
Vol. 23 no. 22 2007, pages 3016–3023BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm417

Gene expression

PepSplice: cache-efficient search algorithms for comprehensive

identification of tandem mass spectra
Franz F. Roos1,*,†, Riko Jacob4,†, Jonas Grossmann2, Bernd Fischer3,
Joachim M. Buhmann3, Wilhelm Gruissem2, Sacha Baginsky2 and Peter Widmayer1
1Institute of Theoretical Computer Science, 2Institute of Plant Science, 3Institute of Computational Science,
ETH Zurich, CH-8092 Zurich, Switzerland and 4Institut fuer Informatik, TU Munich, D-85748 Garching, Germany

Received on March 4, 2007; revised on July 24, 2007; accepted on August 11, 2007

Advance Access publication September 3, 2007

Associate Editor: John Quackenbush

ABSTRACT

Motivation: Tandem mass spectrometry allows for high-throughput

identification of complex protein samples. Searching tandem mass

spectra against sequence databases is the main analysis method

nowadays. Since many peptide variations are possible, including

them in the search space seems only logical. However, the search

space usually grows exponentially with the number of independent

variations and may therefore overwhelm computational resources.

Results: We provide fast, cache-efficient search algorithms to

screen large peptide search spaces including non-tryptic peptides,

whole genomes, dozens of posttranslational modifications, unan-

notated point mutations and even unannotated splice sites. All these

search spaces can be screened simultaneously. By optimizing

the cache usage, we achieve a calculation speed that closely

approaches the limits of the hardware. At the same time, we control

the size of the overall search space by limiting the combinations

of variations that can co-occur on the same peptide. Using a hyper-

geometric scoring scheme, we applied these algorithms to a dataset

of 1 420 632 spectra. We were able to identify a considerable number

of peptide variations within a modest amount of computing time on

standard desktop computers.

Availability: PepSplice is available as a Cþþ application for Linux,

Windows and OSX at www.ti.inf.ethz.ch/pw/software/pepsplice/.

It is open source under the revised BSD license.

Contact: franz.roos@alumni.ethz.ch or jacob@in.tum.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In the last few years, tandem mass spectrometry has become a

standard tool for high-throughput protein identification

(Domon and Aebersold, 2006). Peptide tandem mass spectra

are usually identified by searching them against protein

databases, which in turn are mostly predicted from the DNA.

In practice, if the genome of an organism is sequenced,

a protein database search is usually sufficient to identify most

tandem mass spectra whose signal is of reasonable quality.
Direct searches on the DNA are also sometimes used as

complementary approaches (Choudhary et al., 2001; Colinge

et al., 2005; Kuster et al., 2001; Yates et al., 1995) to verify and

refine gene models. In such whole genome searches, the DNA

is translated to protein using all six possible reading frames.

Different gene prediction models (Mathe et al., 2002) may

yield contradictory results, which call for experimental data to

resolve the conflict. However, eukaryotic genomes are usually

a lot larger than their corresponding protein databases.

Splicing is ubiquitous in eukaryotes and contributes to protein

diversity. Alternative splicing can generate several protein

versions from the same gene, and the resulting protein versions

may co-exist in the cell. Splicing has been studied extensively

at the mRNA level, but has received little attention at the level

of peptide tandem mass spectrometry, probably not least

because splice site searches are computationally very intensive.

Previous work on spliced peptide searches consists of theore-

tical calculations on search complexity and statistical issues

(Chen, 2001), especially on the frequency of random matches

as a function of peptide length and genome size. The authors

provide algorithms to identify spliced peptides on the genome,

but only for searching a single spectrum against a sequence

database and they test the algorithms only on a small simulated

dataset. However, nowadays a typical dataset contains tens of

thousands or even hundreds of thousands of experimental

spectra. We show that searching many spectra simultaneously

results in considerable efficiency gains. Colinge et al. (2005)

published results on experimental data using their in-house

commercial search tool OLAV/Phenyx (Colinge et al., 2004)

and focused on the biological aspects. They worked on tandem

mass spectra of human proteins, used first-order Markov

chains to predict splice donor and acceptor sites and limited the

search area to regions around whole genome hits.
Even common protein database searches often represent

a major bottleneck in many proteomics research facilities.

Whole genome searches are more resource intensive because

all six reading frames and all the intergenic regions need to be

searched as well. Splice site searches are even more demand-

ing because donor/acceptor combinations need to be screened

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.

3016 � The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85213008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as well. However, such extensive searches may be the key to
finding novel peptides, thereby refining existing gene models
and predicting new ones.

One of the most established but also one of the computa-
tionally most demanding search tools is SEQUEST (Eng et al.,
1994). In conjunction with PeptideProphet (Keller et al., 2002),

it currently seems to provide the highest identification perfor-
mance (Kapp et al., 2005). Newer tools such as MASCOT
(Perkins et al., 1999), OLAV/Phenyx (Colinge et al., 2004)

and X!Tandem (Craig and Beavis, 2003, 2004) are quite fast.
Information about algorithmic efficiency considerations is
limited though, whereas the scoring is usually documented in

more detail. While it is always possible to increase the comput-
ing power, algorithmic optimization may provide large effi-
ciency gains and provide the same results at a much lower

computing cost.
In this article, we focus on speed optimization and search

space management for searches of tandem mass spectra against

sequence databases. We present very fast, cache-optimized
database search algorithms, whose speed closely approaches the
theoretically achievable limit. Our implementation allows for

searches of posttranslational modifications, whole genomes,
point mutations and even unannotated splice sites, all simul-
taneously in an efficient and systematic way. Moreover, we

demonstrate how this strategy translates into biologically
interesting results.
In the algorithm design, we pay particular attention to

general hardware properties, namely the fact that there are
several storage levels of various speeds and sizes, such as
the CPU cache, the RAM and the hard disk. Algorithms that

take into account several storage hierarchies are called cache-
aware, or cache-oblivious if they do not rely upon parameters
about the properties of the storage levels. Such algorithms

focus on the optimal order in which the data transfers should
take place.
For the scoring, we use the hypergeometric model as des-

cribed by Sadygov and Yates (2003), which has also recently

been integrated into X!Tandem (Maclean et al., 2006). The
hypergeometric model is based on the shared peak count but
also takes into account the peptide length and the number

of peaks in the theoretical and the measured spectrum. Even
though the hypergeometric model yields a P-value, we addi-

tionally estimate the false discovery rate by carrying out all
searches both on the normal database and on a reversed peptide
database. As in Sadygov and Yates (2003), we use the negative

logarithm of the P-value as score. To obtain unambiguous
identifications, we use the difference between the best and the
second best score as discrimination criterion in the false

discovery rate estimation. The speed optimization algorithms
are independent of the scoring though.
To demonstrate the relevance to biological research,

we applied the software to 1 420 632 tandem mass spectra.

The underlying biological sample originated from an
Arabidopsis plant cell culture. We searched the data against
an Arabidopsis protein database and against the Arabidopsis

genome (125 Mb), considering a variety of search spaces simul-
taneously, such as semi- and non-tryptic peptides, various
posttranslational modifications, point mutations and a huge

number of potential splice sites.

To prevent the combination of those search spaces from

becoming prohibitively large, we restrict the number of varia-

tions that may co-occur per peptide, i.e. variations are mutually

exclusive to some extent. This allows the user to combine all

the different search spaces in one and the same search while

avoiding an uncontrolled combinatorial explosion. The user

only needs to specify the restriction parameters to limit the

search space size. The search is then carried out as a single job

on the CPU and the results for all search spaces are merged

in one final summary.
Thanks to the cache-optimization and the search space restric-

tions, our implementation was able to rapidly screen a search

space comprising semi-tryptic peptides, 29 different posttransla-

tional modifications and the whole genome of Arabidopsis

(125 Mb) on a single CPU. The throughput was more than

8 spectra per second, which exceeds the measurement speed

of most current mass spectrometry instruments.

2 ALGORITHMS

2.1 The I/O model

In current computers, the speed of the CPU is often so high

that the calculations themselves are not the bottleneck, but

rather the transfer of data between the storage and the CPU.

Computer storage consists of several levels, whose size and

speed are usually inversely correlated. In current mass market

computers, the random access time and the size of the hard

disk are in the order of 10�2 s and 1011 bytes, while for the CPU

cache, the values are rather 10�9 s and 106 bytes, so the CPU

cache is roughly a million times smaller than the hard disk, but

also a million times faster.
In the I/O model (Aggarwal and Vitter, 1988), the running

time is measured in I/O operations instead of CPU operations.

The model has three components: a CPU, a memory that is

infinitely fast but has a limited capacity of M elements and

a disk that is slow but infinitely large. The CPU can only

directly access data in the memory. Data on the disk can be

accessed only after it is loaded into memory. Transfer of data

between disk and memory takes place in entire blocks that have

a size of B elements. Transferring one block costs one I/O.

The number of I/Os is used as the performance measure.

We assume M � 4B and use M0 ¼ M� 2B, which is the

amount of memory available to store spectra, after one block

is reserved to store the current best score and similar

information and another block is reserved to scan over another

set of spectra.

In the case of spectrum database searches, let X be a spectrum

dataset with NX spectra and let Y be a peptide dataset with

NY peptide sequences. The spectra are to be scored against

the peptide sequences. Let k be the number of scores. If all

against all elements are scored, k¼NXNY. In spectrum database

searches however, only a small subset of all scores needs to be

calculated since the parent mass of the peptide and the spectrum

should match within some mass tolerance, so k � NXNY.
Here, an element in the sense of the I/O model is a spectrum,

either measured or synthesized from the protein database, or

from a specific (spliced) part of the DNA, potentially modified

by a PTM. In this modeling, we assume that the I/O algorithm

PepSplice

3017

can only access the parent mass of a spectrum or score it against

another spectrum. This reflects situations where the I/O algo-

rithm is required to be independent of the scoring scheme, such

that further analysis of a spectrum is meaningless (and hence

disallowed in the model).
In the following, we assume that both the measured spectra

and the synthesized spectra are sorted according to parent mass.

This is a non-trivial assumption because sorting N elements

takes� N
B logM

B

N
M

� �
I/Os (Aggarwal and Vitter, 1988), which can

(for small k) dominate the overall running time. This number

of I/Os is in general already necessary for the special case

k ¼ NX ¼ NY (R.Jacob, manuscript in preparation). Now,

this assumption allows us to focus stronger on the number of

I/O operations required for scoring two sets against each other.
Now, for a given measured spectrum the synthesized spectra

with similar parent mass are consecutive in their list (and vice

versa). The situation is depicted in Figure 1 that explains why

the subset of scores that actually need to be calculated is called

tolerance band.
The number of scorings within the tolerance band is usually

proportional to the number NX of experimental spectra and the

number NY of theoretical spectra. However, it is inversely pro-

portional to the parent mass tolerance between an experimental

and a theoretical spectrum, i.e. the higher the mass precision

of an instrument, the fewer scores need to be calculated.

As a rule of thumb, one can estimate k � y Nx�Ny� tolerance
massmax�massmin

.1

The parent mass distribution is assumed to be uniform here,

which is a simplification.

2.2 Stripwise tolerance band algorithm

One straightforward possibility to calculate all scores in the

tolerance band is to proceed row by row. This is highly

efficient provided that the tolerance band width never

exceeds the memory capacity. In that case, the overall cost is

equivalent to loading both datasets once, i.e. NXþNY

B , which is the

scanning bound for both datasets (see Algorithm 1 in

Supplementary Material for proof). However, especially for

large spectrum datasets and large precursor mass tolerances,

the tolerance band may be so large that the cumulated size

of all the spectra in a row exceeds the memory capacity.

In this case, spectra will be evicted before the row is completed

and most of the evicted spectra need to be reloaded in the

next row. Neighboring rows usually have many spectra in

common. To prevent such inefficiencies, we can organize the

computation in a stripwise fashion that we call STRIPWISE

algorithm (Fig. 2). The width of the strips respects the

memory size.

THEOREM 2.1. For two sorted sets of spectra of sizes NX and

NY, the algorithm STRIPWISE computes all k scores within the

tolerance band in O 1þ NXþNY

B þ k
MB

� �
I/Os.

PROOF. Every element of X is loaded precisely once as part

of its full block, leading to a total of O NX

B

� �
I/Os. Loading a

block of B elements of Y is justified either because it allows

many scorings or it makes some global progress. The first case

happens if all B �M0 scores that can now be performed are

inside the tolerance band (dark gray rectangles in Fig. 2).

This leads to O k
BM

� �
I/Os. The second case happens if one

r
u
n
0
9
9
j

v
i
s
u
a
l
i
z
e

d
i
a
g
o
n
a
l

spectra sorted by parent mass

pe
pt

id
es

 s
or

te
d

by
 p

ar
en

t m
as

s

Fig. 1. Parent mass tolerance band within which scorings are required.

The border increases monotonically from lower left to upper right.

One axis represents the dataset X, the other axis the dataset Y, both

sorted according to their parent mass. The area of the tolerance band is

proportional to the number of scores k.

spectra sorted by parent mass

pe
pt

id
es

 s
or

te
d

by
 p

ar
en

t m
as

s

Fig. 2. The STRIPWISE algorithm sweeps the tolerance band in vertical

strips of width M0 and within each strip by increasing row. Hence,

an element of X (spectra, x axis) is loaded once, whereas an element

of Y (y axis, peptides) is loaded once for every strip. All load operations

work on full blocks and need only be performed if the corresponding

parent masses are in the tolerance band. The peptides and spectra that

are simultaneously loaded can be scored and are depicted as gray

rectangles. The shading (dark/light gray) illustrates how I/O operations

are justified (light: loading once, dark: many scores), as detailed in the

proof of Theorem 2.1.

1Example: dataset with 100 000 spectra, search space of 2� 108 peptides
(penalty limit 1.5), mass tolerance window of þ5Da� (�1Da)¼ 6Da,
precursor mass range of 3000Da�1000Da¼ 2000Da. This gives
k � 105�2�108�6Da

2000Da ¼ 6� 1010, which means that approximately 60 billion
scores need to be calculated. In a test run, we actually counted 60 billion
scores for 123 000 spectra instead of 100 000 spectra.

F.F.Roos et al.

3018

of the potential scores is unnecessary because it is outside the

tolerance band, the upper or lower boundary of the tolerance

band intersects the light gray rectangle in Figure 2. Because

both boundaries are monotonic they can each intersect with at

most NX=M
0 þNY=B such rectangles (the ‘next’ rectangle is

either ‘right’ or ‘up’). Hence, the overall number of I/Os of

STRIPWISE is O NX þNY

B þ k
MB

� �
as stated in the theorem.

2.3 Recursive tolerance band

It is possible to design an algorithm that is I/O efficient without

knowing the parameters B andM (Frigo et al., 1999). Here, this

is done with a recursive approach where we split the task at a

parent mass and recursively compute the scores for all spectra

of smaller parent mass and then the others. This split happens

either for the measured or the theoretical spectra, whichever are

more. The recursion ends if the active set either consists of

precisely one spectrum of each type, in which case we compute

the score. The recursion ends also if the active set is such that

all of its scores are out of the tolerance band. We call this

algorithm RECURSIVEBAND. Because both sets of spectra are

arrays sorted by parent mass, splitting does not require to touch

all spectra. Indeed, one recursive invocation accesses only a

constant number of spectra directly. Asymptotically, this yields

the same I/O-performance as STRIPWISE.

THEOREM 2.2. For two sorted sets of spectra of sizes NX and

NY, the algorithm RECURSIVEBAND computes all k scores within

the tolerance band in O 1þ NXþNY

B þ k
MB

� �
I/Os in the cache-

oblivious model.

PROOF. In the cache-oblivious model it is assumed that I/O

operations are performed optimally, such that the analysis may

prescribe specific I/O operations. If NXþNY5M the bound

holds trivially by loading all spectra once. Here, we focus on

recursive calls where the two active sets fit together into

memory, but this is not the case for the caller. Such a call hence

costs at most M/B I/Os because all recursive calls find

the needed data in memory. The size of the active set is at

least M/2 (otherwise we would have considered the caller).

If NX4M=4 and NY4M=4 we can conclude that the active

set comprises at least M / 4 spectra of each type, leading to

at least M2=16 possible scores. Now, similar to the analysis

of STRIPWISE, we distinguish the calls depending on the

tolerance band. The total number of calls that are completely

within the tolerance band is at most 16k=M2, leading to

a total of O k
BM

� �
I/Os. The number of calls who intersect

the border (not all possible scores are within the tolerance

band), or all calls if NX � M=4 or NY � M=4, is by

monotonicity of the border at most 4
NxþNy

M , leading to a total

of O NXþNY

B

� �
I/Os. The remaining calls form the inner nodes

of a rooted binary tree whose leafs are calls that are already

accounted for with at least one I/O, in the worst doubling

the I/O cost.

2.4 General lower bounds

It is well known that accessing N different items requires

dN=Be I/O operations, such that the O 1þ NXþNY

B

� �
terms in our

running times are necessary. The proposed algorithms have

in fact asymptotically optimal I/O behavior, as implied by the

following theorem.

THEOREM 2.3. Assume an I/O algorithm computes a total of

k different scores and each score computation requires precisely

two specific spectra to be in memory. Then the algorithm must

perform k
BM I/O operations.

PROOF. As a normalization, we can assume that the algo-

rithm computes a score at the earliest possible time. Hence,

all scores are performed following some input operation. Any

input operation brings at most B new spectra in. Because there

are at mostM spectra in memory, the number of scores that can

be computed before the next I/O operation is at most MB.

2.5 Timing experiments: I/O cost versus CPU cost

We tested the actual search speed of the implementation to

obtain an estimate on the I/O time and CPU time needed per

score. To this aim, we calculated each score not only once but

repeatedly. We assume that right after the score has been

calculated, the data needed for the score still reside in the fastest

possible cache and will be available with the smallest possible

delay when the score is recalculated right afterwards. We tested

the approach on an Intel Xeon 3.0 GHz processor using

different repetitions and dataset sizes. For a dataset comprising

152 838 spectra, we obtained a CPU time of approximately

250 CPU cycles per score (wall clock time including L1

cache latency). The overall computing time was approximately

450 CPU cycles per score, which means that at most 200 CPU

cycles per score are attributable to I/O delays (Fig. 3).

This means that we succeeded in reducing memory transfer

time to below CPU time.

2.6 Timing experiments: benchmarking versus X!Tandem

In a benchmarking experiment, we compared the search

speed of our tool against the search speed of X!Tandem

0

1000

2000

3000

4000

1000 10000 100000 1000000
Number of spectra

C
lo

ck
 c

yc
le

s
pe

r
sc

or
e

1 score

2 scores

3 scores

1 score from cache

Fig. 3. We calculated all scores either once, or repeatedly a second and

a third time for datasets of different sizes. The additional cost for

a repeated score calculation (circles) is very similar for all dataset sizes

and corresponds to the inevitable delay that is caused by the retrieval

from the L1 cache and the CPU calculations. The I/O cost per score

depends on the dataset size. The larger the dataset, the more I/O cost

savings are realized and the cost per score approaches the inevitable

CPU/L1 cost.

PepSplice

3019

(Craig and Beavis, 2003, 2004), an open source tandem mass

spectrum database search tool that is generally considered to be

fast. On a dataset of 2078 spectra, we did a fairly time-

consuming search that is comparable between different tools.

We found it rather challenging to identify a set of parameters

for which X!Tandem and PepSplice would have to search

an identical and rather large search space, since both use

different heuristic pruning approaches to actually reduce such

large search spaces. We chose a non-tryptic search, i.e. with

unspecific cleavage. In the X!Tandem parameter file, it was

recommended to allow, e.g. 50 missed cleavages in that case,

presumably because each peptide bond is a potential missed

cleavage in that kind of search. For PepSplice, we did not even

limit the number of missed cleavages altogether. However,

there is an implicit limit given by the parent mass distribution

of the spectra, since it is pointless to generate peptides exceed-

ing the highest parent mass in the spectrum dataset plus the

mass tolerance. The mass tolerance was �1/þ5 Da around the

monoisotopic parent mass. Our tool searched through

4:93� 108 peptides and calculated 2:61� 109 scores, complet-

ing the search in 41 min (0.84 spectra per second), whereas

X!Tandem version 06-09-15 took 316 min to complete the

search (0.11 spectra per second). Even on a much larger dataset

of 12 545 spectra, our tool still took only 82 min. The timing

refers to a single core of an Intel Pentium 3GHz dual-core

CPU. We could process two PepSplice jobs in parallel without

any slowdown, the machine gave the performance of two

single CPUs.

3 BIOINFORMATICS METHODS

3.1 Spectrum preprocessing

We obtained better identification performance when only the most

intense peaks were used for scoring. In ion trap tandem mass spectra,

the peak intensity in the central region of the spectrum is higher than

in the low-mass and high-mass region. Therefore, we normalized

(flattened) the peak intensity within each spectrum using an approach

proposed by Pletscher et al. (2006) (see Supplementary Material).

Per 100 Da parent mass of a spectrum, we then retained the highest

10 peaks, i.e. for a spectrum of parent mass 1500, we retained a total

of 150 peaks after normalization. Afterwards, we binarized and

discretized the spectra using a bin spacing of 1.00048 Da (Perkins

et al., 1999).

3.2 Size of peptide search space

The number of fully tryptic peptides in a protein database is approxi-

mately equal to the number of tryptic cleavage sites if the digest is

complete. If 2 out of 20 amino acids are K or R, the number of tryptic

peptides is a 10th of the number of amino acids in the protein database.

For the Arabidopsis database with a size of 12 million amino acids, we

counted 1.1 million tryptic, unmodified peptides. However, a plethora

of other peptide variants can be derived from the same protein data-

base. If one missed cleavage is admitted, the number rises to 2.9 million,

for semitryptic peptides, the number becomes 25 million, for a set of

21 PTMs (at most one per peptide), the number is 19 million peptides.

For whole genome searches in Arabidopsis, the number rises to

20 million peptides.

3.3 Limiting the combinatorial explosion

The size of the search space depends on a variety of biological effects.

Including many independent peptide variations at once into a search

usually has a multiplicative effect on the number of peptides that the

search space comprises. However, if these variations are rare and

independent, we assume that the combination of them is consequently

even rarer. While the search space grows exponentially in the permitted

variations, the number of additional, reliable identifications may be

very limited because most of the combinations are improbable while the

higher frequency of false positives requires more conservative score

thresholds for the acceptance of identifications.

Therefore, we limit ourselves to the more plausible combinations

and instead of multiplying different search spaces with each other,

we basically add them to each other by exploring each search space

separately. We do not separate them completely though, we still allow

for some degree of combinations between the search spaces. We achieve

this by assigning a weighted penalty to each variation and by limiting

the cumulated penalty per peptide. This gives great flexibility in

combining plausible variations while limiting the search space. We used

the following penalties: 0.3 per missed cleavage, 0.3 per oxidized

methionine, 1.2 per posttranslational modification, 1.2 per non-tryptic

terminus, 1.2 for whole genome search hits, 3.2 for single nucleotide

substitutions enumerated from the genome. For illustration, a peptide

with two missed cleavages and a posttranslational modification incurs a

penalty of 2� 0:3þ 1:2 ¼ 1:8. These penalty values approximately

correspond to the decimal logarithm of the increase in the search space

that each variation causes, i.e. increasing the penalty limit from 1.2

to 2.2 increases the number of peptides in the search space by an order

of magnitude. All the possible variations per peptide are enumerated

recursively.

The enumeration is based on common FASTA protein or DNA

databases as input from which all peptide variations are generated on

the fly in the memory. The great majority of peptide variations have

a different parent mass than the original peptide. Therefore, a modified

duplicate object is created for each variation. This child object may in

turn again be duplicated to give additional variations. However, each

modified child object has higher penalties than its parent object, so

eventually the recursion is terminated once the penalty limit is reached.

Variations are enumerated on several recursion levels, in the following

top-down hierarchy: (1) Unmodified amino acids. This level comprises

tryptic, semi-tryptic and non-tryptic (unspecifically cleaved) peptides.

When reading DNA, a reading window progresses along the protein or

DNA sequence and continuously and exhaustively generates peptide

objects from all six reading frames at once. When searching for alter-

native splice sites, all tryptic peptides with gaps corresponding to

potential GT-AG introns are enumerated as well, using a slightly larger

reading window that spans the gap. (2) Enumeration of point mutations

takes place based on the previously enumerated, unmodified peptides;

(3) on the next level, N- and C-terminal modifications are enumerated;

(4) finally, non-terminal modifications are enumerated. During the

entire recursion, all peptide objects are continuously collected in a

peptide object buffer. Every time the buffer is full, the peptide objects

are sorted by parent mass and then processed against the measured

spectra in the cache-optimized manner as described. A short list of

best-matching peptide objects is maintained for each spectrum through-

out the search. Peptide objects that are not elements of such a list are

continuously discarded.

While we based our penalty system on the size of the peptide search

space, some variations may be of much more biological interest in

an experiment than others. The weighting may be adjusted according to

subjective goals, thereby balancing the relation between computational

cost and biological ‘profit’. One could also develop a weighting based

on expected frequencies of phenomena, possibly in conjunction with

a validation system. Regardless of the weighting chosen, the strength

F.F.Roos et al.

3020

of the penalty system is that a great variety of peptides can be searched

simultaneously with few parameters, using moderate computing power

and at a moderate false discovery rate.

3.4 Estimation of false discovery rates

The larger the search space, the higher the risk of false positive

assignments. We determine the false discovery rate as follows:

for each peptide, we also add its reversed sequence to the database.

We do not reverse the C-terminal amino acid though since this is most

often K or R due to the tryptic digest. ACDEK thus becomes EDCAK.

If a spectrum is assigned to a reversed peptide, this strongly suggests

that the assignment is incorrect. But since there are equally many

forward and reversed sequences in the database, a spectrum with a lack

of interpretable signal is almost as likely to be randomly assigned to one

of the many forward sequences in the database. Every hit from the

reverse database is a random database hit. A hit from the forward

database can either be a true identification or a random hit. Regarding

it in the other way: A random hit results almost equally likely in a

hit from the forward database as a hit from the reverse database.

Thus, among all forward hits, we can estimate the number of random

hits to be the number of hits from the reverse database (Balgley et al.,

2007; Elias and Gygi, 2007; Elias et al., 2005). Therefore, we can

estimate the false discovery rate for the forward hits above the

acceptance cutoff 2 as number of reverse
number of forward. Indeed, we observe that at

low scores, forward and reverse sequences occur at approximately

a 50:50 ratio, while at high scores, virtually no reverse sequences are

found, as expected. In Figure 4, we show how the cumulated rate

of reverse identifications increases as the quality of the assignment

score decreases.

We apply further checks to estimate the rate of false positives.

We also use decoy approaches other than the reversed sequence

approach: for the posttranslational modifications (PTMs), we addition-

ally search non-existing PTMs and for the whole genome search

we add a fly chromosome to the Arabidopsis genome. We generally

attempt to search as comprehensively as possible to avoid misexplain-

ing spectra by closely related sequences, e.g. misexplaining a PTM

as a splice site.

To estimate the false discovery rate, grouping together identifications

from very different search space sizes may be problematic. A score that

is sufficiently high to identify a tryptic peptide may not be sufficient to

identify a genomic splice site. We therefore extracted homogeneous

subgroups of identifications that shared similar search space sizes and

made an individual false positive estimation for each subgroup. This

approach is quite conservative and resulted in fewer identifications than

an estimation on mixed search spaces.

4 BIOLOGICAL RESULTS

It has been suggested that spectra which remain unassigned

in an initial search should be submitted to more extensive

searches (Nesvizhskii et al., 2006; Sadygov et al., 2004). In a

similar approach, we searched our spectra using four different

search spaces ranging from 6:5� 106 to 1:4� 1010 theoretical

peptides. The number of identifications in each search is

summarized in Table 1. A detailed summary of the posttransla-

tional modifications is shown in Table 2 and a distribution

of the identifications on the genome is depicted in Figure 5.

The biological sample stemmed from an Arabidopsis cell

culture. It was fractionated and then measured on an LTQ ion

trap tandem mass spectrometer, as described in a previous

publication of this journal (Fischer et al., 2006).

0%

1%

2%

0% 5% 10% 15% 20% 25%
Spectra identified, sorted from best to worst score

F
D

R
0.5
1
1.5
2
2.5
3

Fig. 4. The larger the search space, the higher the false discovery

rate and the lower the fraction of all spectra that can be identified.

At a penalty limit of 0.5, which corresponds to a search space of

3.5 million peptides, more than 20% of all doubly charged spectra are

identified here at a false discovery rate of 1%. Conversely, at a penalty

limit of 3.0, which corresponds to 3.6 billion peptides, only �14% of all

spectra can be identified at a false discovery rate of 1%.

Table 1. Identifications of four searches with increasing search space,

ranging from 6.5� 106 to 1.4 � 1010 peptides in size

Spectra Unique peptides FDR (%)

1 420 632 spectra, limit 0.6, 5 h, 6.5� 106 peptides

Tryptic, 0 missed cleavage 168 940 30 316 1.0

Tryptic, 1 missed cleavage 19 377 4841 1.0

Tryptic, 2 missed cleavage 1058 294 1.0

1 420 632 spectra, limit 1.5, 50 h, 2.0�108 peptides

19 real þ 10 decoy PTMs 6485 1700 1.0

Only N-terminus tryptic 1701 465 1.0

Only C-terminus tryptic 4704 1676 1.0

Genome only 1078 241 1.0

98 437 spectra, limit 2.7, 27 h, 2.3� 109 peptides

Non-tryptic 36 21 2.8

2 PTMs on same peptide 92 51 1.1

98 437 spectra, limit 3.3, 209 h, 1.4� 1010 peptides

Point mutations 350 220 1.0

Genome only, spliced 61 22 1.7

We used a mass tolerance of �1/þ5 Da around the monoisotopic parent mass.

Semi-tryptic peptides are shown in two categories, either with non-tryptic

N-terminus or C-terminus. There is a clear bias towards tryptic C-terminus and

non-tryptic N-terminus, probably due to the fact that a tryptic C-terminus

contains a basic residue and thus a positive charge, which is not necessarily the

case for a tryptic N-terminus. Total 168 940 peptides are fully tryptic with

no missed cleavage site, versus only 1058 with two missed cleavage sites, which

indicates that the tryptic digest was complete or nearly complete. For the time

intensive searches, we extracted a subset of 98 437 unidentified high-quality

spectra from the 1 420 632 spectra using the QualScore tool (Nesvizhskii et al.,

2006). Search hours refer to time on Intel Pentium 3GHz dual-core processors,

where we (conservatively) consider each dual-core as two separate CPUs.

The default false discovery rate used was 1%. Higher false discovery rates are

indicated if only few spectra were identified per subgroup, which made empirical

estimation of the number of false positives more difficult.

2Elias et al. estimate the false discovery rate as (2 � number of reverse)/
(number of forward + number of reverse) for forward and reverse hits
above the acceptance cutoff. Our estimate of the FDR is smaller as
long as the number of forward hits is larger than the number of reverse
hits. Furthermore, the false discovery rate is called false positive rate
in Elias et al.

PepSplice

3021

4.1 Co-occurrence of several variations

For illustration, we discuss a few cases where we found several
variations at once on the same peptide:

(1) The peptide Q111IVAPVPHDSYSVLSVSSSGK was
identified as a whole genome hit including a PTM. The

exon that underlies the TAIR protein database is just one
single nucleotide too short to accommodate the identi-

fication. A competing gene model from EuGene (Foissac
et al., 2003) is compatible with the hit, however. We also

identified the same peptide without the pyroglutamate
modification, which supports the identification and the

gene model of EuGene.

(2) Examples for differential modifications:

E143FLELAEGLKGSLK versus E143FLELAE143GL
KGSLK, GITIDIALW202K156FETTK versus GITIDI

ALW202K170FETTK.

(3) We identified four peptide variants with both pyrogluta-
mate and Trp oxidations (Q111IGVIGW202GSQG

PAQAQNLR, 1 spectrum), with pyroglutamate only

(35 spectra), with Trp oxidation only (2 spectra) and with

pyroglutamate and a missed cleavage (Q111IGVIGWGS

QGPAQAQNLRDSLVEAK, 3 spectra). This nicely

illustrates that our search approach permits to capture

many peptide variations at once.

4.2 Splice sites

For spliced peptides, we applied a maximum gap length of

3000 nt. Total 61 spectra (22 peptides) were best explained by

an unannotated splice site, i.e. they conflicted with an exon

prediction. If the predicted exon is shorter than the real exon,

whole genome hits are likely to occur in the unpredicted part.

We found several examples where newly predicted splice sites

co-occur within the same open reading frame as whole genome

hits. The most striking case is located in the open reading frame

At1g64790, where we find two whole genome hits without any

hit in the protein database and two splice site hits without

any hit in the protein database. The splice hits are supported

by 3 and 4 spectra, the whole genome hits by 14 and 15 spectra,

respectively (Fig. 6). The ORF spans 16 677 nt and contains

58 predicted exons. Several competing gene predictions

contradict each other around the position 24083000 on the

chromosome. An alternative Arabidopsis protein prediction

(gi5042415) is 2698 amino acids long instead of 2441 and

accommodates both whole genome identifications and one

of the spliced peptide identifications. This confirms three of

our four hits. Our results are also compatible with homologous

gene predictions in rice (Roos, 2006). Using our algorithms,

we can therefore detect spliced peptides with reasonable

confidence, in spite of the huge search space.

5 CONCLUSION

We conclude that by systematically submitting tandem mass

spectra to extended searches, a significant number of new pep-

tides can be identified, including posttranslational modifica-

tions, semi-tryptic peptides, whole genome hits and even splice

site hits, which may help to refine genome annotation.
As a result of speed optimization, these searches are feasible

on standard computing equipment. We show that cache optimi-

zation greatly helps to minimize search time, as does careful

search space management. By defining the search space via

Table 2. We found 6485 PTM identifications, of which 165 were decoy

PTM identifications

Modification AA [Da] � [Da] Spectra

Methionine oxidations M 131 þ16 147 2181

N-terminal pyroglutamate Q 128 �17 111 1983

N-terminal acetylation X þ42 42 421

Methylester E 129 þ14 143 300

Mono-methylation K 128 þ14 142 245

Methylester D 115 þ14 129 203

Di-methylation N 114 þ28 142 202

Methylation N 114 þ14 128 197

Methylation Q 128 þ14 142 104

Di-methylation K 128 þ28 156 96

Phosphorylation S 87 þ80 167 88

Hydroxylation P 97 þ16 113 74

Oxidation W 186 þ16 202 74

Mono-methylation R 156 þ14 170 57

N-terminal pyroglutamate E 129 �18 111 39

Methylation C 103 þ14 117 32

Tri-methylation K 128 þ42 170 19

Phosphorylation Y 163 þ80 243 3

Phosphorylation T 101 þ80 181 2

Decoy S 87 �67 20 14

Decoy S 87 �47 40 14

Decoy S 87 �27 60 31

Decoy S 87 �7 80 12

Decoy S 87 þ13 100 54

Decoy S 87 þ33 120 10

Decoy S 87 þ53 140 7

Decoy S 87 þ73 160 12

Decoy S 87 þ93 180 2

Decoy S 87 þ113 200 9

Decoy PTMs are much less frequently identified than most of the real PTMs,

even though the amino acid serine that we used for the decoy PTMs is fairly

frequent in Arabidopsis. The unmodified serine residue has a monoisotopic mass

of 87.03203 Da.

Fig. 5. The figure shows the five chromosomes of Arabidopsis as

horizontal lines. Each dot represents a spectrum that was identified

both in the protein database and in the genome. Identifications in

forward reading frames are shown above the chromosome, reverse

reading frames below. Around the centromeres, only few identifications

were found.

F.F.Roos et al.

3022

a penalty system, many different peptide variations can be

searched at once while the overall size of the search space is

kept under tight control.
We were able to search the whole genome of Arabidopsis

(125 Mb), semi-tryptic peptides and 29 PTMs simultaneously at

a rate of 8 spectra per second on a single CPU, which is faster

than most instruments are currently able to measure.

ACKNOWLEDGEMENTS

This research was supported by TH-41/02-2 and also by the

Functional Genomics Center Zurich, the Swiss Initiative in

Systems Biology (SystemsX.ch: C-SPMD and C-MOP) and by

ETH grant TH-5/04-3.

Conflict of interest: none declared.

REFERENCES

Aggarwal,A. and Vitter,J.S. (1988) The input output complexity of sorting and

related problems. Commun. ACM, 31, 1116–1127.

Balgley,B.M. et al. (2007) Comparative evaluation of tandem ms search

algorithms using a target-decoy search strategy. Mol. Cell Proteomics.

Chen, T. (2001) Gene-finding via tandem mass spectrometry. In RECOMB 2001

Proceedings of the Fifth Annual International Conference on Computational

Biology. Montreal, Canada, pp. 87–94.

Choudhary,J.S. et al. (2001) Interrogating the human genome using uninterpreted

mass spectrometry data. Proteomics, 1, 651–667.

Colinge,J. et al. (2004) High-performance peptide identification by tandem mass

spectrometry allows reliable automatic data processing in proteomics.

Proteomics, 4, 1977–1984.

Colinge, J. et al. (2005) Experiments in searching small proteins in unannotated

large eukaryotic genomes. J. Proteome Res., 4, 167–174.

Craig,R. and Beavis,R.C. (2003) A method for reducing the time required to

match protein sequences with tandem mass spectra. Rapid Commun. Mass

Spectrom., 17, 2310–2316.

Craig,R. and Beavis,R.C. (2004) Tandem: matching proteins with tandem mass

spectra. Bioinformatics, 20, 1466–1467.

Domon,B. and Aebersold,R. (2006) Mass spectrometry and protein analysis.

Science, 312, 212–217.

Elias,J.E. and Gygi,S.P. (2007) Target-decoy search strategy for increased

confidence in large-scale protein identifications by mass spectrometry.

Nat. Methods, 4, 207–214.

Elias,J.E. et al. (2005) Comparative evaluation of mass spectrometry platforms

used in large-scale proteomics investigations. Nat. Mehods, 2, 667–675.

Eng,J.K. et al. (1994) An approach to correlate tandem mass-spectral data of

peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass

Spectrom., 5, 976–989.

Fischer,B. et al. (2006) Semi-supervised lc/ms alignment for differential

proteomics. Bioinformatics, 22, e132–e140.

Foissac,S. et al. (2003) Eugene’s hom: a generic similarity-based gene finder using

multiple homologous sequences. Nucleic Acids Res, 31, 3742–3745.

Frigo, M. et al. (1999) Cache-oblivious algorithms. Master Thesis. MIT.

Kapp,E.A. et al. (2005) An evaluation, comparison, and accurate benchmarking

of several publicly available ms/ms search algorithms: sensitivity and

specificity analysis. Proteomics, 5, 3475–3490.

Keller,A. et al. (2002) Empirical statistical model to estimate the accuracy of

peptide identifications made by ms/ms and database search. Anal. Chem., 74,

5383–5392.

Kuster,B. et al. (2001) Mass spectrometry allows direct identification of proteins

in large genomes. Proteomics, 1, 641–650.

Maclean,B. et al. (2006) General framework for developing and evaluating

database scoring algorithms using the tandem search engine. Bioinformatics.

Mathe,C. et al. (2002) Current methods of gene prediction, their strengths and

weaknesses. Nucleic Acids Res., 30, 4103–4117.

Nesvizhskii,A.I. et al. (2006) Dynamic spectrum quality assessment and iterative

computational analysis of shotgun proteomic data: toward more efficient

identification of post-translational modifications, sequence polymorphisms,

and novel peptides. Mol. Cell Proteomics, 5, 652–70.

Perkins,D.N. et al. (1999) Probability-based protein identification by searching

sequence databases using mass spectrometry data. Electrophoresis, 20,

3551–3567.

Pletscher,P. et al. (2006) Peptide assignment validation: telling what’s wrong

without actually knowing what’s right. Semester Thesis. ETH.

Roos,F.F. (2006) Algorithms for peptide identification by tandem mass spectro-

metry. Ph.D Thesis 16844, ETH Zurich, http://e-collection.ethbib.ethz.ch/

ecol-pool/diss/fulltext/eth16844.pdf.

Sadygov,R.G. and Yates,J.R., r. (2003) A hypergeometric probability model for

protein identification and validation using tandem mass spectral data and

protein sequence databases. Anal. Chem., 75, 3792–3798.

Sadygov,R.G. et al. (2004) Large-scale database searching using tandem mass

spectra: looking up the answer in the back of the book.Nat. Methods, 1, 195–202.

Yates,J.R., r. et al. (1995) Mining genomes: correlating tandem mass spectra of

modified and unmodified peptides to sequences in nucleotide databases.

Anal. Chem, 67, 3202–10.

gi|42562949|ref|NP_176659.2| unknown protein [Arabidopsis thaliana]
gi|5042415|gb|AAD38254.1| similar to translational activator [Arabidopsis thaliana]
Score = 4267 bits (11067), Expect = 0.0, Method: Composition-based stats.
Identities = 2407/2514 (95%), Positives = 2410/2514 (95%), Gaps = 95/2514 (3%)

 IGMLNAVQELASAP
Query 241 RRLGALSMVMCLSEKSSNPDTIEAMFASVKAIIG------------------VQELASAP 282
 RRLGALSMVMCLSEKSSNPDTIEAMFASVKAIIG VQELASAP
Sbjct 446 RRLGALSMVMCLSEKSSNPDTIEAMFASVKAIIGGSEGRLQSPHQRIGMLNAVQELASAP 505

 EGK LSILSAVASWASR
Query 283 EGKYIGSLSRTICSFLIACYKDE-------------ASWASRSSVAIQPNLVSFIAAGLK 329
 EGKYIGSLSRTICSFLIACYKDE ASWASRSSVAIQPNLVSFIAAGLK
Sbjct 506 EGKYIGSLSRTICSFLIACYKDEGNEDVKLSILSAVASWASRSSVAIQPNLVSFIAAGLK 565

NPDTISQISDLLSPLIQLVK
Query 330 EKEALRRGHLRC-------------ISDLLSPLIQLVKTGFTKAVQRLDGIYALLIVSKI 376
 EKEALRRGHLRC ISDLLSPLIQLVKTGFTKAVQRLDGIYALLIVSKI
Sbjct 566 EKEALRRGHLRCVRIICRNPDTISQISDLLSPLIQLVKTGFTKAVQRLDGIYALLIVSKI 625

...

SGPLPVDTFTFIFPILER
Query 796 FDFRPSVDKAGKTYEGLFERIVNGLSISCKSGPLPVDTFTFIFPVLYHVLGVVPAYQASV 855
 FDFRPSVDKAGKTYEGLFERIVNGLSISCKSGPLPVDTFTFIFPVLYHVLGVVPAYQASV
Sbjct 1038 FDFRPSVDKAGKTYEGLFERIVNGLSISCKSGPLPVDTFTFIFPVLYHVLGVVPAYQASV 1097

Fig. 6. The four hits in At1g64790 are aligned against two conflicting protein predictions. The first one corresponds to the TAIR protein database.

The two whole genome hits (IGMLNAVQELASAPEGK, LSILSAVASWASR) are explained by the second sequence. One of the splice hits is also

explained by the second sequence (NPDTISQISDLLSPLIQLVK), but not the other splice hit (SGPLPVDTFTFIFPILER).

PepSplice

3023

http://e-collection.ethbib.ethz.ch/

