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Advanced age is associated with declines in cogni-
tive performance. At the same time, it is frequently as-

sumed that some aspects of cognitive performance such as 
earlier acquired procedural skills, are relatively age invari-
ant (e.g., Nilsson, 2003). Recent findings suggest, however, 
that at least some procedural skills are not immune to the 
influence of aging. Even in healthy adults, age-related dec-
rements occur on classic perceptual–motor tasks, such as 
pursuit rotor (PR; Brosseau, Potvin, & Rouleau, 2007; 
Durkin, Prescott, Furchtgott, Cantor, & Powell, 1990; Raz, 
Williamson, Gunning-Dixon, Head, & Acker, 2000).

In many cognitive domains, adult age differences reflect 
differential availability of resources measured by working 
memory (WM) capacity (Craik & Byrd, 1982) or various 
aspects of executive functions (Dempster, 1992). Of rele-
vance here, age differences in acquisition or maintenance of 
some skills correlate with those in cognitive resources  
(Kennedy, Partridge, & Raz, 2008; Kennedy & Raz, 2005; 
Kennedy, Rodrigue, & Raz, 2007) and may reflect difficul-
ties in meeting the executive demands of the task (Bock, 
2005). Moreover, aging effects on motor performance may 
be mediated by WM deficits (Maylor & Wing, 1996).  
Although it is not clear how WM affects motor learning, it 
provides resources for mental imagery (Kosslyn, 1994) that 
in turn serves as an important predictor of motor skill acqui-
sition (Jeannerod, 1994). Therefore, it is desirable to iden-
tify age-associated variables such as cognitive resources 
that capture mechanisms of individual differences in skill 
acquisition more directly.

Some studies have reported that the shape of acquisition 
trajectories is age invariant, with an age-associated shift to 
lower performance levels (Durkin et al., 1990). Other stud-
ies, conversely, point to adult age differences in the rate of 
skill acquisition. When the target of pursuit follows a regu-
lar predictable path, skill learning is slower in older adults 
(Wright & Payne, 1985). Moreover, older adults show a 
shallower approach to asymptotic levels than their younger 
counterparts (Raz et al., 2000).

Skill acquisition process is not uniform. Rapid initial stage 
of learning brings marked improvement, whereas the second 
slow stage yields only minor incremental gains (Karni & 
Bertini, 1997; Karni & Sagi, 1993). Thus, aging may differ-
entially affect specific stages of the acquisition process, and 
the magnitude of age differences may depend on the specific 
demands that characterize every stage. Such differential 
response of skill acquisition to age-related changes may re-
flect the extent to which the task calls upon brain substrates of 
learning that are differentially affected by aging (see Doyon, 
Penhune, & Ungerleider, 2003 for a review).

Thus, to understand age-related differences in skill acqui-
sition, it is important to identify the distinct stages of learn-
ing, to examine their characteristic learning trajectories, and 
to determine which of the learning stages and the within-
stage parameters of skill acquisition show age-related vari-
ability and whether and how they are associated with 
cognitive resources. Reliable identification and isolation of 
stages and parameters of learning depend on the choice of 
appropriate methodological designs and statistical tools, 
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and to date, reliance on ordinary least squares linear models 
might have hampered the progress in that area. The search 
for an optimal statistical apparatus that would fit that sub-
stantive area is in the focus of this investigation.

Level of analysis and statistical approaches
In a study of age differences, two methodological issues 

are particularly salient: the level of analysis and the statisti-
cal approach. Concerning the former, the study of age ef-
fects in skill acquisition may be sensitive to the extent of 
data aggregation and selection of units of measurement, 
scaling, and analytic approach. A trial-by-trial analysis may 
establish clearer relations between level of performance and 
skill acquisition and their associations with age and cogni-
tive resources than an analysis where data are aggregated 
across trials (e.g., Lövdén, Li, Shing, & Lindenberger, 
2007). To capture the fine structure of a rapidly changing 
learning process, data should be modeled at the trial level 
rather than at the level of multitrial aggregates.

Concerning the second methodological issue, several sta-
tistical approaches to analyze individual differences in learn-
ing data have been proposed and implemented independently 
of the specific interest in age-related differences. A desirable 
analytical procedure requires specification of a model be-
lieved to characterize the learning process at both the sample 
and the individual level. However, such a model should be 
able to faithfully reflect the fine trial-by-trial structure as dis-
cussed earlier. To satisfy that requirement, a procedure should 
estimate parameters that characterize the individual acquisi-
tion trajectories. Moreover, such trajectories, in addition to 
reliably fitting the data, should be interpretable in terms of 
skill acquisition theories. One such analytical procedure is  
the multilevel model (MLM; Bryk & Raudenbush, 1987; 
Goldstein, 1989). That approach allows analyzing inherently 
hierarchical data in which each level constitutes a source of 
variability. A classical application of MLM is a repeated 
measures structure, where the variable of interest is directly 
influenced by time (the repeated measurements at the first 
level of the hierarchy) and by individual characteristics (at 
the second level). The usefulness of MLM to elucidating 
learning processes in experimental settings has been shown 
before (e.g., MacDonald, Stigsdotter-Neely, Derwinger, & 
Bäckman, 2006; Yeo & Neal, 2004). Within the MLM frame-
work, various mathematical functions, each corresponding to 
different theories of skill acquisition, can be applied to mod-
eling of the learning process (e.g., Browne & Du Toit, 1991; 
Newell & Rosenbloom, 1981). The negative exponential 
function (Meredith & Tisak, 1990) formally describes learn-
ing processes with significant explicit components (Blozis, 
2004; Meredith & Tisak; Newell & Rosenbloom; Parasuraman 
& Giambra, 1991; Zimprich, Rast, & Martin, 2008). The 
three main parameters of the negative exponential function 
represent the initial performance level, the learning rate, and 
the final attainable performance level. Within the MLM, the 

three components may characterize the sample trajectory 
(through their means or fixed effects) as well as individual 
deviations around the sample trajectory (through their 
variances or random effects). Furthermore, the individual 
deviations can then be conditioned upon covariates. In sum, 
the negative exponential function implemented as an MLM 
on single-trial data provides a promising analytical tool 
for testing hypotheses about the functional heterogeneity of 
learning trajectories and their relations to chronological age 
and cognitive resources.

Objectives
The first goals of this study were to examine the shape of 

acquisition curves at various stages of learning, to derive the 
best-fitting parameter values of the negative exponential 
function describing the process at each stage, and to deter-
mine which of these parameters are more prone to show age 
differences. We focus not only on this function because of 
the theoretical relevance of its three components but also on 
empirical grounds. Indeed, previous analyses (not reported 
here) compared the following growth shapes: linear, linear 
and quadratic, logistic, free basis, and the negative exponen-
tial. This last function consistently provided the most satis-
factory compromise between statistical fit to the data of each 
block and theoretical interpretation of its parameters, and for 
the sake of simplicity, it is the only function presented here. 
We implement the negative exponential function as an MLM. 
To the best of our knowledge, this approach has not yet been 
applied to investigate adult age differences in perceptual– 
motor skill acquisition. The second goal of this study was to 
determine the extent to which age differences depend on 
other factors. Specifically, we investigated whether cognitive 
resources modify the age-conditioned parameters of skill ac-
quisition curves. With these two goals in mind, we hope to 
elucidate the factors that affect skill acquisition processes.

To attain our objectives, we reanalyzed the PR data re-
ported in Kennedy and colleagues (2008) using MLM, with 
addition of a few participants, whose data were not com-
plete and not analyzed before. In that study, the PR task 
was administered in four blocks of 20 trials each. Within 
each block, we applied the negative exponential function to 
single-trial data, both at the sample and at the individual 
level, to examine the relations between the learning param-
eters across the different blocks. To further understand the 
role of reduced cognitive resources on age-related differ-
ences in learning, we extended the analysis by examining 
the effects of age and of cognitive resource variables on the 
learning parameters.

Methods

Participants
The sample consisted of 102 participants (M age = 47.63 

years, SD = 17.16, range = 19–80) recruited in the Memphis 
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metropolitan area by advertising in local media and on the 
University of Memphis campus. The distribution by age 
decades was as follows: 19–29 years of age n = 21, 30–39 
n = 13, 40–49 n = 18, 50–59 n = 19, 60–69 n = 22, and 
70–80n = 9). Sixty (59%) participants were women, 14 
(14%) were African American, and 88 were Caucasian. To 
screen the participants for history of neurological, psychiat-
ric, and medical conditions, including history of diabetes 
and thyroid disorders, head trauma with loss of conscious-
ness, and alcohol and drug abuse, we used a health question-
naire and interviewed the participants via telephone and in 
person. Due to sensory and motor demands of the task, we 
also excluded participants with arthritis and sensory deficien-
cies. Eleven (10%) participants had a diagnosis of hyperten-
sion and were taking medications. All participants were 
right-handed (with a score of 75% or greater on the Edin-
burgh Handedness Questionnaire; Oldfield, 1971) and native 
English speakers. They were screened for dementia with the 
Blessed Information-Memory-Concentration Test (cutoff of 
30; Blessed, Tomlinson, & Roth, 1968) and for depression 
with the Geriatric Depression Questionnaire (cutoff of 15; 
Radloff, 1977). The minimum formal education was set at 
high school degree level, and on average, participants had 4 
years of college education (16.02 ± 2.57 years of formal  
education).

Perceptual–Motor Skills
Participants performed the PR task implemented on a 

standard photoelectric PR apparatus (Model 30014; Lafay-
ette Instruments, Lafayette, IN). Participants had to keep a 
J-shaped wand held in their dominant (right) hand over a 
rotating light spot while standing in front of the apparatus 
(the height of the light table was adjusted for each partici-
pant). On each trial, the time on target was automatically 
measured by the apparatus, and the total time on target in 
seconds served as the main index of performance.

Participants were tested individually during four blocks 
of 20 trials each, on three consecutive days, for a total of 80 
trials. On the first, second, and third day, there were, respec-
tively, two, one, and one block of twenty 15-s trials. There 
was a 10-s intertrial rest. Ninety-three participants were as-
sessed on all days (for 80 trials), 6 only on Days 1 and 2 (60 
trials), and 6 only on Day 1 (40 trials).

Cognitive Resources
To measure age-related differences in cognitive resources, 

we administered several WM tasks. Two verbal WM tasks 
were Listening Span and Computation Span (LS and CS, 
respectively; Salthouse, Mitchell, Skovronek, & Babcock, 
1990). In the LS task, participants listened to simple sen-
tences, were asked a question about their content, and fi-
nally were asked to recall the last word of each. In the CS 
task, participants were to solve simple arithmetic problems 
and to remember the last digit of each. The number of items 

(sentences or problems) ranged from one to seven, and all 
items were presented to all participants in groups of three. 
Of the three scores available for each span task, we used the 
absolute score.

Two nonverbal WM tasks were also administered: Size 
Judgment Span (SJS) and Spatial Relations (SR). In the SJS 
task, modified after Cherry and Park (1993), participants 
listened to a list of objects or animals and had to recall them 
in ascending size order. Lists started with two items and 
were incremented according to participants’ performance. 
The total number of correct responses was the index of per-
formance. The SR task is a subtest in the Woodcock–John-
son Psycho-Educational Battery–Revised (Woodcock & 
Johnson, 1989) and exerts considerable demands on WM 
besides spatial abilities. Indeed, participants are presented 
with a whole shape as well as with a series of six disjointed 
shapes from which they are asked to choose a correct com-
bination. The complexity and degree of abstraction of the 
shapes augment according to participants’ capacities. The 
total number of correct responses was analyzed.

Finally, to assess additional executive functions, we ad-
ministered the Wisconsin Card Sorting Task (WCST; Neuro-
scan Corp., Herndon, VA; Heaton, Chelune, Talley, Kay, & 
Curtis, 1993). Participants observed a deck of stimulus cards 
on a computer screen and then a stack of additional cards, 
which they were asked to match singularly to the stimulus 
cards. Participants were not told the matching rule, only 
whether their match was correct or not. The number of per-
severative errors served as the performance index on that 
task (cf. Greve, Stickle, Love, Bianchini, & Stanford, 2005).

To facilitate parameter interpretation, all cognitive 
scores and age were centered on their grand mean. More 
detail about the cognitive tasks can be found in previous 
published works (Kennedy et al., 2007, 2008; Raz et al., 
2000).

The Multilevel Negative Exponential Model
We tested the negative exponential learning function 

within the MLM to describe the participants’ longitudinal 
learning trajectories across all trials. The function charac-
terizes individuals on the basis of three specific components 
of interest: initial performance (a), acquisition rate (g), and 
final performance (b; Meredith & Tisak, 1990). We had to 
expand this function to the dual negative exponential model 
(e.g., McArdle, Ferrer-Caja, Hamagami, & Woodcock, 
2002), which further includes a parameter d to model the 
decline rate evident toward the second half of Block 2 (for 
more details, see subsequently). We estimated both a fixed and 
a random effect for each component. Fixed effects are equiva-
lent to means and represent sample characteristics. Random ef-
fects are equivalent to variances around the fixed effects and 
characterize individual deviations from the sample. The model 
also estimated the degree of linear relations between the learn-
ing components, and these are represented by covariances.
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Equation (1) represents the dual negative exponential 
function, which posits that the performance Y at trial t for 
individual i is dependent on an initial level a, a rate of 
growth g, a rate of decline d, a final upper asymptote b, and 
a residual term rt,i.

, ,( 1) ( 1)
, ,( ) e ei t i i t it t
t i i i i t iY r � (1)

The mean and variance of a, g, d, and b and their six covari-
ances were estimated. The negative exponential model is 
obtained by omitting the exponential term with the decline 
parameter d and is appropriate when the trend is monoto-
nously increasing (Appendix, Note 1).

General modeling procedure.—The dual negative exponen-
tial model was only applied to Block 2, where the simpler ver-
sion was unable to account for the decreasing final 
performances. In all other blocks, the decline parameter d was 
not necessary. The analyses were implemented with the Mplus 
software (version 5; Muthén & Muthén, 1998–2007; Appendix, 
Note 2). This is possible because the (dual) negative exponential 
function is nonlinear in the fixed effects but linear in the random 
effects. It is, however, necessary to enforce particular constraints 
on the fixed parameters (for more information, cf. Blozis, 2004, 
2007; Blozis, Conger, & Harring, 2007; Browne, 1993; see the 
Supplementary Appendix for the scripts).

The data of the 12 participants who were not assessed on 
all 80 trials (<2% of the total data) were included in the 
analyses, and all parameters were obtained by means of 
maximum likelihood estimation. This technique is very eas-
ily applied with current software and avoids both the exclu-
sion and the replacement of cases with incomplete data 
while estimating unbiased parameters under typical testing 
conditions (Schafer & Graham, 2002).

We combined the data of the four blocks into a single 
analysis to study the relationships among the learning com-
ponents across all 80 trials (MacCallum, Kim, Malarkey, & 
Kiecolt-Glaser, 1997). The learning components of the four 
blocks were allowed to intercorrelate. In the end, we ob-
tained a correlation matrix with the learning components of 
all four blocks to assess the degree of generality in the ac-
quisition of perceptual–motor skills across all trials. This 

analysis was performed first without and then with the in-
clusion of age and cognitive resources as covariates.

The residuals were not allowed to correlate with time and 
followed an unstructured diagonal matrix. Within each 
block, we tested whether the residual variance was constant 
or changed across trials (structured vs. unstructured diago-
nal matrix) and found the latter to be true in all blocks.

Results
To evaluate the goodness of fit of the negative exponen-

tial function, we rely on the c2 statistic with its degrees  
of freedom, the root mean square error of approximation 
(RMSEA) with its 90% confidence interval (CI; Browne & 
Cudeck, 1993), the standardized root mean square residual 
(SRMR), and the comparative fit index (CFI). Generally, 
an RMSEA value of 0 indicates an excellent fit of the 
model to the data, less than .05 a close fit, less than .10 a 
mediocre fit, and greater than .10 a poor fit. If its CI in-
cludes .05, one can conclude a close fit. In general, an 
SRMR inferior to .05 and a CFI superior to .95 indicate a 
very good fit.

Analysis Without Statistical Control for Age and Cognitive 
Resources

The analysis without age and cognitive resources pro-
vided an acceptable fit to the data (RMSEA = .088, SRMR = 
.038, and CFI = .828). On average, 82.40% of the variance 
of time-on-target performance of all 80 trials was explained 
by the learning components of the negative exponential 
function, indicating the appropriateness of this data analyti-
cal approach.

The parameter estimates of this model appear in Table 1. 
The first column specifies the block. Next, the fixed effects 
of a, b, g, and d are presented, followed by their random 
effects. Random effects of the residuals (rt,i) are not pre-
sented to reduce the size of the tables (these estimates are 
secondary to the understanding of the learning process, and 
no systematic or anomalous estimates were obtained). On 
average, the predicted initial performance (a of Block 1) 
was poor, with the average time on target of only 2.86 s. 
Performance improved exponentially and at the end of the 

Table 1.  Parameter Estimates and Standard Errors of Analysis Without Statistical Control for Age and Cognitive Resources

Block

Fixed effects Random effects

a g d b a g d b

1 2.855 (0.225) 0.336 (0.029) — 5.759 (0.230) 2.863 (0.489) 0.070 (0.019) — 3.806 (0.551)
2 4.430 (0.489) 0.525 (0.137) 0.100 (0.025) 6.461 (0.248) 10.222 (9.903) 0.031 (0.454) 0.034 (0.038) 3.638 (0.846)
3 7.448 (0.258) 0.297 (0.046) — 7.946 (0.242) 4.169 (0.679) 1.269 (0.816) — 4.125 (0.602)
4 8.282 (0.233) 0.228 (0.042) — 8.362 (0.233) 3.473 (0.574) 48.065 (162.757) — 3.992 (0.612)

Notes: The fit indices of this model were c2(df = 3,136, N = 102) = 5,630.108, RMSEA = .088 (90% CI = [.085–.092]), SRMR = .038, and CFI = .828. Parameters 
are presented with point estimates and, in parentheses, standard errors. a (initial performance), g (acquisition rate), d (decline rate), and b (final performance) are the 
parameters of the negative exponential function. Italicized numbers refer to statistically nonsignificant parameter estimates. RMSEA = root mean square error of 
approximation; CI = confidence interval; SRMR = standardized root mean square residual; CFI = comparative fit index.
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first block (at Trial 20) reached a predicted average upper 
asymptote (b) of 5.76 s. The predicted average starting 
value of the next block was lower, at 4.43, whereas the final 
performance of Block 2 was higher at 6.46 s. In the third 
block (Day 2), the predicted average initial and final perfor-
mances were of 7.45 and 7.95 s, respectively. Finally, in the 
last block (Day 3), the predicted performance increased 
from 8.28 to 8.36 s. Note that initial trials on Days 2 and 3 
yielded better performance than the final trials on the previ-
ous day.

The individual variations around the fixed effects were 
not negligible and reflect the overall heterogeneity in per-
ceptual–motor skill performance and learning in this sam-
ple. On all blocks except the second, the initial performance 
differed markedly across individuals (cf. random effects of 
a). Also, participants differed widely with respect to the  
final performance (i.e., random effects of b). Individual 
learning rates, however, were not quite as heterogeneous. 
Indeed, the only random effect of g that was statistically dif-
ferent from 0 was in the first block. Moreover, its size (0.07) 
indicates small interindividual differences in motor skill  
acquisition rate.

Besides showing a random subsample of 20 individual 
learning curves, Figure 1 also depicts the empirical (thick 
jagged line) and the predicted (thick smooth line) average 
learning curves according to the fixed parameters of Table 
1. As evident from that display, the two curves are very 
close across all blocks. In Blocks 1–3, the predicted aver-
age curve increases because the decline component d of the 
dual negative exponential model was not included. In Block 
2, however, the inclusion of d allowed accounting for the 
decrease after the fifth trial, most probably due to a combi-
nation of boredom and fatigue as Block 2 was the last of 
Day 1.

Analysis With Statistical Control for Age and  
Cognitive Resources

The analysis with statistical control for the covariates al-
lowed examining the extent to which individual variations in 
the learning components were dependent on age and on cog-
nitive resources. The random effects that were significantly 
different from 0, displayed on the right half of Table 1, indi-
cate that those components of the learning functions varied 
across participants. In an attempt to explain heterogeneity in 
learning components, we introduced age and the indices of 
cognitive resources to the previous MLM to explain random 
effects of initial and final levels of performance (a and b) 
and rate of learning (g) in Blocks 1, 3, and 4 and additionally 
of decline (d) in Block 2. The statistical fit of this model was 
worse than the preceding (RMSEA = .110, SRMR = .064, 
and CFI = .732). We nevertheless pursued exploring covari-
ate relations, given that the previous model provided an ac-
ceptable statistical account of the learning process. Despite 
the overall fit, the data analytical approach seemed appropri-
ate as on average, 82.36% of the variance of time-on-target 
performance of all trials was explained by the learning com-
ponents of the learning functions.

Table 2 shows the parameter estimates of this model in 
the same order as in Table 1. Because the covariates were 
centered on their means, the fixed effects virtually did not 
differ from those obtained in the previous analysis. The ad-
dition of age and the cognitive resource indicators led to 
smaller estimates of interindividual differences because the 
random effects of Table 2 are residualized for age and cog-
nitive resources. Thus, these covariates did explain some of 
the previously observed heterogeneity in skill acquisition. 
Indeed, age and cognitive resources explained 22.33% of 
the variation in the learning components. This indicates that 
a good portion of variance remains to be explained (i.e., the 

Figure 1. C omplete longitudinal trajectories over the 80 trials on pursuit rotor performance measured as time on target (ToT) in seconds for a random subsample 
(n = 20). The thick jagged line and the thick smooth line represent the empirical and the predicted average performance curves, respectively.



Ghisletta et al.168

Table 2.  Parameter Estimates and Standard Errors of Analysis With Statistical Control for Age and Cognitive Resources

Block

Fixed effects Random effects

a g d b a g d b

1 2.901 (0.205) 0.350 (0.031) — 5.807 (0.199) 2.213 (0.414) 0.067 (0.018) — 2.836 (0.425)
2 4.390 (0.576) 0.504 (0.126) 0.112 (0.031) 6.527 (0.214) 11.889 (13.242) −0.270 (0.504) 0.026 (0.042) 2.303 (0.682)
3 7.478 (0.217) 0.303 (0.046) — 7.972 (0.209) 2.739 (0.487) 1.255 (0.811) — 2.978 (0.446)
4 8.239 (0.193) 0.233 (0.041) — 8.347 (0.193) 2.053 (0.378) 24.255 (58.554) — 2.626 (0.419)

Notes: The fit indices of this model were c2(df = 3,538, N = 102) = 7,927.211, RMSEA = .110 (90% CI = [.107–.114]), SRMR = .064, and CFI = .732. Parameters 
are presented with point estimates and, in parentheses, standard errors. a (initial performance), g (acquisition rate), d (decline rate), and b (final performance) are the 
parameters of the negative exponential function. Italicized numbers refer to statistically nonsignificant parameter estimates. RMSEA = root mean square error of 
approximation; CI = confidence interval; SRMR = standardized root mean square residual; CFI = comparative fit index.

Table 3.  Regression Weights (and SEs) of the Cognitive Resource Variables and Age in the Prediction of the Learning Components in  
Each Block

LS CS SJS SR WCST Age

a1 0.004 (0.018) 0.008 (0.014) 0.165 (0.123) 0.142a (0.060) 0.006 (0.010) −0.006 (0.012)
g1 0.003 (0.004) 0.000 (0.003) 0.000 (0.024) 0.007 (0.010) −0.002 (0.002) 0.006a (0.003)
b1 −0.004 (0.002) 0.002 (0.014) 0.157 (0.129) 0.157a (0.057) 0.000 (0.010) −0.024 (0.013)
a2 −0.089 (0.146) 0.088 (0.126) 0.007 (0.469) 0.005 (0.235) −0.002 (0.061) −0.065 (0.107)
g2 −0.029 (0.017) 0.028 (0.013)b −0.017 (0.110) −0.010 (0.047) 0.013 (0.009) −0.018 (0.012)
d2 0.007 (0.006) −0.006 (0.004) 0.006 (0.029) 0.012 (0.013) −0.003 (0.003) 0.005 (0.005)
b2 0.023 (0.021) −0.023 (0.015) 0.158 (0.144) 0.167a (0.063) −0.016 (0.012) −0.013 (0.014)
a3 0.014 (0.020) −0.011 (0.015) 0.125 (0.138) 0.149a (0.059) −0.010 (0.011) −0.034a (0.014)
g3 −0.008 (0.017) 0.003 (0.012) −0.019 (0.113) 0.073 (0.052) 0.006 (0.009) 0.002 (0.011)
b3 0.008 (0.020) −0.005 (0.014) 0.204 (0.133) 0.116a (0.058) −0.006 (0.011) −0.028a (0.013)
a4 0.020 (0.018) 0.004 (0.014) 0.175 (0.122) 0.080 (0.055) 0.010 (0.010) −0.042a (0.012)
g4 −0.037 (0.084) −0.025 (0.060) −0.194 (0.529) 0.392 (0.514) −0.029 (0.056) 0.053 (0.080)
b4 0.009 (0.019) −0.001 (0.014) 0.280a (0.127) 0.074 (0.057) −0.002 (0.010) −0.033a (0.013)

Notes: a (initial performance), g (acquisition rate), d (decline rate), and b (final performance) are the parameters of the negative exponential function. Indices 
refer to the block. LS = Listening Span; CS = Computation Span; SJS = Size Judgment Span; SR = Spatial Relation of Woodcock–Johnson Psycho-Educational 
Battery–Revised; WCST = Wisconsin Card Sorting Task.

a Statistically significant parameters at the p = .01 level.
b An effect that resulted statistically significant but that must be ignored because it is not defined (given that in the previous model the dependent variable of this 

effect had no variance).

statistical significance of some random effects remained). 
Standard errors of all random effects also decreased.

Table 3 presents the parameter estimates of the effects 
(regression weights) of cognitive performance and age on 
the learning components of each block. The parameter in-
dices refer to the block. Results showed that neither the 
verbal WM (LS and CS tasks) nor the perseveration index 
from the WCST predicted learning performance. SJS only 
predicted final performance in Block 4. In contrast, a higher 
performance on the SR task predicted better initial perfor-
mance in Blocks 1 and 3 and greater final time on target in 
Blocks 1 and 2. The deleterious effects of advanced age 
were not important until well into the task. Indeed, greater 
age negatively affected both initial and final performances 
in Blocks 3 and 4. However, advanced age predicted better 
learning on Block 1. Although age and cognitive resources 
together explained 22.33% of individual differences in 
learning components, their unique contributions were 
very similar: 4.67% for age and 5.66% for the cognitive 
resources.

Generality in the Acquisition of Perceptual–Motor  
Skills Across All Trials

Table 4 presents the correlations among the 13 learning 
components obtained from the analyses. The above-diagonal 
numbers are the correlations for the model with age and cog-
nitive resources, whereas the numbers below the diagonal 
are the correlations of the model without the covariates. The 
indices of the learning components refer to the block. These 
correlations are the standardized random effects among all 
learning components. That is, they represent the degree to 
which block-specific individual differences in initial and fi-
nal levels of performance and in rate of learning and decline 
are related across the four blocks. In both models, there were 
eight learning components with reliable random effects (cf. 
Tables 1 and 2). Of these, three represented individual differ-
ences in initial performance (a1, a3, and a4), four stood for 
final level of performance (the four b components), and only 
one referred to individual differences in learning rate (g1). 
However, to avoid overspecifying the model to the data, we 
estimated the correlations of all learning components, in 
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particular also those between the components without statis-
tically significant random effects (a2, g2, g3, g4, and d2). If 
any of these correlations appear statistically significant, they 
are ignored because they were not defined.

In the model without covariates, there were 22 statistically 
significant correlations of a total of 28 defined correlations 
(representing 79%). All were high, averaging r = .82 and 
ranging from r = .69 to .99. The only exception was the 
correlation between g1 and b1, r = −.25. In the model with 
age and cognitive resources, the same 22 (partial) correla-
tions were statistically significant. They were high as their 
zero-order counterparts: The average value was r = .80, 
with a range from .82 to 1.00, except again for the only 
correlation about change in performance (between g1 and 
b1, r = −.31).

Discussion

Findings From the Multilevel Negative Exponential 
Model

The multilevel analyses at the trial level revealed great 
variability in skill acquisition both within and between indi-
viduals. The intraindividual variability in learning trajecto-
ries is evident as the parameter values of the negative 
exponential function changed across blocks. The interindi-
vidual variability is captured by the observed significant 
random effects in the level of performance and, to a lesser 
extent, in the rate of acquisition displayed by the partici-
pants. Moreover, participants’ age and cognitive resources 
predicted a substantial share of individual differences.

The results show clearly that much progress in PR perfor-
mance occurred at the beginning of each block. On average, 
most learning occurred on the first day (especially during 
Trials 1–25) and the least on the last (third) day (Trials 61–80), 

which is consistent with the diminishing-returns hypothesis. 
The greatest learning gains occurred after a day (Blocks 3 
and 4, at the beginning of Days 2 and 3, respectively). In-
deed, the final performance of the second and third blocks 
was worse than the initial performance of the third and 
fourth blocks, respectively. In other words, performance 
gains occurred not only during practice but also in a hiatus 
between the blocks as well. The model predicted improve-
ments in absence of direct practice across contiguous blocks. 
What may be interpreted as consolidation (Brashers-Krug, 
Shadmehr, & Bizzi, 1996; Karni & Sagi, 1993) was shown 
only across days, but not after the short 5-min break at Day 
1 (Block 2), and diminished in size as learning progressed. 
Also of interest, even after 80 trials, it appears that at least 
some participants have not attained their overall upper per-
formance asymptote. Additional learning hence still seems 
possible, which argues that for at least some of the partici-
pants, full consolidation might have occurred even after the 
experiment ended.

Effects of Age and Cognitive Resources on Learning 
Parameters

The analytic methods used in the present article allowed 
quantification of individual differences in acquisition curves 
and at least a partial explanation of that variability by age 
and selected cognitive resources. The analyses revealed that 
deleterious age effects emerged only by the end of the sec-
ond block and persisted thereafter (Table 3). When partici-
pants were novices to the task, relations to chronological 
age, if present, were collinear with the measures of cogni-
tive resources included in this study except for the benefi-
cial effect on learning in Block 1. In an earlier analysis, we 
have shown that during the first rapid stage of motor skill 
learning, the effect of age on performance may be mediated 

Table 4. C orrelations Among Learning Parameters in Analyses Without or With Predictors in Lower or Upper Diagonal, Respectively

Block 1 Block 2 Block 3 Block 4

a1 g1 b1 a2 g2 d2 b2 a3 g3 b3 a4 g4 b4

a1 — −.196 .747a .475 .082 .030 .839a .646a −.041 .642a .651a −.122 .619a

g1 −.119 — −.306a −.670b .721b .808 −.169 −.166 −.153 −.169 −.172 .353b −.135
b1 .801a −.247a — .457 −.032 −.122 .980a .837a −.083 .830a .793a −.130 .700a

a2 .576 −.555 .566b — .186 −.881 .517 .391 −.375 .394 .343 −.159 .217
g2 .393 −2.361 .084 1.419 — .227 .318 −.147 −.120 .065 −.062 −.102 −.134
d2 .069 .691b −.049 −.714 −1.273 — −.221 .141 .356 −.029 .185 .247 .133
b2 .834a −.074 .939a .502 .026 .101 — 1.028a −.128 .943a 1.009a −.078 .875a

a3 .707a −.129 .870a .541 −.333 .135 .991a — −.045 .866a .959a −.119 .782a

g3 .039 .170 −.024 −.324 −.125 .295 −.066 −.016 — −.122 .027 .567b −.003
b3 .711a −.141 .867a .513b .192 .026 .926a .903a −.090 — .892a −.125 .877a

a4 .706a −.173 .825a .511 .299 .075 .918a .945a .019 .902a — −.019 .882a

g4 −.060 .388b −.092 −.145 −.569 .288 −.010 −.092 .570b −.114 −.094 — −.269
b4 .685a −.132 .769a .394 −.167 .095 .864a .844a −.016 .909a .912a −.267 —

Notes: a (initial performance), g (acquisition rate), d (decline rate), and b (final performance) are the parameters of the negative exponential function. Indices 
refer to the block.

a Statistically significant correlations at the p = .01 level.
b Correlations that resulted statistically significant but that must be ignored because they are not defined (given that at least one of the two variables being corre-

lated had no variance.
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by cognitive and brain resources (Raz et al., 2000). During 
the second phase, this mediation diminishes, so that the 
unique effect of age emerges. Our results hence suggest that 
upper limits of age-related differences in perceptual–motor 
skills are not alleviated by practice. If anything, they appear 
to acquire greater prominence once the effect of factors that 
govern acquisition recedes. It follows that development of 
expertise may accentuate age effects rather than attenuate 
them (cf. Brehmer, Li, Müller, von Oertzen, & Lindenberger, 
2007). However, at the novice level, older individuals have a 
higher learning rate. These considerations call for a stronger 
reliance on experimental designs with a sufficiently large 
number of trials to allow for attaining close-to-maximal  
performance (cf. the testing-the-limits paradigm; Kliegl & 
Baltes, 1987).

We have previously demonstrated that differences in cog-
nitive resources indexed by SR and SJS account for a sig-
nificant portion of variability in PR performance (Kennedy 
et al., 2008). The analyses presented here shed light on the 
way that contribution changes in the process of acquisition. 
The processes and resources reflected in SR score explained 
a significant proportion of variance on all blocks except the 
last, whereas the other nonverbal WM task, the SJS, pre-
dicted performance only at the last block (cf. Table 3). The 
differences in effect of various WM tasks on PR perfor-
mance may stem from the differences in basic processing 
ingredients that constitute each of those complex tasks. The 
two verbal WM tasks, LS and CS, call for manipulation of 
word and number strings according to rules of grammar and 
arithmetic, and thus, they are unlikely to overlap with the 
motor and visual–spatial demands of the PR task. The SR 
and the SJS tasks call for mental imagery, and whereas the 
latter is also contaminated by some verbal label processing, 
the former requires purely spatial manipulations of images 
for attaining a correct solution. Thus, we can speculate that 
in the process of acquisition of the PR skill, persons with 
better ability to manipulate SR had a significant advantage. 
This is not evident on the last block when asymptotic or 
quasi-asymptotic levels of performance were attained. It is 
unclear why the last block showed the effect of a less com-
plex size judgment task. In sum, PR skill acquisition is 
probably predicated on intact specific resources, namely 
spatial and mental imagery, and general WM resources that 
are common to all four tasks employed in this study played 
no role in the acquisition process.

Performance on the verbal WM and the executive func-
tion tasks was unrelated to the level of skill or the course of 
its acquisition. Although verbal WM is often considered a 
highly relevant cognitive resource in everyday functioning, 
its effects in this specific motor skill acquisition were null, 
probably because the cognitive and the motor tasks are very 
different in nature and because the PR task is not a good 
indicator of everyday functioning.

Additional analyses revealed that whereas age and WM 
together explained on average about 22.33% of the variance 

in learning parameters, the unique contribution of cognitive 
resources, in particular nonverbal WM (5.66%), was com-
parable to that of age (4.67%; Appendix, Note 3). These 
results are consistent with the general observation that  
correlates of skill performance change in the course of  
practice, presumably reflecting shifts in the underlying 
mechanisms (Ackerman, 1988; Ackerman & Cianciolo, 
2000). Such shifts can be interpreted as a transition between 
an initial fast and a final slow stage of the learning process 
(Karni & Bertini, 1997; Karni & Sagi, 1993), accompanied 
by a diminishing contribution of effortful cognitive pro-
cesses (Voelcker-Rehage, 2008). Nonetheless, the mecha-
nisms underlying stage differentiation in skill acquisition 
and age differences therein remain unclear, and there is a 
hope that they can be clarified by discovery of the relevant 
brain correlates. Differential engagement of brain circuits at 
early and late learning has been observed (Doyon et al., 
2003), and some of the age differences in skill acquisition 
may stem from variable degrees of shrinkage in the relevant 
striatal and cerebellar structures (Kennedy & Raz, 2005; 
Raz et al., 2000).

Generalities of Learning Features Across All Trials
Both analyses, with and without predictors, revealed that 

individual differences in level of performance parameters 
were quite stable. The two parameters describing level of 
performance (a and b) correlated positively and highly, in-
dicating that individuals who performed well at the begin-
ning of the experiment tended to do so all along.

In contrast, individual differences in the rate of acquisi-
tion were more elusive and difficult to estimate. Recent 
simulation studies showed that detection of individual dif-
ferences in the rate of change requires significantly greater 
statistical power than is sufficient for discovering individual 
differences in level of performance (Hertzog, Lindenberger, 
Ghisletta, & Oertzen, 2006; Hertzog, Oertzen, Ghisletta, & 
Lindenberger, 2008). Hence, further elucidation of this is-
sue will probably require larger samples.

Study Limitations
The results reported here should be interpreted in the 

context of the limitations of this study. First, several poten-
tially important covariates of PR performance, such as per-
ceptual speed, have not been assessed. Our operationalization 
of cognitive resources could have been more comprehen-
sive. Second, although PR is a widely used task, the results 
obtained here may be specific to the combination of percep-
tual and motor skills assessed by it and not necessarily gen-
eralizable across other perceptual, motor, or cognitive skills. 
Finally, to take full advantage of the analytic opportunities 
offered by the multilevel analytic approach, samples larger 
than the current N = 102 are necessary. Although the current 
sample is not large we could estimate the parameters of 
the multilevel negative exponential model because the 
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participants had been assessed on 80 occasions (for a total 
of almost 8,000 data points). Thus, we did not encounter the 
typical computation problems associated with small sample 
sizes, although a few estimates were out of bounds. Indeed, 
in longitudinal analyses, the lack of precision due to small 
sample sizes can be partially compensated by the density of 
the longitudinal measurements (Singer & Willett, 2003). 
We suggest that future studies on skill learning be planned 
with similarly large or larger samples and a high number of 
trials.

Finally, the participants of this study were highly edu-
cated healthy adults who resided independently in an urban 
setting. They had no history of neurological, medical, and 
psychiatric conditions nor sensory or motor impairments. 
Thus, the generalizability of the findings to the general pop-
ulation is limited. From the perspective of aging research, 
this sample provides the best-case scenario of successful 
aging uncomplicated by many debilitating conditions that 
accompany common aging.

Conclusions
Our findings lead to two conclusions. First, at the indi-

vidual level, four blocks of 20 trials were not necessary to 
identify interindividual differences in learning parame-
ters. Indeed, such differences were very stable throughout 
testing (cf. across-block correlations presented in Table 4). 
Second, we conclude that at the sample level, learning 
occurred throughout the whole study with dramatic gains 
(cf. fixed effects of Tables 1 and 2 and the sample trajec-
tories in Figure 1). We believe that those findings support 
the notion proposed by Karni and his colleagues that 
learning evolves in stages, with different processes being 
more prominent than others at each stage, and their con-
jecture that perceptual experiences may trigger neural 
changes that take several hours to become fully functional 
(i.e., consolidation). The representational changes in the 
striatum, cerebellum, and the associated motor cortical 
regions (cf. Doyon et al., 2003; Raz et al., 2000) may thus 
occur at a slower rate in old age than they do in younger 
ages. Had we limited the design of our study to the first 
block only or had we not performed the trial-by-trial anal-
ysis, we would be unable to draw this potentially impor-
tant conclusion.

This study applies a multilevel negative exponential 
model to testing hypotheses about the structure of skill ac-
quisition process and age-related differences therein. The 
multilevel methods exhibit several advantages. The most 
important benefits of this approach were the ability to reveal 
statistically testable heterogeneity of the acquisition trajec-
tories, to analyze the stability across the experiment of this 
heterogeneity in learning, to provide evidence for learning 
consolidation across the blocks, and to show differential 
contributions of cognitive variables across the learning  
process.

The findings reported here also reinforce the need for 
fine-grain analyses of trial-by-trial behavioral changes that 
are difficult to examine, and even more difficult to inter-
pret, with more traditional analytical methods. Learning 
research may stands to benefit from the application of 
MLMs to trial-by-trial data, especially if the number of 
repeated exposures is high enough to allow participants to 
reach asymptotic performance. Given the ease of access to 
appropriate computational resources and relevant soft-
ware, we hope that the analytical methods demonstrated in 
this article will find wider acceptance in skill acquisition 
research and that future designs of learning experiments 
will include large number of trials on a large number of 
participants.
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Appendix
1. An anonymous reviewer noted that the data could also be 

conceived on a more refined hierarchy, such as trials nested 
within blocks nested within days nested within participants. 
We adopted a two-level hierarchy of trials within participants 
because (a) blocks and days are almost completely collinear 

(only on Day 1 was there more than one block) and (b) with 
only three (days) or four (blocks) units per level, it is not 
advised to insert an additional level of analysis in the MLM 
(Goldstein, 1995). Moreover, for the theoretical reasons listed 
before and in accordance with the inspection of the trajectories 
(i.e., Figure 1), we opted to fit the negative exponential model 
to each block separately, which allowed concluding about the 
evolution in time (across blocks) of the model’s parameters.

2. Under certain conditions, such as those offered here, 
multilevel and structural equation models are equivalent 
(McArdle & Hamagami, 1996; Rovine & Molenaar, 2000). 
Because of practical programming features, we opted for 
the structural equation modeling implementation rather than 
MLMs (cf. Ghisletta & Lindenberger, 2004).

3. These results cannot be due to multicollinearity issues 
because the four WM tasks correlated between 0.47 and 
0.61, whereas the executive function (number of persevera-
tive errors) correlated between −0.42 and −0.36 with them. 
Finally, age correlated between −0.52 and −0.24 with the 
span tasks and 0.50 with the executive function task.


