
doi:10.1093/brain/awh631 Brain (2006), 129, 55–64

Increased EEG power and slowed dominant
frequency in patients with neurogenic pain
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To study the mechanisms of chronic neurogenic pain, we compared the power spectra of the resting EEG of
patients (n = 15, 38–75 years, median 64 years, 6 women) and healthy controls (n = 15, 41–71 years, median
60 years, 8 women). On an average, the patient group exhibited higher spectral power over the frequency range
of 2–25 Hz, and the dominant peak was shifted towards lower frequencies. Maximal differences appeared in the
7–9 Hz band in all electrodes. Frontal electrodes contributed most to this difference in the 13–15 Hz band.
Bicoherence analysis suggests an enhanced coupling between theta (4–9 Hz) and beta (12–25 Hz) frequencies in
patients. The subgroup of six patients free from centrally acting medication showed higher spectral power in
the 2–18 Hz frequency range. On an individual basis, the combination of peak height and peak frequency
discriminated between patient and control groups: discriminant analysis classified 87% of all subjects correctly.
After a therapeutic lesion in the thalamus (central lateral thalamotomy, CLT) we carried out follow-up for a
subgroup of seven patients. Median pain relief was 70 and 95% after 3 and 12 months, respectively. The average
EEG power of all seven patients gradually decreased in the theta band and approached normal values only after
12 months. The excess theta EEG power in patients and its decrease after thalamic surgery suggests that both
EEG and neurogenic pain are determined by tightly coupled thalamocortical loops. The small therapeutic
CLT lesion is thought to initiate a progressive normalization in the affected thalamocortical system, which is
reflected in both decrease of EEG power and pain relief.
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Introduction
While several mechanisms have been proposed for the patho-

physiology of neurogenic pain (Treede et al., 1999; Peyron

et al., 2000; Jones et al., 2003; Apkarian et al., 2005) no general

agreement has been reached yet. In the following we refer to a

mechanism that focuses on thalamocortical interplay (Llinás

et al., 1999). First evidence for this mechanism was the finding

of low-threshold calcium spike (LTS) bursts in the somato-

sensory thalamus of patients with neurogenic pain (Lenz et al.,

1989). A detailed investigation (Jeanmonod et al., 1993) in

the medial thalamus (central lateral nucleus, CL) showed

that (i) half of all recorded neurons presented LTS bursting

activity, (ii) only a minority (<1%) had somatosensory

receptive fields and (iii) LTS bursts displayed a theta

rhythmicity, with a mean interburst discharge rate of 4 Hz.

LTSs have been described intracellularly in in vitro and in vivo

experiments and have been related to a state of membrane

hyperpolarization (Llinás and Jahnsen, 1982; Steriade, 2001).

CL is part of the medial thalamus, is diffusely connected to

wide cortical areas (Steriade et al., 1997; Jones, 2001) and is

thought to serve as the non-specific amplifier of thalamo-

cortical activity (Llinas et al., 2002). Functionally, the tight

coupling of the thalamocortical re-entry loop is reflected

by high thalamocortical coherence in human patients

(Sarnthein et al., 2003). This loop constitutes an important

component contributing to the rhythmicity of scalp EEG and

magnetoencephalography (MEG) (Nunez et al., 2001).

Furthermore, slowed EEG/MEG rhythmicity has been repor-

ted in a few patients with neurogenic pain (Gücer et al., 1978;

Llinás et al., 1999; Sarnthein et al., 2003). Based on these

physiological findings and the clinical fact that a therapeutic
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lesion in CL (central lateral thalamotomy, CLT) relieves pain

and other functional brain disorders (Jeanmonod et al., 1993,

1996, 2001a), thalamocortical dysrhythmia (TCD) was pro-

posed as a general mechanism to explain the generation of

neurogenic pain and other positive neurological symptoms

(Llinás et al., 1999, 2001; Jeanmonod et al., 2001b). However,

the pioneering reports of slowed EEG/MEG rhythmicity

in neurogenic pain were related to only a small number of

patients.

The present study aimed, first, to discriminate statistically

between neurogenic pain patients and healthy controls on

the basis of scalp EEG spectral parameters. Second, we hypo-

thesized a theta reduction in patients’ EEG after the surgical

intervention CLT, which has the goal to reduce thalamic LTS

production. We therefore monitored the EEG 3 and 12

months after the therapeutic lesion.

Methods
Patients
The patient group consisted of 17 patients with severe forms

of neurogenic pain that fulfilled all admission criteria for CLT

neurosurgical therapy (see below). Following the terminology of

the International Association for the Study of Pain, we use the

term neurogenic pain to refer to the pain initiated or caused by

a primary lesion, dysfunction, or transitory perturbation in the

peripheral or central nervous system. Of the initial patient group,

we excluded one patient due to eye movement artefacts in the EEG

and one patient because of low voltage EEG. Symptoms, medication

and pain relief reported by the remaining patients in the group

(n = 15, 38–75 years, median 64 years, 6 women, 9 men) are listed

in Table 1. After surgery, three patients died due to unrelated reasons,

two were not available for EEG and three await EEG follow-up to

date. Therefore, a subgroup of n = 7 patients was available for

recording EEG at 3 and 12 months after surgery.

Surgery
Neurosurgical therapy for the patients consisted of CLT,

a therapeutic lesion in the posterior part of the thalamic nucleus,

CL (Morel et al., 1997), and has been described in detail previously

(Jeanmonod et al., 2001a). Admission criteria for CLT include

resistance to drug therapies (antiepileptics, benzodiazepines and

antidepressants), chronic pain state >1 year, severe suffering and

a strongly diminished quality of life. Distinct from all other

lesional procedures applied in chronic pain, CLT targets cells in

the posterior part of CL which have been found to be functionally

blocked. Therefore the normal functions of CL are spared by CLT,

since they have been transferred to other areas by plastic reorgan-

ization of the thalamocortical network. In a previous study with

n = 96 patients and a follow-up of 4 years, >50% of the patients

obtained pain relief (satisfactory up to complete relief) (Jeanmonod

et al., 2001a).

Healthy controls
The healthy control group consisted of 15 subjects (41–71 years,

median 60 years, 8 women, 7 men). The control subjects had no

current or previous history of relevant physical illness and they were

not currently taking drugs or medication known to affect their EEG.

The healthy, age-matched control group was selected to statistically

delineate the EEG abnormality reported in a small number of

patients (Gücer et al., 1978; Llinás et al., 1999; Sarnthein et al.,

2003). Furthermore, the healthy control group served as a reference

when postoperative changes in the patients EEG were monitored.

EEG recording sessions
The study was approved by the Kanton Zürich ethics committee. All

subjects, patients and controls, were informed about the aim and the

scope of the study and all gave written informed consent according

to the Declaration of Helsinki. Subjects were seated in a dimly lit

room shielded against sound and stray electric fields and were video-

monitored. All EEGs were acquired in the morning between 9 and

12 h. Recording sessions of patients and controls were followed by an

interleaved schedule and the recording apparatus was continuously

calibrated. Subjects refrained from caffeinated beverages before

the session to avoid the caffeine-induced theta decrease in EEG

(Landolt et al., 2004). Since drowsiness may result in enhanced

theta power, the vigilance of subjects was checked. In addition,

patients were routinely asked whether they had sleeping disorders

because insomnia conflicts with the typical clinical diagnosis of

neurogenic pain.

Within each session, spontaneous EEG was recorded under two

conditions: while subjects rested with their eyes closed, and while

they rested with their eyes open. EEG was recorded for 5 min under

each condition. We focused our analysis on the eyes closed condition

as it is less prone to artefacts and we assume that an internal process

like neurogenic pain should be more easily accessed in the brain’s

‘idling mode’ (Pfurtscheller et al., 1996), unmasked by sensory per-

ception. Therefore all results presented in this study refer to the eyes

closed condition, except for Fig. 1D. We refrained from provoking

acute pain since we are interested in the pathophysiology of chronic

neurogenic pain that is experienced independent of nociceptive stim-

uli. Before each recording segment, subjects were instructed to

assume a comfortable position in a chair. They were free to place

their head on a chin-rest. For the eyes closed condition, subjects were

instructed to close their eyes, to place their fingers on their eyelids,

and to relax but to stay awake. After 5 min subjects were instructed to

open their eyes, to fixate on a dot at 1 m distance and to relax.

EEG signals were measured using 60 Ag/AgCl surface electrodes,

which were fixed in a cap at the standard positions according to the

extended 10–20 system (FMS11, Falk Minow Services, Herrsching,

Germany). Electrode CPz served as the common reference. Imped-

ances were below 5 kV in all electrodes processed in the further

analysis. We used two additional bipolar electrode channels as eye

monitors. EEG signals were registered using the SynAmps EEG

system (Neuroscan Compumedics, Houston, TX, 16 bit A/D

conversion, sampling rate 250 Hz, 0.3–100 Hz band pass filter,

�12 dB/octave) and continuously viewed on a PC monitor.

Data preprocessing and editing
DatawereanalysedofflineusingMatlab(TheMathworks,Natick,MA)

using EEGLAB (http://sccn.ucsd.edu/eeglab; Delorme and Makeig,

2004) and custom scripts. The scalp EEG was re-referenced to the

mean of the signals recorded at the ear lobes. We confirmed alertness

of subjects during the recording session by checking for slowing of

the alpha rhythm, slow rolling eye movements or increasing theta

power (4–9 Hz). Data were inspected in 5 s epochs, and large muscle
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or eye movement artefacts were removed. For editing purposes,

muscle artefact was considered significant if the underlying EEG

rhythms were not clearly seen. The EEG was decomposed into

independent components using blind separation (independent com-

ponent analysis). After the removal of components containing eye

movement or muscle artefacts, the signal was reconstructed. This

procedure resulted in >60 s of EEG for estimates of power spectral

density (mean 244 6 50 s). For the analysis of inter-frequency rela-

tionships, a stretch of >20 s EEG was selected where power spectra

remained unchanged over time (mean 150 6 86 s). All records

were edited using the same encephalographer in order to increase

reliability.

Data analysis
For power spectral density estimates, the multitaper FFT method was

applied to 5 s windows with K = 3 tapers and a bandwidth parameter

2W = 0.8 Hz, leading to a time bandwidth product 2WT = 4 (Percival

and Walden, 1993). In the comparisons between spectral parameters,

all P values are two-sided from non-parametric Wilcoxon tests.

Wherever necessary, EEG spectra were subdivided into frequency

bands theta (4–9 Hz), alpha (9–12 Hz), beta (12–25 Hz) and

gamma (25–100 Hz). In order to summarize the data and because

spectra from all electrodes had similar shape and scale, we averaged

the log-transformed spectra of all scalp electrodes for each subject if

not stated otherwise.

In order to classify individual subjects into patients and controls

on the basis of EEG parameters, classical linear discriminant analyses

were carried out. That is, we were seeking for the linear combination

of the parameters that best separated the two groups in the sense that

it maximized the ‘between-to-within’ variance ratio. Each subject

was then assigned to the closest group based on this linear combina-

tion. For this step, cross-validation has been used (SPSS version 11.5)

such that the chance level of assigning a subject to the correct group

was 50%. Exact 95% confidence intervals for the true proportions of

correct classification using EEG parameters were calculated from

tabulated values for the binomial distribution and we could check

whether the chance level 50% was within or outside these confidence

intervals.

To learn about the relationship between power at two frequencies

f1 and f2 in one EEG signal, we computed bicoherence for each

electrode separately. Bicoherence estimates the second-order phase

coupling by normalizing the bispectrum B(f1, f2) = hX(f1) X(f2)

X*(f1 + f2)i such that bicoherence is confined to [0 1], where

X(f1) is the complex Fourier transform of the signal at frequency

f1 (Schack et al., 2002). Bicoherence provides phase information as

additional information beyond the power spectrum.

Results
Slowed EEG rhythmicity
As a first result, Fig. 1A shows a clear difference between the

average power spectra in the resting EEG of the patient group

and the healthy control group. In the patient group, spectral

power was higher than in the control group over the whole

frequency range (2–25 Hz), and the dominant peak was shif-

ted towards lower frequencies. The subgroup of six patients

free from centrally acting medication showed the same effect

in the 2–18 Hz frequency range (Fig. 1A, dashed line). The

scalp topographical distribution of EEG power at the dom-

inant frequency was maximal in posterior electrodes (Fig. 1B

and C). This was expected since subjects had their eyes closed

(Berger, 1930; Nunez et al., 2001). In the patient group the

region of high power extended to more fronto-central elec-

trodes (Fig. 1C). In both patient and control groups, the

dominant peak of the EEG was reduced (‘blocked’) when

subjects opened their eyes (Fig. 1D) thus displaying a well-

established characteristic of the classical alpha rhythm

(Berger, 1930; Pfurtscheller et al., 1996; Nunez et al., 2001;

Sarnthein et al., 2005). Nevertheless, also with eyes open the

theta overactivity persisted in the patient group.

Individual patients
For each subject the height and the frequency of the dominant

peak are plotted in Fig. 2. Patients and controls are given

as two separate groups. The power values at the dominant

Fig. 1 Average power spectra. The spectrum for the group of
patients (red) and the group of healthy controls (green) with eyes
closed (A). The global EEG power was enhanced in patients
and the dominant peak was shifted towards lower frequencies in
the patient population. The subgroup of six patients free from
centrally acting medication showed the same effect in the 2–18 Hz
frequency range (A, dashed line). The topographical distribution of
EEG power (5–13 Hz, eyes closed) on the scalp of control group
(B) and patient group (C) had a maximum at parietal electrode
sites, but extended to more frontal regions in the patient group.
(D) Upon opening the eyes, the power spectral density was
reduced in both the groups, but theta overactivity persisted
in the patient group.

58 Brain (2006), 129, 55–64 J. Sarnthein et al.



frequency come from two distributions with significantly dif-

ferent medians (patients 13.7 · 10 * log10(m2/Hz), controls 6.2

· 10 * log10(m2/Hz), P < 0.0001, two-tailed Wilcoxon rank

sum test). Median dominant frequencies were 8.6 and 9.4 Hz

for the patient group and the control group, respectively (P <

0.002). Discriminant analysis classified 73% of all subjects

correctly based only on peak frequency (95% CI 54–88%),

80% based only on peak height (61–92%) and 87% (69–96%)

when both the parameters were accounted for. Since cross-

validation was used to estimate the classification rate and all

confidence intervals exclude the 50% level (chance level), our

results are significant at the 95% level.

Medication and clinical data of the patients are listed in

Table 1. Of the 15 patients, 9 took medication known to be

centrally acting and which could have affected their EEG

(Niedermeyer and Lopes da Silva, 1999; Ebersole and Pedley,

2003). For example, those patients (9, 15) with very high and

very slow dominant peak took antiepileptic drugs (AE,

Table 1). This is in line with the known effect of AE on

EEG, which, however, displays a large inter-individual vari-

ability (Salinsky et al., 2003). There are thus two cumulative

components, AE effects and neurogenic pain patho-

physiology, both of which result in a slowed rhythmicity of

the EEG of our patients. Effects of other drugs like antide-

pressants and opiates could not consistently be related to EEG

parameters of individual patients. The effect of neurogenic

pain pathophysiology alone is documented by the subgroup

of six patients without centrally acting medication (NM). On

one hand, the enhanced beta power above 18 Hz seen between

the solid red curve (all patients) and the dashed red curve

(NM subgroup) in Fig. 1A is compatible with the influence of

benzodiazepines (Lindhardt et al., 2001) and may illustrate

the additive effect of medication and neurogenic pain. On the

other hand, the EEG peak parameters of the NM subgroup

were well distinct from the healthy control group and the

discriminant analysis classified 86% (64–97%) of all subjects

correctly.

Topography and frequency dependence
After having established a significant difference between

patient group and control group in spectra averaged over

all electrodes, we were interested to know which electrodes

contributed most to this difference and at what frequency. We

performed Wilcoxon rank sum tests for each electrode at each

frequency point and plotted the matrix of Z-values as given in

Fig. 3A. Maximal Z-values appeared in the 7–9 Hz band in all

the electrodes, leading to a rather flat topography (Fig. 3B).

Fig. 2 Individual subject EEG spectral parameters. Height and
frequency of the dominant peak for each subject in the patient
group (crosses) and the control group (circles). Numbers denote
respective patients (Table 1). Using the parameters peak height
and peak frequency, bivariate discriminant analysis (group centres:
diamonds, misclassified subjects: ‘x’) classified 87% of all subjects
correctly.

Fig. 3 Comparison of medians of the patient and control groups.
(A) Shown are Z-values for each electrode and frequency point
(Wilcoxon rank sum tests). (B) High Z-values occurred from
7–9 Hz in all electrodes. (C) Between 13 and 15 Hz, Z-values
were maximal in frontal electrodes.

EEG in neurogenic pain Brain (2006), 129, 55–64 59



Owing to the alpha peak of healthy controls of �10 Hz,

Z-values were negative in parietal and occipital electrodes

(deep blue area in Fig. 3A). In the 13–15 Hz band, Z-values

were high in frontal electrodes (Fig. 3C).

Interfrequency relationships
We next investigated the relationship between different

frequencies in the EEG. In patients we found bicoherence

maxima in the theta and beta bands at the fronto-central

electrode FCz, indicating phase correlations of oscillatory

events in these frequency bands with their first harmonic

(Fig. 4). Further maxima indicate that phase coupling also

occurred between theta and beta frequencies. In healthy con-

trols, less interfrequency relationships were visible (Fig. 4D).

In part, the coupling between an oscillation and its overtone

can be explained by the triangular shape of the EEG waves at

the dominant frequency f. The triangular waveshape is visible

in the raw EEG (Fig. 4A) and can lead to a peak at the second

harmonic at 2 * f in the power spectrum (Dumermuth et al.,

1971). The waveshape also explains why power covaries at the

fundamental and the overtone frequencies. Patients exhibit

higher theta–beta bicoherence at FCz, because the alpha-

shaped waves at their dominant frequency extend to more

frontal electrodes. Of course triangular waves are common in

the EEG of healthy subjects and in themselves not pathological

(Niedermeyer and Lopes da Silva, 1999). Only the enhanced

occurrence of triangular waves suggests an abnormal coupling

between theta and beta frequencies in patients.

Postoperative development
Finally, we were interested in the effect of the therapeutic CLT

lesion on the EEG. A subgroup of n = 7 patients was available

for EEG recording at 3 and 12 months postoperatively. Of

these, one patient reported 0% pain relief and six patients

reported immediate or gradually increasing pain relief

(median 95%, Table 1). The average EEG spectrum of this

patient subgroup gradually approached the average spectrum

of the healthy control group (Fig. 5A). In all the patients we

also found a gradual decrease in theta power towards the level

of the healthy control group (Fig. 5B). Comparison of bico-

herence patterns before and 1 year after the surgery showed a

reduction of inter-frequency coupling (Fig. 6).

While a postoperative change in theta power could in

principle also arise from normal test–retest variability of

the EEG (Salinsky et al., 1991), in our group (n = 7) the

Fig. 4 Inter-frequency relationships for the EEG signal recorded at
the electrode FCz. (A) The raw EEG waveform of patient 10 is
asymmetric in the sense that positive peaks are sharper than
negative peaks. This triangular waveshape resembles the
function sin2(x) and results in enhanced second-order phase
coupling between the theta band oscillation and its overtone in the
beta band for this patient. (B) Bicoherence averaged over the
patient group shows second-order phase coupling in the diagonal
and also between theta and beta bands. (C) In the raw EEG
waveform of a healthy control, the asymmetry between positive
and negative peaks is less pronounced. (D) Average bicoherence in
the healthy control group lacks off-diagonal peaks. (E) Z-values for
the comparison between bicoherence maps of the patient group
and the healthy control group (Wilcoxon rank sum tests).
Bicoherence tends to be higher in patients in the diagonal as well as
for theta–beta coupling.
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theta reduction preoperative versus 12 months postoperative

is probably related to the surgical intervention (P < 0.02,

paired Wilcoxon sign rank test). In other frequency bands

we observed only insignificant changes. While in three patients

(3, 5, 9) the reduction of AE could have contributed to theta

reduction (Salinsky et al., 2003), also the two patients without

centrally acting medication (2, 10) evidenced a clear reduction

of theta postoperatively.

Discussion
Theta dominance in resting EEG
The most obvious characteristic in the EEG spectra of the

patient group was the slowing of the dominant peak and

enhanced theta and beta power (Fig. 1), in line with previous

publications (Gücer et al., 1978; Llinás et al., 1999; Sarnthein

et al., 2003). The average peak frequency of the patient group

(8.4 Hz) was below the slowed mean EEG peak frequency

reported for normal ageing (Niedermeyer and Lopes da

Silva, 1999; McEvoy et al., 2001; Ebersole and Pedley,

Fig. 6 Reduction of EEG bicoherence at the electrode FCz after
the therapeutic lesion CLT. (A) Bicoherence values averaged
over the patient subgroup (n = 7) before surgery. (B) One year
after the surgery, off-diagonal peaks were diminished. (C) The
Z-values for the paired comparison between bicoherence
maps (Wilcoxon sign rank tests) show a general decrease of
interfrequency coupling in the patient group 1 year after surgery.

Fig. 5 Reduction of EEG power after the therapeutic lesion CLT.
(A) The average spectrum of a patient subgroup (n = 7) before
surgery (red), after 3 months (violet) and after 12 months (blue)
gradually approached that of the healthy control group (green).
(B) The power level in the theta band (4–9 Hz) is plotted before
(months = 0) and after surgery ("). After 12 postoperative
months, theta reduction was observed in all the seven patients
(P < 0.02). Patient theta levels approached the average of the
healthy control group (dashed line).
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2003). Both peak height and peak frequency gave the best

discrimination between patient group and control group

(Fig. 2). In this way we have substantiated the difference in

EEG between neurogenic pain patients and healthy controls

on a statistical basis. The general slowing and theta over-

activity reported in our patients (Fig. 3) correspond to a

constantly altered resting EEG and is viewed as an aspect

of the pathophysiology. As a result of our selection criteria,

pain locations vary among patients. Our results therefore

reflect the pathophysiology of neurogenic pain common to

all patients. We have refrained from comparisons in sub-

groups because of their insufficient size. Finally, our findings

might also be related to effects of medication as discussed

in the previous section (Table 1). We estimate the effect of

medication to be of secondary relevance since theta over-

production occurred also in the unmedicated subgroup of

six patients.

TCD
The mechanisms generating resting EEG are still a subject of

debate, in particular the role of the thalamus (Nunez et al.,

2001). Encouraged by our earlier finding of strong thalamo-

cortical coupling (Sarnthein et al., 2003, p. 65; Sarnthein et al.,

2005, p. 114), we propose here an interpretation of the results

in the framework of TCD. This thalamocortical concept of

chronic neurogenic pain was proposed (Llinás et al.,

1999,2001; Jeanmonod et al., 2001b) on the basis of experi-

mental evidence (Llinás and Jahnsen, 1982; Ribary et al., 1991;

Steriade et al., 1997; Steriade, 2001) and the clinical finding of

LTS in pain patients (Lenz et al., 1989; Jeanmonod et al.,

1993,1996). It may be characterized using the following

sequential set of events (schematized in Fig. 7):

(i) A lesion leads to deafferentation of excitatory inputs

on thalamic relay cells and initiates the neurogenic

pain syndrome. The lesion may be peripheral or central

and may lead to bottom–up deafferentation (Fig. 7A). A

cortical lesion may lead to top–down deafferentation.

The deafferentation of excitatory inputs results in dis-

facilitation and cell membrane hyperpolarization.

(ii) In the hyperpolarized state, deinactivation of calcium

T-channels causes thalamic relay neurons to fire LTS

bursts at theta frequency (Llinás and Jahnsen, 1982).

Fig. 7 Scheme of thalamocortical circuits relevant for TCD. Shown are three thalamocortical modules which we consider to be identical
(Llinás et al., 1999). Module A is depicted in more detail ( Jones, 2001). One module includes, first, cortical layers (I, IV, V and VI) with
pyramidal cells and one grey GABAergic inhibitory cell, second, nucleus reticularis (RT, grey GABAergic inhibitory cells) and third, thalamus
(TH), represented by one specific and one non-specific cell. The specific thalamic cell projects to the apical dendrites of both layer V and VI
pyramidal cells and collaterals sustain reticular feedback and cortical feedforward inhibitions. The non-specific thalamic cell projects to RT
and only to the layer V pyramidal neuron but has a divergent connection onto the neighbouring module. The corticothalamic feedback
connection is depicted as intramodular onto RT and its thalamic relay cell, and divergent intra- and cross-modular onto three thalamic
relay cells. There are also divergent cross-modular reticulothalamic projections. The open arrows underline the cross-modular passages
through thalamocortical, corticothalamic, reticulothalamic and corticocortical pathways. See the section discussion for details on the
dynamics of the TCD.
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Such hyperpolarization is thought to correlate with the

state of reduced activity observed by PET in the thalamus

of neurogenic pain patients (Iadarola et al., 1995; Hsieh

et al., 1995; Nakabeppu et al., 2001; Jones et al., 2003).

(iii) Bursting thalamic relay neurons exert a rhythmic influ-

ence on thalamocortical loops in the theta frequency

band. Thalamic and cortical areas are densely and recip-

rocally interconnected (Steriade et al., 1997; Jones, 2001).

The tight functional coupling between thalamus and

cortex is confirmed by the high theta coherence between

the two (Sarnthein et al., 2003). This coupling is

sustained by thalamocorticothalamic and also by

thalamoreticulothalamic and corticoreticulothalamic

recurrent projections (Steriade, 2001). The tendency of

the thalamocortical network to maintain a given func-

tional modality reinforces the hyperpolarized state over

time (Pedroarena and Llinas, 1997).

(iv) Divergent thalamocortical, corticothalamic and reticu-

lothalamic projections provide the anatomical substrate

for diffusion of low frequency activity to an increasing

number of neighbouring thalamocortical loops (Fig. 7B:

theta cross-modular spread). This phenomenon may

explain the often observed delay between the occurrence

of the causal insult and the beginning of pain.

(v) After recruitment of a sufficiently large number of

thalamocortical loops, excess theta power becomes meas-

urable in thalamic local field potentials (Sarnthein et al.,

2003), MEG (Llinás et al., 1999) and EEG (Fig. 1A). Why

do we not observe a sharp EEG spectral peak at the LTS

interburst frequency of 4 Hz? LTS exert influence on the

thalamocortical system, but the same is true for cortical

determinants of the EEG, such as refractory periods and

axonal transmission latencies (Nunez et al., 2001). Such

determinants are not affected by the neurological dis-

orders of our patients. This may explain why the presence

of LTS in patients results in excess EEG oscillations

spread over the whole theta band. Furthermore,

increased low-frequency oscillations also occur during

sleep (Steriade, 2001) and cognitive tasks (Klimesch,

1999; Kahana et al., 2001), where they are considered

as normal. It is the continuous and widespread overpro-

duction of slow rhythms in the awake brain that char-

acterizes TCD.

(vi) The final step towards the production of neurogenic pain

is related to the reciprocal cortico-cortical inhibition

mediated by GABAergic interneurons, which is a general

feature of cortical organization (Fig. 7C). Thalamo-

cortical modules in theta mode exert less collateral

inhibition on neighbouring modules, which are thereby

overactivated in high (beta) frequencies. This event has

been termed edge effect (Llinás et al., 1999). The concept

is inspired by the effect of lateral inhibition in the retina.

The asymmetrical inhibition between a low frequency

cortical area and neighbouring high frequency domains

provides a ring of reduced inhibition onto, and thus

activation of, the cortex surrounding this low frequency

area. Support for such an effect was first provided by the

increased interfrequency covariation between theta

and beta ranges in MEG (Llinás et al., 2003; Llinás

et al., 2005). Recently, the increase of high frequency

activation around a core of theta modules could be

demonstrated in a slice preparation (Llinás, et al.,

2003; Llinás et al., 2005). Also in the thalamus of patients,

high interfrequency covariation and bicoherence was

found (Sarnthein et al., 2003). We were able to show

enhanced bicoherence also in the scalp EEG from

patients compared with healthy controls (Fig. 4). The

dominance of beta activity in frontal electrodes (Fig. 3)

also suggests anterior cortical generators of the scalp EEG,

which we currently investigate and which would be con-

sistent with activation of the insulae in the known cereb-

ral network relevant for pain processing (Treede et al.,

1999; Jones et al., 2003; Apkarian et al., 2005).

Effect of CLT
The observed gradual change of the patients’ EEG spectra

towards the healthy control group spectrum has the following

implications. First, it provides further support for our hypo-

thesis that the amount of thalamic LTS burst production finds

a correlate in the scalp EEG. Second, the gradual response

to the sudden removal of LTS confirms that LTS activity

constitutes only one of several determinants of EEG rhythmi-

city (Nunez et al., 2001). Third, the EEG change over several

months allows an estimate of the timeframe for wide range

plasticity in the brain and parallels our observation of gradual

clinical improvement (Jeanmonod et al., 2001a).

Conclusions
Our data relate the clinical phenomenon of chronic neuro-

genic pain to slowed rhythmicity of scalp EEG. This relation-

ship is further supported by the reduction of theta power in

the EEG of patients after the therapeutic lesion CLT in the

medial thalamus. The TCD mechanism offers an explanation

of the pathophysiology in linking the function of calcium

T-channels in the membrane of thalamic cells to the global

properties of scalp EEG power spectra. EEG spectral analysis

might in this way serve as an additional tool to diagnose

chronic neurogenic pain and to monitor the postoperative

development of patients.
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