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Cyclin D1 (CCND1I), an intracellular cell-cycle regulatory
protein with checkpoint function, can promote cell
proliferation or induce growth arrest and apoptosis
depending on the cellular context. We hypothesized that
the direction of the association between the (CCNDI)
G870A-polymorphism and breast cancer risk may be
modified by dietary and genetic factors influencing the
oxidant-antioxidant balance, such as a dietary pattern with
a high intake of n-6 fatty acids and a low intake of n-3 fatty
acids, or a genetic profile that is deficient in glutathione S-
transferases. We tested our hypothesis in a case-control
study nested into the Singapore Chinese Health Study,
a prospective investigation of diet and cancer in 63 000
Chinese men and women. Genomic DNA collected from
258 incident cases of breast cancer and 670 female cohort
controls was examined for CCND1, GSTM1, GSTT1 and
GSTPI genes using fluorogenic 5'-nuclease assay. Uncondi-
tional logistic regression models were used to assess the
effects with adjustment for potential confounders. All stat-
istical tests were two-sided. The heterozygous CCNDI1 GA
genotype significantly reduced the breast cancer risk in all
subjects (OR = 0.67, 95% CI 0.45-0.99) when compared
with the GG genotype. The association was restricted to
women with a high (above median value) intake level of
n-6 fatty acids (OR = 0.51, 95% CI 0.30-0.87), a low (below
median value) intake level of the antagonistic marine n-3
fatty acids (OR = 0.54, 95% CI 0.32-0.93) or a total lack of
the antioxidative GSTM1 (OR = 0.44,95% CI 0.25-0.80) or
GSTT1 genes (OR = 0.46, 95% CI 0.24-0.87). The effects
were consistently stronger in cases with advanced disease.
The AA genotype did not affect breast cancer risk. The
results of this study are compatible with the hypothesis
that the oxidant-antioxidant balance in cells is an import-
ant determinant of the direction of the cyclin D1 effect,
leading either to cell proliferation or cell death.

Abbreviations: BMI, body mass index; CCNDI, Cyclin D1 gene; CI,
confidence interval; GST, glutathione S-transferase; OR, odds ratio; ROS,
reactive oxygen species; Thl, T-helper 1.

Carcinogenesis vol.26 no.8 © Oxford University Press 2005; all rights reserved.

Introduction

Cyclin D1, a protein encoded by the CCNDI gene located on
chromosome 11ql13, is a key cell-cycle regulatory protein
modulating the restriction point early in the G;-phase [reviews
in (1-4)]. Cyclin D1 gene (CCNDI) is amplified or over-
expressed in a variety of tumours (2,5,6). In up to 20%
of breast cancers, CCND] is amplified and > 50% of mammary
tumours overexpress it (7,8). CCNDI exhibits a common A/G
polymorphism at nt 870, which modulates alternate splicing of
CCNDI. Both alleles lead to the expression of two different
transcripts, but at different proportions. Several studies found
the A-allele to be the major source of transcript form b, which
encodes a cyclin D1 protein with an altered C-terminus. It
lacks a PEST sequence postulated to target protein for rapid
degradation (9-11). Carriers of one or two A-alleles may thus
possess a longer protein half-life. Several epidemiological
studies (12-17) found an increased risk for different cancer
types among carriers of the A-allele in accordance with the cell
proliferating role of cyclin D1. But the absence of an associ-
ation with cancer risk or inverse associations between cancer
risk or survival and the A-allele also were reported (18-23).
Additional, modifiable risk factors were seldom taken into
consideration in these prior studies.

The direction of the biological impact of cyclin D1 overex-
pression depends on the state of the cell in accordance with its
checkpoint function. While cyclin D1 is best known for its
proliferating effect (4,24,25), experimental evidence suggests
that under conditions such as oxidative stress (24,26-29) or
senescence (30-33), cyclin D1 can inhibit S-phase entry and
DNA replication and promote growth arrest as well as apop-
tosis. The context-dependent dual role of cyclin D1 on cell
proliferation and growth arrest, may explain the inconsistent
associations observed between CCND/ genotype and cancer
risk (12,14,20,34), and emphasizes the importance of assessing
the interaction between CCNDI genotype and factors that
modify the cellular micromilieu.

A potential modifier of the CCNDI genotype/breast cancer
association is oxidative stress. First, reactive oxygen species
(ROS) can activate signalling cascades that ultimately lead to
cell-cycle arrest and apoptosis by altering the expression of
DNA damage inducible genes including cyclin DI and its
inhibitors (35-37). Glutathione S-transferase (GST) enzymes
which play a major role in the elimination of oxidative
by-products were found to interact with CCND/ in previous
cancer susceptibility studies (38,39). The GST, GSTp, has
been identified as an important regulator of JNK signalling, a
member of the stress kinase family of genes involved in cell-
cycle control (36,40). Second, oxidative stress from various
sources has been proposed as a risk factor for breast cancer
(41-43). A shift in the oxidant-antioxidant balance possibly
underlies the inverse association between marine n-3 fatty acid
intake and breast cancer risk reported by us (44), that was
confined to GSTM1, GSTT1 and GSTP! deficient women and
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was more pronounced in patients with an advanced stage of
disease (45). Kikugawa et al. (46), in accordance with experi-
mental data (47-49), reported a protective effect of fish oil
against oxidative stress induced DNA damage in rat liver
in vivo, that was attributed to the lipid peroxidation products
resulting from marine n-3 fatty acids. These lipid peroxidation
metabolites are excreted less efficiently by women possessing
low activity GST genotypes. We also found a dose-dependent
increase in breast cancer risk with increasing intake of n-6 fatty
acids among women with low intake of marine n-3 fatty acids
(44). The tumour-enhancing effect of n-6 fatty acids has been
related to oxidative DNA damage (47). In accordance with
the impact of oxidative stress on the cell-cycle checkpoint,
marine n-3 fatty acids inhibited (50) and n-6 promoted (30)
CCND | -expression in cancer cells.

In this report, we investigated whether the association of the
CCND1 polymorphism with breast cancer risk was modified
by the intake levels of n-3 and n-6 fatty acids, GST genotypes
and stage of the disease as markers of oxidative burden.

Materials and methods

Study population

The subjects were participants of the Singapore Chinese Health Study, a
population-based, prospective investigation of diet and cancer risk. The
study design has been described previously (51). Briefly, from April 1993
through December 1998, we recruited 63 257 Chinese women and men from
two major dialect groups in Singapore (Hokkien and Cantonese). Subjects
were between the ages of 45 and 74 years and residing in government housing
estates at the time of enrollment. During the period of study enrollment, 86% of
the Singapore population resided in such facilities. Only women (n = 35 298)
were considered in this report. At recruitment, a face-to-face interview was
conducted by a trained interviewer, using a structured questionnaire to elicit
information on demographics, lifetime use of tobacco, physical activity, men-
strual and reproductive history, medical history and family history of cancer.
The questionnaire included a dietary component assessing usual intake pattern
(including frequency and portion size) during the previous 12 months on 165
food and beverage items, which were subsequently validated against a series
of 24-h recalls (51). Average daily intake of n-6 and marine n-3 fatty acids,
expressed as %kcal to adjust for total energy intake in the analyses, was
computed for each study subject via linkage to the Singapore Food Composi-
tion Table (51). The food frequency questionnaire listed 14 seafood items
commonly consumed by Chinese in Singapore, including fresh fish, fresh
shellfish, dried/salted fish and canned fish. Major sources of n-6 fatty acids
were meat (10%), grain products (20%) and cooking oils (40%) (44).

Between April 1994 and July 1999, we collected blood and single-void urine
specimens from a random 3% sample of study enrollees. A 20 ml blood sample
was obtained from each consenting subject and stored in a liquid nitrogen tank
at —180°C until August 2001, when they were moved to a —80°C freezer for
long-term storage. If the subject refused to donate blood, he/she was asked to
donate buccal cells, which were collected through the use of a modified
‘mouthwash’ protocol based on published methods (52).

Out of 1059 female cohort participants contacted for biospecimen donation,
blood (n = 514) and buccal cells (n = 164) were collected from 678 subjects,
representing a participation of 64%. The control group of the present study
consisted of the 670 women (203 premenopausal, 467 post-menopausal) who
remained free of breast cancer as of April 30, 2002 (8 women in this subgroup
of cohort subjects were first diagnosed with breast cancer between enrollment
and April 30, 2002). Demographic characteristics (age, dialect group and
education) of the control women who donated blood or buccal cells were
comparable with all women in the cohort.

We identified incident breast cancer cases through the population-based
cancer registry in Singapore (53). As of April 30, 2002, a total of 399 cases of
incident breast cancer had developed among female cohort subjects. Histolo-
gical and staging information on all breast cancer diagnoses were confirmed by
manual review of the pathology reports and clinical charts. Blood (n = 198) or
buccal (n = 60) specimens were available for 258 (65%) breast cancer cases.
Of these 258 cases of breast cancer, 33 cases had in situ cancers, 68 had stage I,
110 had stage II, 23 had stage III and 18 had stage IV tumours, while staging
information was not available for 6 cases. The 151 cases that had stage II or
higher tumours (regional and metastatic disease) are classified hereafter as
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having advanced disease. Breast cancer cases who did not give a blood or
buccal cell sample were less educated than those who provided such a sample
(44 versus 30% had no formal education). More Cantonese donated specimens
(69%) compared with Hokkien (60%). The two groups were otherwise similar
with respect to age at cancer diagnosis (mean age of 61 versus 59 years). In all
analyses, subjects with non-informative genotypes were excluded (3 cases and
4 controls).

Informed consent forms were completed by all participants at baseline
interviews and at the time of collection of biological specimens. The Institu-
tional Review Boards at the University of Southern California and the National
University of Singapore had approved this study.

Genotyping methods

DNA was purified from buffy coats of peripheral blood and buccal cell
samples using a QIAamp 96 DNA Blood Kit (Qiagen, Valencia, CA).
Genotyping for CCND1, GSTM1, GSTTI and GSTP] was performed using
the fluorogenic 5'-nuclease assay (TagMan Assay) (54).

The TagMan assays were performed using a TagMan PCR Core Reagent kit
(Applied Biosystems, Foster City, CA) according to the manufacturer’s
instructions.

The CCNDI polymorphism (A/G) was previously described (14). The
oligonucleotide primers for amplification of the polymorphic region of
CCNDI were GCO091for (5'-CCCCAACAACTTCCTGTCCTACTA-3) and
GC091rev (5'-AGGCTGCCTGGGACATCA-3'). In addition, the fluorogenic
oligonucleotide probes (TagMan MGB Probes; ABI) used to detect each of the
alleles were GCO91F (5'-CCTCCTTACCGGGTCA-3') labelled with 6-FAM
to detect the G allele and GC091V (5'-CCTCCTTACTGGGTCA-3') labelled
with VIC to detect the A allele. PCR amplification using ~10 ng of genomic
DNA was performed in a thermal cycler (MWG Biotech, High Point, NC) with
an initial step of 95°C for 10 min followed by 50 cycles of 95°C for 25 s and
62°C for 1 min. The fluorescence profile of each well was measured in an ABI
7900HT Sequence Detection System and the results analysed with Sequence
Detection Software (ABI). Experimental samples were compared with 12
controls to identity the 3 genotypes at each locus (A/A, A/G, G/G). Any
samples outside the parameters defined by the controls were identified as
non-informative and were retested.

The oligonucleotide primers for amplification of the polymorphic region
of GSTPI were GCO070for (5'-CCTGGTGGACATGGTGAATG-3') and
GCO070rev (5-TGCTCACACCATAGTTGGTGTAGATGA-3'). In addition,
the fluorogenic MGB oligonucleotide probes used to detect each of the alleles
were GCO70F (5-TGCAAATACGTCTCCCT-3') labelled with 6-FAM and
GCO70V (5'-TGCAAATACATCTCCCT-3') labelled with VIC (Applied
Biosystems). PCR amplification consisted in the same procedure described
above for CCND].

Genotyping of the GSTT! and GSTM! loci using the TagMan assay con-
sisted of separate assays for GSTT/, GSTMI and the albumin control genes.
The oligonucleotide primers for amplification of the GSTT/, GSTMI and
albumin genes were GCO003 for (5-GTGCAAACACCTCCTGGAGAT-3)
and GCO03rev (5'-AGTCCTTGGCCTTCAGAATGA-3"), GC004 for (5'-CT-
TGGAGGAACTCCCTGAAAAG-3') and GCO04rev (5'-TGGAACCTCCAT-
AACACGTGA-3"), GC005 for (5'-CGATTTTCTTTTTAGGGCAGTAGC-3")
and GCO005rev  (5-TGGAAACTTCTGCAAACTCAGC-3'), respectively.
Fluorescent oligonucleotide probes, for detection of PCR reaction products,
were synthesized to contain the dye 6-FAM (BioSearch Technologies, Novato,
CA). The probes for the GSTT1, GSTM1 and albumin genes were GCO03FAM
(5'-ATGCTGCCCATCCCTGCCC-3'), GCO04FAM (5'-AAGCGGCCATGG-
TTTGCAGG-3') and GCO05FAM (5'-CGCCTGAGCCAGAGATTTCCCA-3'),
respectively. PCR amplification using ~10 ng of genomic DNA was performed
in an ABI 7900HT Sequence Detection System (Applied Biosystem) with an
initial step of 95°C for 10 min followed by 50 cycles of 95°C for 25 s and 62°C
for 1 min. The fluorescence profile of each well was measured in real time
during the PCR amplification and the results analysed with Sequence Detec-
tion Software (ABI). Any sample with a fluorescence signal that crossed a
threshold of 0.2 ARn before cycle 40 was considered positive for the loci
analysed. Samples negative for both GSTT/ and GSTMI must be positive for
albumin to be called; otherwise, the sample was designated non-informative
and retested. All analyses were carried out blind to case or control status.

Statistical analysis

Although we sampled our controls randomly from the whole cohort, our study
is more case-control than case-cohort in design since time of follow-up was
relatively short and comparable between cases and the subcohort, with only
eight subjects in the latter group developing breast cancer during the observa-
tion period. We used unconditional logistic regression methods to examine the
effect of the G870A-polymorphism of CCNDI alone and together with fatty
acid intake levels, and GST genotypes on breast cancer risk. Indicator variables
for the three genotypes of CCNDI (GG, AG, AA) were created using the GG



genotype as the reference category. The quartile distribution of marine n-3 and
n-6 fatty acids (in units of %kcal) among female cohort members formed the
basis for categorization of subjects. The median values of n-3 and n-6 fatty acid
intake were used as cutoff points to define individuals with high (third and
fourth quartiles) and low (first and second quartiles) intake levels (0.19 and
4.34 Ypokcal, respectively). GSTM1 and GSTT! null genotypes were subjects
homozygous for the respective gene deletions. GSTP/ AA genotype was
considered the high-activity genotype compared with the AB/BB genotypes.
The strength of the gene-cancer associations was measured by odds ratio (OR)
and its 95% confidence interval (CI). Age at recruitment (years), year of
recruitment (1993-1998), dialect group (Hokkien, Cantonese), level of educa-
tion (no formal education, primary school only, secondary school or higher),
number of livebirths (0, 1-2, 3-4 or 5+), and age when period became regular
(<12, 13-14, 15-16, 17+ or never regular) were included in all models as
covariates. Addition of a term for body mass index (BMI) (<20, 20 to <24,
24 to <28 or >28 kg/m?) did not appreciably alter the results and thus, was not
retained in the final models. Polytomous logistic regression models (55) were
used to compare cases, stratified by the stage of disease, with all controls.

Statistical analysis was carried out using the SAS version 9.0 (SAS
Institute, Cary, NC). All P-values are two-sided and P < 0.05 were considered
statistically significant.

Results

The characteristics of the study population are summarized in
Table I. Included in the study were 670 women without and
258 women with breast cancer. Consistent with the present
understanding of breast cancer risk, factors positively associ-
ated with risk were the level of education and age at first birth;
characteristics inversely associated with risk were the number
of livebirths, age when period became regular and age at
menopause (56). Mean age at recruitment was similar for case
and control groups [55.6 years (SD 7.4) and 55.8 (SD 8.0),
respectively].

The distribution of CCND1 genotype by case-control status
and disease stage is summarized in Table II. The frequency of
the A-allele in control women was 0.58. The genotype distri-
bution among controls was in Hardy-Weinberg equilibrium
(P = 0.47). Women carrying the heterozygous GA genotype
showed an overall reduced risk of breast cancer (OR = 0.67,
95% CI = 0.45-0.99), while women carrying the AA genotype
exhibited an OR of 0.93 (95% CI = 0.63-1.38). Restricting the
analysis to patients with advanced stage disease accentuated
the protective effect of the GA genotype (OR = 0.52, 95% CI
= 0.32-0.84). Menopausal status did not modify the associ-
ation between CCND1 genotype and breast cancer (data not
shown).

Table III shows the results of the CCNDI genotype effects
on breast cancer risk stratified by the intake level of marine n-3
and n-6 fatty acids. The association between the GA genotype
and breast cancer protection was confined to women with low
intake of n-3 fats or high intake of n-6 fats. The strongest
association between GA genotype and risk reduction was
found in women with both low n-3 and high n-6 fats intake
(OR = 0.33, 95% CI = 0.15-0.73). The protective effects of
the GA genotype were consistently stronger in patients with
advanced disease. The power for assessment of the GA geno-
type effect among advanced stage patients with both low n-3
and high -6 fat intake was insufficient.

Table IV presents the effects of CCNDI genotype on breast
cancer risk according to subjects’ specific GST genotypes. The
protective effect of the CCNDI-GA genotype on breast cancer
risk when compared with GG-genotype was restricted to
women possessing either the GSTMI-null or GSTTI-null
genotypes (OR 0.44, 95% CI 0.25-0.80 and 0.46, 0.24-0.87,
respectively). Again, these protective effects were stronger and
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Table I. Distribution of selected variables in female breast cancer patients
and controls in Singapore Chinese women

Cases Controls
(n = 258) (n = 670)
n (%) n (%)
Mean age at recruitment in years (£SD) 55.6 (£7.4) 55.8 (£8.0)
Dialect group
Cantonese 136 (52.7) 336 (50.2)
Hokkien 122 (47.3) 334 (49.8)
Education
No formal education 77 (29.8) 257 (38.4)
Primary school 108 (41.9) 250 (37.3)
Secondary school or higher 73 (28.3) 163 (24.3)

BMI (kg/cm?) (postmenopausal women only)*

<20 16 (8.9) 56 (12.0)

20 to <24 104 (57.8) 272 (58.2)

24 to <28 41 (22.8) 105 (22.5)
Age (years) when period became regular

<12 43 (16.7) 91 (13.5)

13-14 106 (41.1) 239 (35.7)

15-16 73 (28.3) 200 (29.9)

17+ or never regular 36 (13.9) 140 (20.9)
Number of live births

None 26 (10.1) 48 (7.2)

1-2 95 (36.8) 185 (27.6)

3-4 91 (35.3) 266 (39.7)

5+ 46 (17.8) 171 (25.5)
Age (years) at first live birth®

<20 31 (12.1) 124 (18.5)

21-25 89 (34.6) 250 (37.4)

26-30 73 (28.4) 185 (27.7)

31+ 38 (14.8) 62 (9.3)

Nulliparous 26 (10.1) 48 (7.1)
Age (years) at menopause (women age 55 years or older only)®

<49 37 (27.0) 123 (36.6)

50-54 76 (55.5) 183 (54.5)

55+ 20 (17.5) 28 (8.9)
Use of replacement hormone

Never users 237 (91.9) 631 (94.2)

Former users 5(1.9) 8 (1.2)

Current users 16 (6.2) 31 (4.6)
Family history of breast cancer

No 252 (97.7) 662 (98.8)

Yes 6 (2.3) 8 (1.2)
Mean intake level of marine n-3 fatty acids

in %kcal (£SD) 0.19 (£0.09) 0.20 (40.09)
Mean intake level of n-6 fatty acids

in %kcal (£SD) 4.84 (£1.84) 4.85 (£1.84)
GSTMI1 genotype

Positive 137 (53.5) 369 (55.3)

Null-Null 119 (46.5) 298 (44.7)
GSTT1 genotype

Positive 169 (66.0) 385 (57.7)

Null-Null 87 (34.0) 282 (42.3)
GSTP1 genotype

AA 161 (62.7) 442 (66.2)

AB 87 (33.8) 199 (29.8)

BB 9 (3.5) 27 (4.0)

The Singapore Chinese Health Study.

“Includes 180 cases and 467 controls who had no menstrual periods at
baseline interviews.

PInformation missing for 1 case and 1 control.

“Includes 137 cases and 336 controls whose age at recruitment was 55 years or
older only; all premenopausal women interviewed at age 55 or older were
classified into the 55+ group.
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Table II. Distribution of cyclin D1 (CCNDI) genotype in breast cancer
patients and controls overall and according to stage of disease in Singapore
Chinese women

CCND1 G870A genotype Cases Controls OR?*
(n = 258) (n = 670) (95% CI)
n (%) n (%)
Total subjects”
G/G 57 (22.4) 124 (18.6) 1.00 Reference
G/A 95 (37.2) 309 (46.4) 0.67 (0.45-0.99)
A/A 103 (40.4) 233 (35.0) 0.93 (0.63-1.38)
Localized only (stage 0-1)°
G/G 21 (21.0) 124 (18.6) 1.00 Reference
G/A 46 (46.0) 309 (46.4) 0.90 (0.51-1.58)
A/A 33 (33.0) 233 (35.0) 0.82 (0.45-1.49)
Advanced only (stage >2)°
G/G 35 (23.5) 124 (18.6) 1.00 Reference
G/A 46 (30.9) 309 (46.4) 0.52 (0.32-0.84)
A/A 68 (45.6) 233 (35.0) 0.99 (0.62-1.58)

The Singapore Chinese Health Study.

“OR, odds ratio; CI, confidence interval. Adjusted for age at recruitment
(years), year of recruitment (1993-1998), dialect group (Hokkien

and Cantonese), education (no formal education, primary school,

secondary school or higher), number of live births (0, 1-2, 3-4 or 5+)

and age when period became regular (<12, 13-14, 15-16, 17+ or never
regular).

"Excluding three cases and four controls with missing genotype values.
“The sum is less than the total number of cases due to exclusion of cases
with unknown stage (n = 6).

statistically significant only in subjects with an advanced stage
of the disease. There was no evidence of a modification effect
of the CCND1 genotype-breast cancer association by GSTP/
genotype.

Restricting the analyses to subjects with both low activity
GST genotypes and low n-3 or high n-6 intake levels, resulted
in sparse data and unstable OR estimates. Nonetheless, the GA
genotype effects on breast cancer risk were uniformly stronger
(data not shown). The OR for GA versus GG genotypes for
subjects with low n-3 fat intake and GSTM I -null, GSTT1-null
or GSTP1-AB/AA genotypes were 0.19 (95% CI 0.08-0.43),
0.29 (95% CI10.11-0.73) and 0.56 (95% CI 0.23-1.36), respect-
ively. The corresponding OR for subjects with high n-6 fats
intake and GSTMI-null, GSTTI-null, or GSTP1-AB/AA geno-
types were 0.25 (95% CI 0.11-0.56), 0.43 (95% CI 0.18-1.00)
and 0.47 (95% CI 0.19-1.17), respectively.

Discussion

In the present study, we found a protective effect of the
heterozygous CCNDI GA genotype on breast cancer risk
which was restricted to situations of elevated oxidative stress
characterized by high intake level of n-6 fatty acids, low intake
level of the antagonistic marine n-3 fatty acids and absence in
the host of the antioxidative GSTM1 and GSTT1 enzymes.
The observed gene-cancer effects are more pronounced
among cases with advanced disease, which is compatible
with the hypothesized interaction between cyclin D1 and
oxidative stress, since cancer cells constitutively produce
redox products (36).

ROS are a significant endogenous and exogenous source of
DNA damage and thus trigger cell-cycle arrest at different
cell-cycle checkpoints including G; (57). Activation of p53
and cyclin dependent kinase inhibitors plays an important role
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in the response of cells to oxidants (58). In vitro experiments of
breast tumour and other tumour cells exposed to oxidative
stressors demonstrate that cyclin D1 activation and overex-
pression is also able to activate molecular pathways resulting
in cell-cycle arrest and apoptosis (24,28,29,59). According to
these results, cyclin D1 modulates growth arrest and cell death
in a p53-dependent way following exposure to ionizing radi-
ation and oxidative DNA damage. Turner et al. (27) reported
an increased radiosensitivity in breast cancer cells among
individuals overexpressing cyclin D1 and provided in vivo
evidence of cyclin D1 as a caretaker gene offering downstream
protection against oxidative damage. Our findings extend this
evidence to situations of more moderate oxidative burden than
the one caused by ionizing radiation. If confirmed, they
suggest that modulation of the biological function of cyclin
DI by dietary factors may lead to differential impact of the
CCND1 gene on breast cancer susceptibility and progression.
The demonstration of an interactive effect between the
CCND] gene and intake of marine n-3 and n-6 fatty acids,
also strengthens our previously proposed hypothesis that the
observed effects of marine n-3 and n-6 fatty acids on breast
carcinogenesis are due to their respective impact on cellular
oxidative burden (44,45).

Ours is the first study to investigate the association between
the G870A CCNDI polymorphism and breast cancer risk
stratified by markers of oxidative stress. Only two other stud-
ies, a hospital-based case-control study in an Australian popu-
lation (18) and a population-based case-control study in
Austria (19), have analysed the impact of the same cyclin D1
polymorphism on breast cancer risk. Neither study found an
association with breast cancer risk overall or following strati-
fication by tumour characteristics, such as size, histological
grade, lymph node involvement, estrogens receptor status or
overall survival of patients. No covariates or effect modifiers
were considered in either study. Previous studies have linked
the CCNDI A allele to increased susceptibility or clinical
outcome in non-small cell lung cancer (11,60) and prostate
cancer (15). However, discordant results between the CCND1
A/G polymorphism and cancer risk have been observed for
urinary bladder cancer (14,20) and colorectal cancer (16,17,
61). An increased susceptibility to squamous cell carcinoma of
the head and neck was reported for individuals with the AA
genotype (13), but two other investigations linked the AA
genotype to a longer disease-free interval than the GG geno-
type (23,39). These published results are compatible with the
notion of a differential role of the CCNDI polymorphism on
cancer risk as opposed to cancer progression, and are consist-
ent with the current study observation of stronger CCNDI
effects in an advanced stage of the disease. A few studies
have examined GA genotype separately from the AA genotype,
which mainly found no significant GA genotype association
with cancer risk (12-16). But the CCNDI GA genotype has
been linked to differential overall and disease-free survival in
patients with ovarian and colorectal cancers (62,63). Molecu-
lar heterosis, in which subjects heterozygous for a specific
genetic polymorphism show stronger effects than subjects
homozygous for either alleles, has been described (64). This
differs from the classical notion of a gene-dose effect on
cancer risk, and is intriguing in light of the checkpoint function
of cyclin D1 and dual biological activity with distinct molecu-
lar pathways, leading to either cell-cycle promotion or pro-
grammed cell death (26,30,31,65,66). A one-directional,
gene-dose dependent model may be applicable only when
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Table III. Cyclin D1 (CCNDI) genotype in relation to breast cancer risk stratified by marine n-3 and n-6 fatty acids intake level overall and according to

stage of disease in Singapore Chinese women

Fatty acids intake level

CCNDI G870A genotype

Adjusted OR* (95% CI)

No. of cases No. of controls GA versus GG AA versus GG
GIG G/A A/A G/IG G/A AlA
Marine n-3 fatty acids intake
Total subjects
Low marine n-3 fats intake” 33 52 59 60 162 117 0.54 (0.32-0.93) 0.86 (0.50-1.47)
High marine n-3 fatty acids intake® 24 43 44 64 147 116 0.78 (0.44-1.41) 0.95 (0.52-1.73)
Localized stages only®
Low marine n-3 fatty acids intake” 10 21 17 60 162 117 0.73 (0.32-1.67) 0.81 (0.35-1.90)
High marine n-3 fatty acids intake® 11 25 16 64 147 116 1.02 (0.47-2.23) 0.74 (0.32-1.72)
Advanced stages only”
Low marine n-3 fatty acids intake” 22 29 41 60 162 117 0.45 (0.24-0.86) 0.90 (0.48-1.67)
High marine n-3 fatty acids intake® 13 17 27 64 147 116 0.57 (0.26-1.25) 1.08 (0.51-2.26)
n-6 fatty acids intake
Total subjects
Low n-6 fatty acids intake” 22 53 51 55 142 107 0.94 (0.51-1.72) 1.17 (0.63-2.16)
High n-6 fatty acids intake® 35 42 52 69 167 126 0.51 (0.30-0.87) 0.78 (0.46-1.33)
Localized stages only”
Low n-6 fatty acids intake” 7 28 17 55 142 107 1.59 (0.65-3.92) 1.23 (0.47-3.17)
High n-6 fatty acids intake® 14 18 16 69 167 126 0.58 (0.27-1.25) 0.62 (0.28-1.37)
Advanced stages onlyd
Low n-6 fatty acids intake” 14 24 33 55 142 107 0.63 (0.29-1.33) 1.18 (0.57-2.44)
High n-6 fatty acids intake® 21 22 35 69 167 126 0.43 (0.22-0.83) 0.84 (0.45-1.58)
Marine n-3 and n-6 fatty acids intake combined
Total subjects
Low marine n-3 and high n-6 fatty acids intake 19 18 31 30 78 54 0.33 (0.15-0.73) 0.86 (0.41-1.80)
Low marine n-3 and low n-6 fatty acids intake 14 34 28 30 84 63 0.84 (0.38-1.86) 0.87 (0.38-1.96)
High marine n-3 and high n-6 fatty acids intake 16 24 21 39 89 72 0.69 (0.32-1.49) 0.65 (0.29-1.45)
High marine n-3 and low n-6 fatty acids intake 8 19 23 25 58 44 1.07 (0.40-2.82) 1.66 (0.62-4.45)

The Singapore Chinese Health Study.

“Adjusted for age at recruitment (years), year of recruitment (1993-1998), dialect group (Hokkien, Cantonese), education (no formal education, primary
school, secondary school or higher), number of livebirths (0, 1-2, 3-4, or 54) and age when period became regular (<12, 13-14, 15-16, 17+ or never regular).

OR, odds ratio; CI, confidence interval.
"Subjects in the first and second quartiles of consumption.
“Subjects in the third and fourth quartiles of consumption.

9The sum is less than the total number of cases due to exclusion of cases with unknown stage (n = 6).

gene products possess a singularly defined biological activity.
The two transcripts expressed by the two alleles of the CCND/
A870G polymorphism are both able to inhibit cell proliferation
(10). Our results suggest that the heterozygous CCND/ geno-
type provides the optimal proportion of transcript form a to
transcript form b for the induction of proliferation arrest under
conditions of oxidative stress. It is of interest that heterosis also
has been observed for another gene with important regulatory
activity. The cytokine IL-12 plays a critical role in promoting
the development of T-helper 1 (Thl) cells and suppressing the
release of Th2 cytokines. Heterozygotes in IL12 are associated
with decreased expression relative to the two homozygous
genotypes and with severe asthma in children (67). The
molecular mechanism underlying heterosis are poorly under-
stood. Comings and MacMurray (64) proposed several levels
at which molecular heterosis may be operating—at the level of
gene regulation or at the level of interaction between protein
subunits. As a result, heterozygotes may produce just the right
amount of protein for optimal biological activity, or they may
possess a broader range of gene expression products allowing
for functional plasticity. The latter explanation may be of
special relevance with regard to the checkpoint function of
cyclin D1.

This study has several strengths. Dietary assessment was
conducted using a validated, semi-quantitative food frequency
questionnaire. All exposure assessments occurred prior to can-
cer diagnosis, and therefore, could be presumed to be free of
recall bias. Finally, the study population is genetically homo-
geneous since they are full-blooded descendents of natives
from two contiguous prefectures in southern China. There is
a theoretical concern for selection bias arisen from the higher
availability of blood specimens among Cantonese versus Hok-
kien cases with breast cancer and the higher levels of education
among cases with blood specimens versus those without blood
specimens. We examined if CCNDI genotype is related to
dialect group or education among our cohort participants,
and no associations were found. Given that dialect group and
education are not confounders of the hypothesized CCNDI-
breast cancer association in our study population, the unequal
distributions of these two factors between cases with and
without blood specimens should not impact on the validity of
our study findings.

A major limitation of our study is its low statistical power
for the assessment of gene-environment and gene-gene
interactions, due to the rather modest number of incident
cases of breast cancer occurring within the relatively short
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Table IV. Cyclin D1 (CCNDI) genotype in relation to breast cancer risk stratified by GST genotypes overall and according to stage of disease in Singapore

Chinese women

GSTs genotype

CCNDI G870A genotype

Adjusted OR™ (95% CI)

No. of cases No. of controls GA versus GG AA versus GG
G/G G/A A/A G/G G/A A/A
GSTM1 genotype
Total subjects
GSTM1 positive 27 50 59 80 161 127 0.92 (0.53-1.58) 1.38 (0.80-2.38)
GSTMI null-null 30 45 43 44 147 106 0.44 (0.25-0.80) 0.55 (0.30-1.00)
Localized stages only”
GSTM1 positive 9 22 19 80 161 127 1.33 (0.58-3.08) 1.37 (0.58-3.22)
GSTMI null-null 12 24 13 44 147 106 0.61 (0.28-1.33) 0.44 (0.18-1.04)
Advanced stages only®
GSTM1 positive 18 25 39 80 161 127 0.65 (0.33-1.27) 1.33 (0.70-2.51)
GSTMI null-null 17 21 29 44 147 106 0.35 (0.16-0.73) 0.60 (0.29-1.23)
Total subjects
GSTT1I positive 33 65 70 75 171 137 0.87 (0.52-1.45) 1.12 (0.67-1.86)
GSTT! null-null 24 30 32 49 137 96 0.46 (0.24-0.87) 0.69 (0.36-1.31)
Localized stages only”
GSTT]I positive 10 30 23 75 171 137 1.36 (0.63-2.96) 1.24 (0.56-2.78)
GSTT! null-null 11 16 9 49 137 96 0.53 (0.23-1.24) 0.40 (0.15-1.05)
Advanced stages onlyb
GSTT]I positive 23 32 45 75 171 137 0.60 (0.32-1.10) 0.99 (0.55-1.79)
GSTT! null-null 12 14 23 49 137 96 0.43 (0.18-1.00) 1.02 (0.46-2.26)
GSTP1 genotype
Total subjects
GSTP1 AA 36 62 62 79 195 167 0.66 (0.40-1.09) 0.75 (0.46-1.25)
GSTP1 AB/BB 21 33 41 45 114 66 0.62 (0.32-1.22) 1.38 (0.71-2.69)
Localized stages only®
GSTP1 AA 12 25 17 79 195 167 0.83 (0.39-1.75) 0.64 (0.29-1.43)
GSTP1 AB/BB® 9 21 16 45 114 66 0.94 (0.39-2.26) 1.23 (0.49-3.10)
Advanced stages only”
GSTP1 AA 24 34 45 79 195 167 0.53 (0.29-0.96) 0.80 (0.45-1.42)
GSTP1 AB/BB® 11 12 23 45 114 66 0.44 (0.18-1.08) 1.50 (0.65-3.45)

The Singapore Chinese Health Study.
“Adjusted for age at recruitment (years), year of recruitment (1993-1998), dialect group (Hokkien, Cantonese), education (no formal education, primary school,
secondary school or higher), number of livebirths (0, 1-2, 3-4, or 54) and age when period became regular (<=12, 13-14, 15-16, 17+ or never regular). OR,

odds ratio; CI, confidence interval.

"The sum is less than the total number of cases due to exclusion of cases with unknown stage (n = 0).

“Putative ‘low activity genotype’.

period of follow-up (an average of 6.0 & 2.5 years per subject)
of this cohort of Singapore Chinese women. However, as this
long-term, prospective investigation continues to accrue inci-
dent cases of breast cancer, we will have the opportunity to
revisit this hypothesis with sufficient statistical power. Our
reason for publishing these findings now is because they are
internally consistent and are biologically plausible. We hope
the publication of this set of preliminary results will spur
others to conduct confirmatory epidemiologic studies and
mechanistic laboratory studies.

Our study results indicate that most genotype effects on
disease risk cannot be generalized across diverse populations,
since environmental factors may play important modifying
roles. Our findings are consistent with the notion that the
oxidant-antioxidant balance in cells is one important deter-
minant of the direction of the cyclin D1 checkpoint function,
leading to either cell proliferation or cell death.
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