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Analysis of a key distribution scheme
in secure multicasting

Gérard Maze

Communicated by Rainer Steinwandt

Abstract. This article presents an analysis of the secure key broadcasting scheme proposed
by Wu, Ruan, Lai and Tseng [Proceedings of the 25th Annual IEEE Conference on Local
Computer Networks (2000), 208–212]. The study of the parameters of the system is based
on a connection with a special type of symmetric equations over finite fields. We present
two different attacks against the system, whose efficiency depends on the choice of the
parameters. In particular, a time-memory tradeoff attack is described, effective when a
parameter of the scheme is chosen without care. In such a situation, more than one third
of the cases can be broken with a time and space complexity in the range of the square
root of the complexity of the best attack suggested by Wu et al. against their system. This
leads to a feasible attack in a realistic scenario.
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1 Introduction

The goal of this article is to present an analysis of a key distribution scheme taking
place in a multicasting system. The system has been developed by Wu, Ruan,
Lai and Tseng, see [11], in order to propose a new solution to the problem of
transmitting securely keys in the context of multicasting. In such a context, the
security of the transmission must be coupled with the imperative of being able to
manage groups of users sharing the same key where typically one wants to deal
with users leaving a group after some time, new users joining different groups, etc.
The solution of Wu et al. is based on a particular finite field construction and its
security relies on the computational difficulty of a problem that appears to have
not been studied rigorously up to now.

The problem, presented in more details in Section 2 below, takes place in a
finite prime field Fp where an n-th degree polynomial f is given and consists in
finding k 2 Fp so that f .x/� k splits into linear factors in Fp, provided that such
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a k exists. We will see that this problem is directly connected with the so-called
systems of power equations [6, 12]. Indeed, the problem is equivalent to solving
an inhomogeneous system of n � 1 power equations in n variables with degrees
running from 1 to n � 1. Equations of this type with symmetries are known to be
generically hard to solve computationally, see, e.g., [1, 3], and they often appear
as test case when evaluating algorithms whose goal is to find solutions of systems
of polynomial equations. For instance, at the time of writing, these problems are
computationally intractable as soon as the degree of the system is as large as 30,
even in a finite field with moderate size. In the current situation, the degree of the
system can potentially be a few thousand and the finite field size should be chosen
larger than 280. It is however worth noticing that the special form of the equations
Sn described below might turn out to be in fact easily solvable, but the author of
the article is unaware of any algorithm capable of performing this task efficiently.

Even though the connection with systems of cyclic power equations does not
lead to a feasible computational solution of the initial problem underlying the sys-
tem of Wu et al., this link will allow us to shed light on the expected number of
solutions of the initial problem. This will be explained in Section 3. Since Gröb-
ner bases methods as well as different linearization techniques do not appear to
threaten the security of the system in the generic case, we will focus in Section
4 on the case where the order p of the finite field has been chosen without care.
Based on this assumption, two different attacks will be presented. In particular,
a time-memory tradeoff attack against the system will be developed whose time
complexity T and memory complexity M satisfy TM D O.p ln3 p/ and are both
in the order of the square root of p in more than one third of the cases. We would
like to point out that in such a realistic situation the time-memory tradeoff attack
can be potentially realized on a system where the parameters have been chosen as
described in [11].

All the computations and equalities in this article should be clear from the con-
text. The natural logarithm and the logarithm in base 2 are denoted by ln and log2
respectively. We will follow the standard asymptotic notations, as in, e.g., [5],
such as o, O and�. We will write f .n/ � g.n/.1C o.1// when f and g satisfy
lim infn!1.f .n/=g.n/ � 1/ > 0.

2 The key broadcasting scheme of Wu et al.

Let us now present the technical details of the key distribution scheme in secure
multicasting of Wu, Ruan, Lai and Tseng. We refer the reader to the original paper
[11] for a more detailed description of the broadcasting setting and on the argu-
mentation of the benefits of the system. The ground parameters of the multicasting
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system are a large finite prime field Fp and a family H of hash functions with val-
ues in Fp. Each user of the system receives a private key a 2 Fp that is fixed for
a given time period and that is known to the key management authority. When the
key management authority wants to broadcast a key k to n distinguished users of
the system with private keys a1; : : : ; an, he selects a hash function h 2 H and
expands the monic n-th degree polynomial f in FpŒx� as follows:

f .x/ D

nY
iD1

.x � h.ai //C k D x
n
C

n�1X
jD0

bn�jx
j : (2.1)

The management authority sends to the n users the n coefficients bj together with
the hash function h. Since the polynomial f , the so-called “secure filter” in [11],
satisfies f .h.ai // D k for all i D 1; : : : ; n, the n distinguished users can com-
pute the key k. The system is secure in the sense that an unauthorized user who
wants to have access to k faces the problem to recover this field element from the
broadcasted parameters b0; b1; : : : ; bn�1 and h. The designers of the system state
in [11, Section 3.3] that k can only be obtained from the constant term b0 since
b0 D k C

Qn
iD1 h.ai / and not knowing the h.ai / makes it infeasible because the

finite field size p is too large.
The distribution of the n field elements bi represents a transmission of n log2.p/

bits. The distribution of the hash function is not explained in the original setting
[11], however in order to balance the security between the choice of the key k
and the function h, the number of possible hash functions should be at least as
large as p. For instance, it would be possible to fix a cryptographic hash function
h, and define H D ¹hcºc2Fp

where hc.x/ D h.h.x/ C c/. In doing so, any
element of H is described with a field element. We will therefore assume that the
key distribution requires O.n log2.p// bits of transmission. This is however not a
limiting requirement in our analysis. When a fixed hash function h is used for each
broadcasting, the system is not immune against attacks during different phases of
the scheme, as described in [13]. However, when the hash function is different for
each transmission, as suggested as vulnerabilty fix in [13], the system becomes
exactly the one described above. We would like to point out that it is in the interest
of the designer to select the size of p in order to balance the security and the
transmission cost. In a multicasting environment, the value n can potentially be
quite big (up to a few millions), leading to a choice of the size of p as small as the
security concerns would allow. With this in mind, we will naturally assume in the
sequel that n < p.

The brute force attack suggested by the authors relies on testing the p possible
keys k 2 Fp. This exhaustive search can potentially be directly operated on the
system the key is supposed to enable, but it is also possible to run the following
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algebraic test. The polynomial f and the key k are such that f .x/ � k splits into
linear factors over Fp. This means that f .x/ � k divides the product of all linear
monic polynomials, which is xp � x, see, e.g., [7]. This is equivalent to write that

xp � x D 0 mod .f .x/ � k/: (2.2)

Testing the previous equality can be done inO.log2.p//modular polynomial oper-
ations, using repeated square and multiply techniques in the ring FpŒx�=.f .x/�k/,
see, e.g., [9]. Any k that fulfills the previous equation is a candidate. The expected
number of candidates is analyzed in the next section and turns out to be small as
soon as n D lnp

ln lnp .1 C o.1//. This leads to a brute force attack with time com-
plexityO.p log2.p// and space complexityO.n log2.p//when n is large enough.
A realistic situation could be the following. The finite field is selected to have
p Š 275 elements, so that the brute force attack has a complexity of more than
280 modular polynomial operations. As soon as n � 15, only a few k 2 Fp will
satisfy Eq. (2.2). With n D 100 000 users (a factor of 40 less than some currently
used pay-TV systems [10]), the multicasting system would need to broadcast al-
most 1 megabyte of information.

3 Connection with systems of power equations

Our first goal is to find an estimation of the number of possible candidates k 2 Fp
satisfying Eq. (2.2) and to determine how difficult it is to compute one of these. In
order to do so, we will make use of a special type of polynomial equations over Fp.
Let us consider Sn D Sn.s1; : : : ; sn�1/, the following system of n�1 consecutive
power equations in n variables:

x1 C x2 C � � � C xn D s1

x21 C x
2
2 C � � � C x

2
n D s2

x31 C x
3
2 C � � � C x

3
n D s3

:::

xn�11 C xn�12 C � � � C xn�1n D sn�1

Notice that if one more power equation of degree n would be available, then the
system would be solvable in expected polynomial time, see, e.g., [6, 12] and [7]
for the use of it in decoding BCH codes. The above system is non-trivial because
this last equation is missing. Recall that the coefficients of the polynomial

nY
jD1

.x � xj / D x
n
C

n�1X
jD0

en�jx
j (3.1)
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are explicitly related to the sum of the powers of its roots xj via Newton’s identi-
ties, that have the following form, see, e.g., [8],

ej D Fj .s1; : : : ; sj�1/ � .�1/
j sj

j
(3.2)

for some specific algebraically independent polynomials Fj 2 FpŒy1; : : : ; yj�1�,
j > 0. For instance, e1 D s1 and e2 D s21=2 � s2=2. The special triangular shape
of the equations (see, e.g., [8]), i.e., the fact that Fj depends on s1; : : : ; sj�1 only,
together with the affine dependence between ej and sj has several implications.

First, one can recursively compute sj for j D 0; : : : ; n � 1 in polynomial time
as soon as the ej are given for j D 0; : : : ; n � 1 (note that since we assumed
n < p, the division by j in the last term of (3.2) is never a problem). Therefore
solving the initial problem (2.2) with unknown k is equivalent to solving the sys-
tem Sn with bj D ej for j D 0; : : : ; n � 1 since computing any xi D h.ai / is
essentially equivalent to computing k (factoring splitting polynomials in Fp can be
done in expected polynomial time). This gives some confidence in the general dif-
ficulty of breaking the multicasting scheme, since solving Sn for randomly chosen
s1; : : : ; sn�1 seems to be a difficult task, as explained in the introduction.

Second, the number of solutions of Sn is related to the number of possible k
such that (2.2) holds. If we consider two solutions of Sn to be the same if one
is obtained from the other by a permutation of its components, then there is a
bijection between the set of solutions of Sn and the set of possible k satisfying
(2.2). Indeed, if .x1; : : : ; xn/ is a solution of Sn then k D f .x0/ �

Qn�1
iD1 xi

satisfies (2.2), and any k satisfying (2.2) gives a completely splitting polynomial
f .x/ � k with a unique set of roots, up to permutations. If �n is the set of un-
ordered n-tuples of elements of Fp, then a solution of Sn is an element of �n and
j�nj D

�
pCn�1
n

�
.

Finally, let us focus on the expected number of possible k satisfying (2.2),
when the coefficients of the polynomial f .x/ are independently and uniformly
distributed at random in Fp. The triangular shape and the affine dependence de-
scribed above imply that the si are independently and uniformly distributed in Fp
if and only if the same is true for the ei . This comes from the fact that if X and Y
are independent random variables, with Y being uniformly distributed, thenXCY
is uniformly distributed. Therefore, when the n� 1 coefficients of strictly positive
degree of the polynomial f .x/ are chosen independently and uniformly at random
in Fp, the expected number of k satisfying (2.2) is equal to the expected number
N of solutions of Sn.s1; : : : ; sn�1/, when s1; : : : ; sn�1 are independently and uni-
formly distributed at random in Fp. For a 2 �n, let us write 1Sn.a/D0 for the
indicator function of the set ¹a 2 �n j a is a solution of Snº. The number N can
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be computed as follows:

N D
1

pn�1

X
s2Fn�1

p

ˇ̌
¹a 2 �n j a is a solution of Sn.s/º

ˇ̌
D

1

pn�1

X
s2Fn�1

p

X
a2�n

1Sn.s/.a/D0

D
1

pn�1

X
a2�n

X
s2Fn�1

p

1Sn.s/.a/D0:

Since for a fixed a 2 �n there is a unique s 2 Fn�1p such that a is a solution of
Sn.s/, we obtain that

N D
1

pn�1

X
a2�n

1 D

�
pCn�1
n

�
pn�1

:

Let us summarize the situation with the following lemma:

Lemma 3.1. Let b1; : : : ; bn�1 be independently and uniformly distributed ele-
ments in Fp and let f .x/ D xnC

Pn�1
jD1 bn�jx

j . The expected number of elements
k 2 Fp such that f .x/ � k splits into linear factors in Fp is

�
pCn�1
n

�
=pn�1.

In the context of the secure key broadcasting scheme under consideration, the
previous lemma can be used, since in this case the bj being obtained by evaluating
algebraically independent polynomials at values of a cryptographic hash function,
it is natural to consider that they will behave like independent and uniformly dis-
tributed random variables over Fp. Notice that�

pCn�1
n

�
pn�1

D
p

nŠ
�

n�1Y
iD1

�
1C

i

p

�
D
p

nŠ
� exp

� n2
2p
C o

�n2
p

��
: (3.3)

This asymptotic expression invites us to separate two situations, when n D
O.p1=2/ and when n is essentially larger. We will not address the latter since
it does not fit any plausible setting: the prime p needs to be very large in order
to give the system its security, and n represents a number of users, making the
hypothesis n � p1=2 quite improbable. We will therefore assume from now on
that n D O.p1=2/ (even though n D p1=2.1 C o.1// is also quite improbable).
In this situation, the expected number of solutions essentially depends on the term
p=nŠ. We will make use of the following technical lemma.
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Lemma 3.2. If nŠ D r then

n D
ln. r

e
/

W.1
e

ln. r
e
//
� .1C o.1//;

where W is the Lambert W function that satisfies W.t/ exp.W.t// D t and

W.t/ D ln.t/ �
�
1 �

ln ln t
ln t

C
ln ln t
ln2 t

C o
� ln ln t

ln2 t

��
D ln.t/ � .1C o.1//:

Proof. Since ln is increasing, we haveZ n

1

ln.x/ dx �
nX
iD1

ln.i/ �
Z n

1

ln.1C x/ dx

and this leads to
e
�n
e

�n
� nŠ � e

�nC 1
e

�nC1
:

By continuity, there exists 0 < c < 1 with e.nCc
e
/nCc D r . Thus�nC c

e

�.nCc/=e
D

�r
e

�1=e
:

Solving this equation for nCc
e

is performed with the help of the Lambert W func-
tion, defined as the unique solution of the equationW.t/ exp.W.t// D t for t � 0,
see [2]. In fact if xx D y then elnx ln x D lny thus ln x D W.lny/, leading to
x D exp.W.lny// D lny

W.lny/ . Finally, we obtain

nC c

e
D

ln.. r
e
/1=e/

W.ln.. r
e
/1=e//

;

and thus

n D
ln. r

e
/

W.1
e

ln. r
e
//
� .1C o.1//:

The final estimation of W is Eq. (4.19) of [2, p. 349].

The two previous lemmas together with the expression (3.3) have the following
application:

Proposition 3.3. Let p be a prime number, n D O.p1=2/, b1; : : : ; bn�1 be in-
dependently and uniformly distributed elements in Fp and let f .x/ D xn CPn�1
jD1 bn�jx

j . When n � lnp
ln lnp .1 C o.1//, the expected number of elements

k 2 Fp such that f .x/ � k splits into linear factors in Fp is O.1/.
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Proof. With the assumption n D O.p1=2/, the value of
�
pCn�1
n

�
=pn�1 is a con-

stant factor away from p=nŠ. Solving the equation nŠ D p via Lemma 3.2 leads
to

n D
ln.p

e
/

ln.1
e

ln.p
e
//
� .1C o.1// D

ln.p/
ln.ln.p//

� .1C o.1//:

Therefore as soon as the condition n � lnp
ln lnp .1C o.1// is fulfilled, the conclusion

of the proposition holds, due to Lemma 3.1 and Eq. (3.3).

The effective value O.1/ in the above proposition is trivially 0 if no such k
exists. Computer simulations tend to show that when p is reasonably large and
such a k exists, as soon as n � lnp, the value O.1/ is 1 with overwhelming
probability, i.e., k is then unique. Taking back the example described in Section
2, when p is a 75 bit prime number, then as soon as a secret key is broadcasted
to n > 15 users, being able to solve Eq. (2.2) is enough to recover k with high
probability.

The consequence of the above proposition can be summarized in the following
terms. Any algorithm that solves the problem of finding all k 2 Fp such that xp �
x D 0 mod .f .x/ � k/, where f .x/ is a monic n-th degree random polynomial
and n � lnp

ln lnp � .1 C o.1//, can be used to break the key distribution scheme in
secure multicasting of Wu et al. [11] described in Section 2.

4 Cryptanalysis of the scheme

In this section we present two different approaches that tackle the security of the
system. The first one is effective when n is unusually large compared to p, i.e.,
when n is not far away from p1=2. The second one uses the existence of average
size divisors of p � 1.

4.1 Attack when n D p1=2�" with small "

When the number of users n is large compared to p, a simple algebraic procedure
can reveal with sufficiently large probability the secret key k. The key point is that
the polynomial f .x/ takes the value k much more often than a random polynomial.
In fact for a truly random monic n-th degree polynomial g the expected number of
roots of g.x/ D k is one. In our case, it is n. So for a random field element a, the
probability that f .a/ D k is n=p and by computing

ra.x/ WD x
p
� x mod .f .x/ � f .a//;

we expect to find ra.x/ D 0 after p=n trials. In view of Section 3, as soon as
n � lnp

ln lnp � .1C o.1//, then a D h.ai / for some i with overwhelming probability.
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If the quotient n=p is too small, then there is no hope this approach can lead to an
efficient algorithm, but if n D p1=2�" with a small ", then the situation is different.
Computing ra requires O.log2 p/ modular polynomial operations, which leads to
an attack with an expected complexity of O.p1=2C" lnp/ modular polynomial
operations. For example, when p is a 64 bit number and n is as large as a million,
i.e., n Š 220, then " D 3=16, and the complexity of the attack is roughly 250

modular polynomial operations, compared with 270 for the exhaustive search on k
described in Section 2.

4.2 Time-memory tradeoff attack

A more direct approach to the problem of finding an element k such that the mod-
ular equation xp�x D 0 mod .f .x/�k/ is fulfilled is to consider k as a variable
and develop and reduce the equation in terms of the powers of k. More precisely,
since f .x/ D xn C

Pn�1
jD0 bn�jx

j , we have

xn D �

n�1X
jD0

bn�jx
j
C k mod .f .x/ � k/;

and the power xp can be reduced modulo this equality. In other words, when
working in FpŒx; y� we can write

xp � x D

n�1X
iD0

ci .y/x
i mod .f .x/ � y/:

The polynomials ci fulfill then the condition ci .k/ D 0 for all i since when y takes
the value k, the polynomial in x is identically 0. If we could compute explicitly the
polynomials ci then we could recover k since with very high probability k would
be their only common root, and therefore

x � k D gcd
®
ci .x/; i D 0; : : : ; n � 1

¯
:

In any case, the number of linear factors isO.1/ as soon as n � lnp
ln lnp .1Co.1//, as

discussed in Section 3 above. However one readily verifies that the degree of the
ci is bp=nc and in our case the memory needed to work with these polynomials is
unrealistic because p=n is too large, specially when n� p. There exists however
a turn around. Let us factorize the order of F�p as p � 1 D d1d2 with d1 > 1. If
k ¤ 0 then kd1d2 D kp�1 D 1 and thus kd1 can only take d2 values, i.e., the d2
roots of unity in Fp. In fact if ˇ is a primitive element of Fp and

S WD
®
! 2 Fp j !

d2 D 1
¯
D
®
!j j !j D ˇ

j p�1
d2 for some j D 0; : : : ; d2 � 1

¯
;
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then kd1 D !j for some !j 2 S . Notice that the elements of S can be efficiently
computed since primitive roots are easily found, see, e.g., [5]. For a given ! 2 S ,
let I! be the ideal in FpŒx; y� generated by the polynomials f .x/�y and yd1�!.
In the quotient ring, we have

xp � x D

n�1X
iD0

ci;!.y/x
i mod I! ;

where the polynomials ci;! satisfy ci;!.y/ D ci .y/ mod .yd1 � !/. There-
fore, the degrees of all ci;! are bounded by d1 � 1 and when ! D !j , we have
ci;!.k/ D 0. The computation of the polynomials ci;! can be performed quite
simply: when computing xp mod I! by any square-and-multiply technique in
FpŒx; y�, reduce at each step all the terms of degree larger or equal than n for x
with xn D �

Pn�1
jD0 bn�jx

j C y and those larger or equal than d1 for y with
yd1 D !. The time-memory tradeoff algorithm consists in testing all d2 pos-
sible ! until a common linear factor of the n polynomials ci;! is found, reveal-
ing the secret key k. Note that the cost of the greatest common divisor compu-
tation is O.ln d1/ modular polynomial operations. The memory requirement is
M D d1 log2 p bits, the time requirement is T D O.d2 lnp ln d1/ modular poly-
nomial operations, and we have TM D O.p ln2 p ln d1/.

Clearly the quality of this approach depends on the factorization of p � 1. The
case where p is a strong prime, see [9], i.e., p D 2qC 1, with q prime, is immune
against the previous attack. However as soon as p � 1 has a factor d1 with t bits,
and if sufficient memory is available, then the time needed to compute the secret
key from the public data is decreased by a factor of roughly 2t compared to the
brute force described earlier. It is worth mentioning that the original scheme has
no indication on the choice of the special form of p. The case of the example
presented in Section 2 is illustrative. When p � 1, a 75 bit number, has a factor
in the range of 240, which corresponds to a few gigabytes of memory, the cost of
the attack is reduced to roughly 245 modular polynomial computations, much less
than 280, which corresponds to the cost of the brute force search, and is feasible
by an attacker with realistic power.

Let us briefly study the conditions required in order for the above attack to
terminate with a time and memory requirement in the order of the square root of
p. This boils down to determine how often a prime p is such that p � 1 has a
factor in the range of p1=2. For 0 � ˛ < ˇ � 1, let N.x; x˛; xˇ / be the number
of primes p � x such that p � 1 has a factor d such that x˛ � d � xˇ . There
exist constants r and B , that depend on ˛ and ˇ, such that

8x > B; N.x; x˛; xˇ / >
rx

ln x
: (4.1)
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This is [4, Theorem 7]. Taking into account that there are x
lnx .1 C o.1// primes

smaller than x, Eq. (4.1) above states that for sufficiently large x, the proportion
of primes p � x such that p � 1 has a factor in Œx˛; xˇ � is larger than a fixed
ratio. For example, computer simulations on prime integers ranging from 30 bits
to 85 bits showed that when ˛ D 0:475 and ˇ D 0:5, r � 0:33 seems to fit the
reality. This means that for approximately a third of the randomly chosen large
finite prime fields, the above attacks can be mounted with a time and memory
complexity in the range of the square root of the field size. The ratio jumps to
r > 0:59 for ˛ D 0:33 and ˇ D 0:5, corresponding to a time-memory tradeoff of
at least 2=3-1=3 bit complexity in almost 60 % of the cases.

5 Conclusion

The key distribution system developed by Wu et al. aims at solving the problem of
key management in a potentially insecure multicasting environment. We presented
an analysis of the system by shedding light on the security implied in the choices
of the two main parameters of the scheme p and n. Two different attacks have
been presented, both being efficient when some conditions are fulfilled, exhibiting
a family of weak parameters. For instance, when n� p and p is a strong prime,
the scheme is immune against both attacks.

Acknowledgments. The author would like to thank Jens Zumbrägel for early
talks on this subject, as well as the people of the Vienna Workshop for fruitful
discussions.
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