
Vol. 29 no. 9 2013, pages 1215–1217
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt129

Sequence analysis Advance Access publication March 16, 2013

pfsearchV3: a code acceleration and heuristic to search PROSITE

profiles
Thierry Schuepbach1, Marco Pagni1, Alan Bridge2, Lydie Bougueleret2, Ioannis Xenarios1,2

and Lorenzo Cerutti2,*
1Vital-IT Group, SIB Swiss Institute of Bioinformatics, Genopode, UNIL-Sorge, 1015 Lausanne and 2Swiss-Prot Group,
SIB Swiss Institute of Bioinformatics, CMU, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland

Associate Editor: Alfonso Valencia

ABSTRACT

Summary: The PROSITE resource provides a rich and well annotated

source of signatures in the form of generalized profiles that allow pro-

tein domain detection and functional annotation. One of the major

limiting factors in the application of PROSITE in genome and meta-

genome annotation pipelines is the time required to search protein

sequence databases for putative matches. We describe an improved

and optimized implementation of the PROSITE search tool pfsearch

that, combined with a newly developed heuristic, addresses this limi-

tation. On a modern x86_64 hyper-threaded quad-core desktop com-

puter, the new pfsearchV3 is two orders of magnitude faster than the

original algorithm.

Availability and implementation: Source code and binaries of

pfsearchV3 are freely available for download at http://web.expasy.

org/pftools/#pfsearchV3, implemented in C and supported on Linux.

PROSITE generalized profiles including the heuristic cut-off scores are

available at the same address.

Contact: pftools@isb-sib.ch

Received on January 14, 2013; revised on February 21, 2013;

accepted on March 1, 2013

1 INTRODUCTION

Falling costs and continuing technological developments have led

to a dramatic increase in the rate of sequencing of individual

species genomes (Lindblad-Toh et al., 2011) and the diversity of

the ecological niches sampled by metagenomic sequencing

(Teeling and Glöckner, 2012). The identification, classification

and functional annotation of the putative protein sequences

encoded by these samples is essential to understand the diversity

of the underlying biological systems, and will ultimately allow the

construction of biological models that simulate and make testable

predictions about their behaviour (Faust and Raes, 2012).
Most functional annotation is predicted using sequence hom-

ology-based methods that infer the function of uncharacterized

protein sequences based on their similarity to characterized tem-

plates. These methods include generalized profiles and Hidden

Markov Models (HMMs), which can detect more subtle homo-

logies than pairwise sequence alignments (Park et al., 1998). The

application of these computationally expensive methods on large

datasets has been made feasible by the development of heuristics

for sequence database search and faster more efficient code (e.g.

Eddy, 2011).
Our PROSITE method combines manually constructed gen-

eralized profiles for efficient domain detection with rules for

precise functional annotation (Sigrist et al., 2013). Here, we

describe a new heuristic method and code optimization and par-

allelization for the PROSITE profile-sequence database search

tool pfsearch. These developments increase the speed of pfsearch

by two orders of magnitude using a modern x86_64 hyper-

threaded quad-core computer (see Table 1 legend for specifica-

tions of the computer used in our tests), making the annotation

of large sequence datasets using PROSITE feasible.

2 RESULTS AND DISCUSSION

2.1 Heuristics for generalized profiles

A major reduction in the execution time of sequence database

searches can be achieved by an heuristic filter that selects se-

quences for the next CPU-expensive alignment step of the core

algorithm. One such heuristic is the MSV algorithm of

HMMER3, which computes the sum of multiple optimal un-

gapped local alignment segments (Eddy, 2011). Although ex-

tremely fast and convenient, the MSV heuristic filter cannot be

directly transposed to generalized profiles that have a different

model topology and are not bound to the probabilistic model

restrictions of HMMs. We therefore developed a variant that is

directly applicable to generalized profiles.
Our pfsearch heuristic, named prfh, sums the maximal match-

ing diagonals between the profile and the sequence, ignoring

both gaps and the order of the matching diagonals. First, for

each position i of the profile and j of the sequence, we define a

score Sði, jÞ:

Sði, jÞ ¼ max
Sði� 1, j� 1Þ þMði, ajÞ
0

�
ð1Þ

where Mði, ajÞ is the match score read at position i of the profile

matrix table for residue aj observed at position j of the sequence.

Boundary scores Sði, 0Þ and Sð0, jÞ are set to 0. Second, only the

maximal scoring diagonal Sði, jÞ is kept for every position j of the

sequence [the maximization part of Equation (2)]. All maxima

are then summed to form the final heuristic score (Hscore).

Hscore ¼
X
j

ðmax
i

Sði, jÞÞ ð2Þ

*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/85212895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://web.expasy.org/pftools/#pfsearchV3
http://web.expasy.org/pftools/#pfsearchV3

The Hscore distribution measured using PROSITE profiles on
UniProtKB linearly correlates with the raw score distribution
obtained using the standard pfsearch (R2 � 0:9 on average).

To determine the appropriate Hscore cut-offs with respect to
the normalized score cut-offs of each calibrated profile (Sigrist

et al., 2002), we apply the following procedure. We randomly
sample 200 sequences belonging to the original seed alignment
for each profile (re-sampling if their number is5200), and gen-

erate a set of artificially mutated sequences from these, includ-
ing indels, at various PAM distances. These artificial sequences
(sharing from 40–85% sequence identity with their source) are

then scored with both the standard profile scoring method and
the heuristic (Fig. 1). We calculate the regression line on the
lower 5% quantile of the heuristic score distribution using the

quanteg R package (http://cran.r-project.org/web/packages/
quantreg/), and use it to obtain the heuristic cut-offs corres-

ponding to the standard profile cut-offs (Fig. 1). The regression
on a low quantile ensures a minimal loss of true-positive
sequences.

This method to fix the Hscore cut-offs was automatically
applied on the PROSITE profiles. Manual inspection showed
that this method was appropriate for the majority of the profiles,

although in some cases, the Hscore cut-off could be manually
increased to further accelerate the search. A minority of very
short or ‘exotic’ profiles cannot be used with the heuristic. For

these, no Hscore cut-off is defined in the profile, and the pfsearch
software skips the heuristic search step.
The heuristic reduces the mean search database size by 96.7%

(median 99.1%). The recovery of true positives is �98%

for 499% of the PROSITE profiles with an associated Hscore

cut-off (the lowest measured recovery is 92.6%). The majority
of the missing true positives correspond to fragmentary

sequences in UniProtKB.

2.2 Software optimization and performance of the

new pfsearch

Pfsearch has been rewritten and optimized in C from the original
Fortran. The code will run on any x86_64 POSIX compliant

architecture and benefits from the SSE 4.1 instruction set when
available. However with the current source code, only Linux

operating systems may benefit from CPU core affinity and file
to memory mapping optimization, detected at compile time. The
optimization process entirely reformatted the memory structure

to allow vectorization. High level assembly code (intrinsic func-
tions) was used to enforce the SSE2 and SSE4.1 instruction sets,

leading to a 2-fold acceleration of the original Fortran (Table 1).
SSE4.1 is particularly effective in reducing the execution time of
the core pfsearch algorithm, while both SSE4.1 and SSE2 show

similar performance on the heuristic filter (Table 1). This accel-
eration scales up with multithreading: on a dual hyper-threaded

quad-core machine, we measured an average 10-fold improve-
ment. The scaling is clearly related to the number of physical
cores, with hyper-threading having only a minimal effect on

performance (Table 1).

0 500 1000 1500 2000

0
20

00
0

40
00

0
60

00
0

profile score

he
ur

is
tic

 s
co

re

Random DB reduction (%): 99.2

Heuristic cutoff = 12668

R
aw

 s
co

re
 c

ut
of

f =
 5

20

Fig. 1. Estimation of the heuristic score cut-off for the PROSITE profile

PS50255 (CYTOCHROME_B5_2). The profile scores and heuristic

scores are plotted for the matched sequence: (closed circle) sequences

from the seed alignment; (multi symbol) shuffled UniProtKB/Swiss-

Prot sequences; (open circle) simulated sequences derived from the seed

alignment mutated at various PAM distances (see text for explanatory

notes). The heuristic search scores and profile search scores of the simu-

lated sequences (open circle) exhibit a strong positive correlation

(R2
¼ 0.9). These scores are used to estimate the linear regression for

the lower 5% quantile (black line) used to map the profile search

scores to heuristic search scores. The standard linear regression is also

plotted (dashed line)

Table 1. Execution times to search the PROSITE profile PS50255

(CYTOCHROME_B5_2) against 16 544 936 UniProtKB sequences

(5 358 014649 residues)

�heuristic þheuristic

SSE2 SSE4.1 SSE2 SSE4.1

pfsearch (v2.4) 51m32s n.a. n.a. n.a.

pfsearchV3 (1 core*) 33m02s 20m17s 1m55s 1m44s

pfsearchV3 (2 cores*) 16m54s 10m23s 0m58s 0m53s

pfsearchV3 (4 cores*) 9m14s 5m40s 0m31s 0m28s

pfsearchV3 (8 coresþ) 9m04s 5m28s 0m28s 0m27s

The pfsearch and pfsearchV3 programs have been compiled on a Gentoo Linux

(-mtune¼ corei7 -march¼ corei7 -fomit-frame-pointer -O2) with gcc (4.6.3) and

glibc (2.15) using the following compilation options: -O3 –enable-mmap –enable-

thread-affinity, CFLAGS¼ ‘-mtune¼ corei7 -march¼ corei7 -ffast-math

-mfpmath¼ sse’, FFLAGS¼ ‘-mtune¼ corei7 -march¼ corei7 -ffast-math

-mfpmath¼ sse’. The static executable is available at the provided WEB address.

All run times have been measured on a quad-core Intel� CoreTM i7-3770 CPU @

3.40GHz with 8Gb RAM running on Linux 3.2.0-4-amd64. The number of cores,

the selection of the SSE and the selection or otherwise of the heuristic where spe-

cified at runtime with options -t, -s and -C, respectively, of pfsearchV3. Both

pfsearch and pfsearchV3 have been run to produce the same output alignment,

options -fxzl and �o 2 respectively. (*) physical cores obtained with option -k

and -t of pfsearchV3. (þ) the default mode of pfsearchV3, which uses all available

cores with hyper-threading for a total of eight cores in our testing machine (no

options -t and -k are used). NB: pfsearchV3 was run using an indexed sequence

database (option -i); selecting this option reduces the execution time by 7 s in all

experiments using the specified set of protein sequences.

1216

T.Schuepbach et al.

http://cran.r-project.org/web/packages/quantreg/
http://cran.r-project.org/web/packages/quantreg/

Multithreading implementation is straightforward because
profile alignment versus a database is in itself an embarrassingly
parallel task. For pfsearchV3, we implemented a master–slave
mechanism to analyse and adapt the load before each phase of

the algorithm (heuristic, filter, alignment), thus providing more
equitable shares between threads. This has some constraints:
sequences are read several times, but above all, they are no

longer accessed sequentially, so an index of the sequences has
to be either computed or loaded at start.
By combining the heuristic with our code optimization,

we achieved a 100� increase in the speed of pfsearch on average.
To search 16 544 936 UniProtKB sequences (5 358 014 649
residues) required a mean of 98 s/profile (median of 73 s/profile).

A typical example of the runtime acceleration achieved is shown
in Table 1.
The heuristic version of pfsearch can be used to annotate large

sets of complete sequences in a reasonable amount of time on a

modern workstation. For example, the human proteome can
be searched with the totality of the PROSITE profile models in
54 hours, and this time can be drastically reduced on machines

with a large number of CPU cores and/or computer clusters.
For fragmented sequences, users may inactivate the heuristic
to minimize loss of true-positive matches, in which case the

speed of execution will be determined by the number of
available CPU cores. We also plan to implement our heuristic
search method in the HAMAP pipeline that provides high
quality functional annotation for protein families (Pedruzzi

et al., 2013).

ACKNOWLEDGEMENTS

We would like to thank Philip Bucher (ISREC, EPFL) and

Nicolas Hulo (Geneva University) for helpful discussion.

Funding: This work was funded by a Swiss National Science
Foundation (SNSF) project grant (315230-116864) and the

Swiss Federal Government through the State Secretariat for
Education, Research and Innovation (SERI).

Conflict of Interest: none declared.

REFERENCES

Eddy,S.R. (2011) Accelerated profile HMM searches. PLoS Comput. Biol., 7,

e1002195.

Faust,K. and Raes,J. (2012) Microbial interactions: from networks to models.

Nat. Rev. Microbiol., 10, 538–550.

Lindblad-Toh,K. et al. (2011) A high-resolution map of human evolutionary

constraint using 29 mammals. Nature, 478, 476–482.

Park,J. et al. (1998) Sequence comparisons using multiple sequences detect three

times as many remote homologues as pairwise methods. J. Mol. Biol., 284,

1201–1210.

Pedruzzi,I. et al. (2013) HAMAP in 2013, new developments in the protein family

classification and annotation system. Nucleic Acids Res., 41, D584–D589.

Sigrist,C.J. et al. (2002) PROSITE: a documented database using patterns and

profiles as motif descriptors. Brief Bioinform., 3, 265–274.

Sigrist,C.J. et al. (2013) New and continuing developments at PROSITE. Nucleic

Acids Res., 41, D344–D347.

Teeling,H. and Glöckner,F.O. (2012) Current opportunities and challenges in

microbial metagenome analysis–a bioinformatic perspective. Brief Bioinform.,

13, 728–742.

1217

pfsearch next generation

