whereas slopes were

1.20� 0.46 and 1.01� 0.22 (DIANA) compared with 1.26� 0.45

and 0.98� 0.24 (manual) (Fig. 3F). We conclude that DIANA is

well fit for targeted analysis of DIA-MS data, with high sensi-

tivity and very accurate quantification.

3.3 DIANA compared with OpenSWATH

The novelty and utility of new algorithms should not only be

evaluated compared with time-consuming gold standard manual

analysis, but also by comparison with existing software. At a

controlled FDR-level of 1%, DIANA reported similar peptide

quantification results compared with the main existing software

OpenSWATH (12174 versus 11932) in the gold dataset. This

global trend was preserved across the entire dilution series in

water, whereas the algorithms diverge in the yeast dilution,

with DIANA performing better in the concentrated half, and

OpenSWATH better in the diluted half (Fig. 4B and

Supplementary Fig. S5).
The classification parameters precision and recall were used to

compare the semi-supervised learning strategies of DIANA and

OpenSWATH. Overall, the behavior over dilution in both par-

ameters is similar, with a high precision (as forced by the target

FDR of 1%), and a high recall that is declining with spiked

peptide concentration (Supplementary Fig. S6). As indicated

by the number of quantifications, the only difference lies in the

recall of the yeast dilution series, where DIANA has a higher

recall in the concentrated samples, while OpenSWATH has a

higher recall in the diluted samples.

The corrected quantity measure of DIANA consistently yields

minor increases in accuracy on peptides significantly and

A

B

Fig. 4. True FDR and number of identifications when combining search

engines for DIA-MS analysis. Peptide ions were either detected as the

same peak by both engines (green), as different peaks by the two engines

(red), exclusively by DIANA (blue) or OpenSWATH (yellow), or not at

all (gray). (A) True FDRs depending on detection status. Peptide ions

selected at 1% FDR by both DIANA and OpenSWATH (green) had a

true FDR of50.5%, whereas the peptide ions exclusively quantified by

only one engine (blue/yellow) had true FDRs of 20–27%. (B) Number of

peptides ions quantified, stratified by detection status. The two engines

agreed on a majority of the peptide peaks, but there are still exclusive

contributions from both engines in both backgrounds
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correctly detected by both engines, compared with the
OpenSWATH quantity measure (Supplementary Fig. S7). Both

DIANA (DI) and OpenSWATH (OS) had high performance,
with 95% of peptide dilutions having an r240.966 (DI) and

r240.963 (OS) in water, and r240.972 (DI) and r240.969 (OS)
in yeast. Intercepts were 0.17� 0.29 (DI) and 0.20� 0.25 (OS) in

water, and 0.023� 0.10 (DI) and 0.028� 0.10 (OS) in yeast.
Finally, slopes of the regressions were 1.18� 0.43 (DI) and

1.19� 0.45 (OS) in water and 1.01� 0.20 (DI) and 0.97� 0.22
(OS) in yeast.

3.4 Combination of DIANA and OpenSWATH

Previous studies have reported that the successful combination of

multiple search engines improves both the number and quality of
reported peptides detected in DDA data (H€akkinen et al., 2009;

Jones et al., 2009; Nahnsen et al., 2011; Shteynberg et al., 2011).
To investigate the possibility of similar performance gains in

DIA data analysis, we studied the extent of overlap in reported
peptides between DIANA and OpenSWATH. We observe that

the confidence in the peptides identified by both engines is con-
siderably increased. Using the gold standard manual analysis, the

actual FDRs for the identification status groups could be calcu-
lated (Fig. 4A). Across all samples the agreeing identifications

have actual FDRs of 0.5%, well below the target 1%. In con-
trast, the few conflicting identifications have actual FDRs ran-

ging between 13% and 86%, with OpenSWATH being correct in
a majority of cases, whereas single algorithm identifications have

actual FDRs of 20–27% in both backgrounds. The vast majority
of the identified peptides were detected in consensus by both

engines and therefore in the high-confidence group (green),
emphasizing the robustness of the targeted analysis strategy

(Fig. 4B). Nonetheless, the total number of detectable peptides
does increase when considering exclusive quantifications, and

these could prove to be suitable targets for further study, for
example by SRM.

3.5 Analysis of a bacterial lysate proteome using DIANA

To complement the strictly controlled setting of spiked-in syn-
thetic peptides, we reanalyzed 4 MS injections of S.pyogenes

grown with or without 10% human plasma from a previous
study (Malmstr €om et al., 2012), which was also used in the

OpenSWATH manuscript (R €ost et al., 2014). Streptococcus pyo-
genes is a major microbial pathogen, responsible for millions of

cases of pharyngitis and 500 000 deaths annually (Carapetis
et al., 2005). Apart from this very relevant reason for study,

the bacterium’s proteome of 1905 open reading frames makes
it suitably complex for whole-proteome measurements. The data

was evaluated using the pre-existing assay library (R €ost et al.,
2014), generated from 10 shotgun MS measurements of fractions

of the S. pyogenes proteome, consisting of 1322 proteins repre-
sented by 20027 proteotypic peptide precursors.

The reanalysis of the streptococcal lysates with DIANA
yielded similar numbers of measured peptide ions at 1% FDR

compared with OpenSWATH without inter-sample alignment,
resulting in 38 776 versus 38 272 peptide ion identifications

(Supplementary Fig S8). Together, 47 467 identifications were
reported as significant by at least one algorithm. Of these,

29 397 (61%) peptide-ion identifications could be considered

high confidence because of consensus identification by the two

algorithms (Fig. 5). In addition, DIANA identified 8713 (18%)

peptide ions exclusively, whereas OpenSWATH added another

8353 (18%). The algorithms gave conflicting results for only 824

(1.7%) peptide ions. According to the gold standard analysis we

would expect consensus identifications to have a true FDR of

0.5% and single identifications to have a true FDR of about 20-

27%. However, as the number of single identifications is larger

compared with consensus identifications in this dataset, true

FDRs are likely to be closer to 1% if the FDR estimates of

algorithms are correct. We conclude that the combination of

two search engines improves the total number of detected peptide

ions at 1% FDR but also importantly increases the confidence

for the majority of the detected peptides.

4 DISCUSSION

The presented work demonstrates three advancements in tar-

geted extraction DIA-MS analysis. First, the invention of a prob-

abilistic score for fragmentation patterns is shown to give high

analytical power in the complex bacterial and yeast backgrounds,

which should be considered the minimal expected sample com-

plexity for in vivo or cell-line studies. Second, the adopted inter-

ference-corrected measure of quantity from our previous SRM

work is shown to provide increased accuracy in quantification in

the noisy DIA-MS data. Third, we demonstrate the advance of

combining two analysis tools for DIA-MS data processing. The

combined output from DIANA and OpenSWATH generated

both an increased number of identifications and considerably

increased confidence in the peptides identified by both engines.
The DIANA algorithm is very reliant on the peptide fragmen-

tation pattern, both for scoring and interference correction. This

is both a strength and a weakness. The advanced probabilistic

score is very powerful as the probabilities are individually calcu-

lated based on the noise in each specific ratio channel, and this

allowed us to rely completely on extracted chromatograms for

the analysis. On the other hand, the algorithm depends on con-

served fragmentation, and changes in instrument collision energy

tuning or mass-dependent ion transmission could hinder detec-

tion of true peptides. Nevertheless, we have demonstrated power-

ful classification (AUC50.92) and accurate quantification (95%

of peptides have r240.96) of the new scoring software DIANA

and classifier PyProphet in a gold standard dataset. Further,

0

10000

20000

30000

agree conflict DIANA none OpenSWATH
identification state (q<0.01)

nu
m

 p
ep

tid
e 

io
ns

Fig. 5. DIA-MS analysis of four Streptococcus pyogenes lysates grown

with 0% or 10% plasma supplement. Combined analysis using Open-

SWATH and DIANA confirms close to 30–000 peptide ion quantifica-

tions, but each engine also quantifies over 8000 peptides exclusively. Less

than 1000 peptide ions have conflicting quantifications from the two

algorithms

560

J.Teleman et al.

to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu686/-/DC1
while 
-
Streptococcus 
S.
,
,
,
,
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu686/-/DC1
peptide 
while 
to
-
ly


even if performance is largely similar, DIANA is shown to im-

prove performance in samples from bacterial whole cell lysates

with sufficient amounts of true positives, compared with

OpenSWATH.
The structure of DIANA and OpenSWATH are conceptually

similar. The observed differences in performance between the

engines can likely be explained by the detailed differences such

as the different sub-scores or the exact chromatogram extraction

or peak detection. We believe that further improvement of

DIANA could be achieved by including something similar to

OpenSWATH’s intensity and signal-to-noise sub-scores, as well

as a preliminary score to initiate the semi-supervised learning

better. The lack of such sub-scores could well explain

DIANA’s lower sensitivity in samples with very few true

positives.

In the performed gold standard and streptococcal lysate ana-

lysis, we demonstrate the usefulness of utilizing multiple analysis

tools, to increase the confidence and amounts of detected pep-

tides. Increasing peptide identification rates and confidence using

a combination of search engines is an attractive option, as it only

requires computer hardware investments that are minor com-

pared with instrument investment and maintenance costs.

Being standard procedure in shotgun MS data analysis, we be-

lieve this study to validate the approach also in DIA-MS.
Although shotgun MS data analysis is a mature field with tens

of different tools available, research on the analysis of targeted

analysis DIA data has only begun. It can be anticipated that

several powerful concepts for DIA analysis remain to be dis-

covered. We believe DIANA demonstrates some such new ana-

lysis concepts, and their successful application to the complex

task of detecting and quantifying peptide ions.
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