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The breakup of solid aggregates suspended in a turbulent flow is considered. The
aggregates are assumed to be small with respect to the Kolmogorov length scale
and the flow is assumed to be homogeneous. Further, it is assumed that breakup is
caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore
assumed to follow a first-order kinetic where KB(x) is the breakup rate function
and x is the aggregate mass. To model KB(x), it is assumed that an aggregate breaks
instantaneously when the surrounding flow is violent enough to create a hydrodynamic
stress that exceeds a critical value required to break the aggregate. For aggregates
smaller than the Kolmogorov length scale the hydrodynamic stress is determined
by the viscosity and local energy dissipation rate whose fluctuations are highly
intermittent. Hence, the first-order breakup kinetics are governed by the frequency
with which the local energy dissipation rate exceeds a critical value (that corresponds
to the critical stress). A multifractal model is adopted to describe the statistical
properties of the local energy dissipation rate, and a power-law relation is used to
relate the critical energy dissipation rate above which breakup occurs to the aggregate
mass. The model leads to an expression for KB(x) that is zero below a limiting
aggregate mass, and diverges for x → ∞. When simulating the breakup process, the
former leads to an asymptotic mean aggregate size whose scaling with the mean energy
dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

1. Introduction
Breakup of small suspended aggregates (clusters, flocs) due to hydrodynamic stresses

induced by fluid flow is crucial to both aggregation (coagulation, flocculation) and
dispersion processes. The former finds broad application in solid–liquid separation
where the transformation of particles in the colloidal size range into aggregates of
a few micrometres to millimetres in size improves the performance of any separator.
Aggregation is usually performed in an agitated device where vigorous stirring leads
to aggregate breakup which limits the formation of large aggregates. Regarding the
reverse process, i.e. dispersing a solid into a liquid, aggregate breakup by vigorous
stirring becomes the controlling mechanism.

This paper addresses the modelling of breakup kinetics of solid aggregates in a
homogeneous turbulent flow. It is generally assumed that breakup is a first-order
kinetic process, and, accordingly, the population balance equation describing the
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evolution of the cluster mass distribution (CMD) can be written

∂c(x, t)

∂t
= −KB(x)c(x, t) +

∫ ∞

x

g(x, y)KB(y, t)c(y, t) dy, (1.1)

where c(x, t) is the CMD, x is the cluster mass normalized by the mass of the primary
particle that forms the aggregate, t is the time, KB(x) is the breakup rate function, and
g(x, y) is the fragment mass distribution (FMD). Hence, the number of fragments of
mass (x, x +dx) formed by the breakup of a cluster mass y is g(x, y)dx. Although the
process described by (1.1) is relevant to both aggregation and dispersion, modelling
strategies to describe KB(x) and g(x, y) are scarce in the literature. Based on ideas of
Delichatsios (Delichatsios 1975; Delichatsios & Probstein 1976), Kusters (1991) and
Flesch, Spicer & Pratsinis (1999) developed an exponential breakup rate function,

KB(x) =

√
4

15π

(
〈ε〉
ν

)1/2

exp

(
−B[a(x)]−1/p

〈ε〉

)
, (1.2)

where 〈ε〉 is the mean energy dissipation rate, ν is the kinematic viscosity, a(x) is the
characteristic size of an aggregate of mass x, and B and p are parameters that describe
the response of an aggregate to an applied hydrodynamic stress. Equation (1.2)
applies to aggregates smaller than the Kolmogorov length scale, η = (ν3/〈ε〉)1/4,
and it assumes that the force that drives breakup (i.e. the mechanism that creates
stresses acting on the aggregate) fluctuates with a Gaussian distribution. In a simpler
framework, it is assumed that breakup is faster the more vigorous the stirring and
that large aggregates are more likely to break than small ones, which is translated
into a power law (Pandya & Spielman 1982; Spicer & Pratsinis 1996),

KB(x) = K0G
D[a(x)]E, (1.3)

where K0 is a constant, G is the characteristic velocity gradient of the flow (shear
rate), and D and E are positive empirical parameters that depend on the particular
system under investigation.

Recently, shortcomings of the rate functions given by (1.2) and (1.3) have been
found. Regarding the power-law breakup rate function given by (1.3), Bäbler &
Morbidelli (2007) showed that the moments of the steady-state CMD that results
from a balance between aggregation and breakup, where the latter is described
by (1.3), exhibit power-law scaling with both G and the solid volume fraction φ;
the scaling exponents depend on D and E. Analysis of experimental data revealed
that the scaling of the steady-state moments of the CMD is different for G and φ

than predicted by the model, from which it is concluded that (1.3) is not flexible
enough to describe the experimental findings. Further, the lack of any physical
picture behind (1.3) is unsatisfactory because its parameters cannot be estimated
other than by solving (1.1) and fitting D and E to experimental data. Regarding the
exponential breakup rate function given by (1.2), for a(x) � (B/〈ε〉)p we have that
KB(x) converges to a constant, which is unsatisfactory. Breakup that is governed by a
constant breakup rate function cannot compete with aggregation (Bäbler & Morbidelli
2007), whose rate function is strongly dependent on the size of the colliding aggregates
(Saffman & Turner 1956), and no steady-state CMD would result from a balance of
aggregation and breakup once the aggregates grow larger than (B/〈ε〉)p . (There is
still the possibility that the steady state observed in the aggregation of a suspension
of primary particles in a turbulent flow results from an aggregation efficiency that
drops to zero at a certain aggregate size (Brakalov 1987) but this is not in agreement
with experimental findings (Moussa et al. 2007) and theoretical considerations (Bäbler
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Breakup of aggregates in turbulent flows 263

et al. 2006; Bäbler 2008)). Finally, experiments (Moussa et al. 2007; Sonntag & Russel
1986; Kobayashi, Adachi & Ooi 1999) and theoretical studies (Adler & Mills 1979;
Sonntag & Russel 1987b; Horwatt, Feke & Manas-Zloczower 1992a; Higashitani,
Iimura & Sanda 2001) suggest the existence of a critical aggregate size below which
aggregates in a given flow do not break, which is not rigorously included in (1.2) and
(1.3) (for which KB(x) > 0 for x > 0).

In this paper, a modelling strategy is proposed that allows us to derive expressions
for KB(x) and g(x, y) in a physically sound framework (§ 2). It is assumed that
the first-order breakup kinetics are governed by the turbulent fluctuations where
only turbulent events that are violent enough lead to breakup. The magnitude of a
turbulent event required to cause breakup is thereby determined by the properties
of the aggregate and depends in particular on the aggregate mass. To describe the
turbulent fluctuations a multifractal model is adopted which provides a sufficient
description of the fine-scale turbulence (§ 3). In particular, the multifractal model
accounts for the fine-scale intermittency that causes a Reynolds number dependence
of the statistical properties of the flow. Further, a power-law relation is used to relate
the critical magnitude of a turbulent event that causes breakup to the mass of an
aggregate (§ 4). The resulting breakup rate function presented in § 5 is substantially
different to (1.2) and (1.3) in that KB(x) = 0 and KB(x) → ∞ below and above a certain
limiting aggregate size, respectively. Further, KB(x) exhibits a Reynolds number
dependence due to intermittency that is missing in the present models. Finally, it will
be shown that when turbulence is modelled using a Gaussian velocity gradient, the
modelling framework presented leads to an expression for KB(x) that in the limits
of x → 0 and x → ∞ reduces to an exponential function and a power law that are
formally identical to (1.2) and (1.3), respectively.

2. Model development
2.1. Breakup rate function

Let us consider an ensemble of aggregates suspended in an incompressible turbulent
flow. The flow is assumed to be statistically stationary and homogeneous in spatial
coordinates, and it is assumed that the suspension is sufficiently diluted that the
statistical properties of the flow are not altered by the presence of the aggregates. It
is assumed that the aggregate Reynolds number Rp = Ga2/ν � 1 and the aggregate
Stokes number Stp = τpG � 1, where τp is the relaxation time of the aggregate
motion, i.e. the time it takes the aggregate to adjust its velocity to the velocity of the
surrounding fluid flow, which is computed as (Hinze 1975)

τp =
(2ρp/ρf + 1)a2

9ν
, (2.1)

where ρp and ρf are the density of the aggregate and the fluid phase, respectively.
Stp � 1 implies that the aggregates have negligible inertia and that they adjust their
velocity instantaneously to the surrounding flow. Thus, hydrodynamic stresses created
by the drag due to acceleration of the aggregates are negligible. Also, this implies that
the aggregate concentration field can be treated as statistically homogeneous. Further,
Rp � 1 and Stp � 1 identifies the dominant mechanism for aggregate breakup to be
due to viscous stresses caused by the local velocity gradient of the fluid flow. Breakup
due to interparticle collisions appears unlikely in the present framework. An encounter
between two aggregates assuming Rp � 1 and Stp � 1 is controlled by the viscous
fluid motions in the vicinity of the aggregates. These cause a strong retardation and
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a strong deflection of the relative aggregate trajectories (Batchelor & Green 1972;
Bäbler et al. 2006; Joseph et al. 2001). The change resulting from a collision that
creates enough momentum to break one of the aggregates is therefore negligible (this
is not the case for heavy particles with finite inertia). Finally, estimating G ≈ (〈ε〉/ν)1/2,
for a small density ratio the aforementioned conditions are equivalent to a � η, where
η = (ν/〈ε〉)1/4 is the Kolmogorov length scale. Hence, the present model is applicable
to small aggregates suspended in a liquid flow (e.g. for a suspension of polymeric
aggregates in an aqueous turbulent flow with 〈ε〉 = 1 m2 s−3, which is a typical value
for industrial coagulators, we have ρp/ρf ≈ 0.9–2.2 and η ≈ 30 μm).

For aggregates smaller than the Kolmogorov length scale, the properties of the flow
on the length scale of the aggregate are determined by the local energy dissipation rate
and the viscosity. Thereby, the local energy dissipation rate is a fluctuating quantity
whose fluctuations are highly intermittent (Batchelor & Townsend 1949; Meneveau &
Sreenivasan 1991; Frisch 1995). That is, although the flow is statistically stationary and
homogeneous and therefore the mean energy dissipation rate is distributed uniformly,
in certain regions of space and time the local energy dissipation rate assumes values
that are very different from the mean (for a proper definition of intermittency see
Frisch 1995). These intense events appear irregularly as short-lived bursts, and their
magnitude and frequency increases with increasing Reynolds number.

Let us continue by focusing on the breakup event. The time scale τε denotes the
duration over which the flow in the vicinity of an aggregate persists in a Lagrangian
framework. The local flow is determined by the local velocity gradient, γ ∼ (ε/ν)1/2,
which is approximately constant on the length scale of the aggregate. Adopting a
simplistic view, τε is understood as the characteristic time of the smallest eddies
of the flow (i.e. eddies of the size of the Kolmogorov length scale). Regarding the
breakup event, it is assumed that its characteristic time is much shorter than τε as
originally suggested by Sonntag & Russel (1986, 1987c). In other words, it is assumed
that the breakup event is instantaneous with respect to the characteristic time of the
smallest eddies (the applicability of this assumption is discussed in the context of
the aggregate response function in § 4). The importance of this assumption in the
modelling of droplet and bubble breakup was also pointed out by Risso (2000). The
basic principle of the present model is then that breakup is caused only by eddies
that are violent enough, i.e. pieces of fluid that exhibit a large velocity gradient.
Accordingly, the breakup kinetics are governed by the frequency of appearance of
these violent eddies, that is, the turbulent fluctuations of the local velocity gradient.
To understand this, let us consider an aggregate suspension where all aggregates are
assumed to be identical. If there were no fluctuations in the local velocity gradient
(and hence, no fluctuations in the stress exerted on the aggregates) we have the
situation that all aggregates would be in the same environment. Hence, they would
either break within the characteristic time of the breakup event (which in the present
case is identical for all aggregates) or survive, depending on the magnitude of the
applied stress. On the other hand, if we allow for fluctuations in the velocity gradient
the (macroscopic) rate of breakup is determined by the frequency with which the
stress exceeds a certain critical value above which the aggregates break. It is this
latter principle that is developed within this paper.

Let us interpret the intermittent character of the energy dissipation rate field in
such a way that there are intense regions embedded in a field of low intensity. The
intense regions are thereby characterized by their capability to break the aggregates.
To be precise, in the intense regions ε > εcr , where εcr is a critical energy dissipation
rate (that corresponds to a critical velocity gradient and, accordingly, to a critical
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(a)

Inactive

c(x) c(x) xcr(εi)

y y
x x

Vi

Vm

εi

Vi
εi

ε < εcr

Inactive
Vm

ε < εcr

(b)

Qi�(εi, x, y)C(y)

QiC(y)

Qi

Figure 1. (a) Intermittency creates regions of high energy dissipation rate (represented by
the shaded boxes) where the aggregates are broken up. (b) The fragments resulting from the
breakup of an aggregate of mass y in region i have a mass distribution G(εi, x, y).

stress) above which the aggregates break. εcr = εcr (x) is assumed to depend solely
on the properties of the aggregates. The region of fluid with ε � εcr (x), where the
aggregates do not break, is denoted as inactive. It is assumed that the intense regions
continuously engulf fluid from the inactive environment at a rate Qi , where the
index i refers to the region characterized by a local energy dissipation rate εi . The
detailed mechanism of engulfment and the evolution of the region of active fluid is of
minor importance for the present analysis (analogous expressions are derived if it is
assumed that an intense region forms from an arbitrary parcel of fluid of volume Vi

that remains segregated from the bulk flow for a time τε,i). Figure 1(a) illustrates this
scenario, where the intense regions are shown by the shaded boxes. A simple material
balance of aggregates of mass x in the inactive fluid is

Vm

dCm

dt
= −

∑
i

QiCm, (2.2)

where Cm and Vm denote the aggregate concentration and the volume of the inactive
fluid, respectively. The aggregates break instantaneously when entering an intense
region. As a consequence of this, the material balance of an intense region is
VidCi/dt = 0, where Ci and Vi are the concentration and the volume of region i,
respectively. The latter material balance has the trivial solution Ci = 0, i.e. aggregates
of mass x cannot exist in the intense region. The rate of decay of the total number
of aggregates, N , is then governed by

dN

dt
= Vm

dCm

dt
+

∑
i

Vi

dCi

dt
, (2.3)

which equates to N = N0 exp(−KBt), where N0 is the initial number of particles in the
inactive fluid and KB is the breakup rate function

KB =
∑

i

Qi/Vm. (2.4)

In what follows, Qi and Vm are expressed through the properties of the flow. Qi is
the volume flow rate with which an intense region characterized by εi engulfs fluid
from the environment. This is, expressed as

Qi = Vi/τε,i , (2.5)
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(a)
ε+

ε2

ε1

t+

t+

ε+

ε2

ε1

(b)

Figure 2. Energy dissipation rate along the particle trajectory in a degenerated field of
energy dissipation rate. Variables superscripted by + indicate the Lagrangian frame.

where Vi is the volume of region i, i.e. the fraction of fluid with εi , is given by
Vi/V = pε(εi)dε. Here, V is the total volume and pε(ε) is the probability density
function (PDF) of the local energy dissipation rate. The time scale τε was introduced
above as the time scale over which the flow on the length scale of the aggregate
persists in a Lagrangian framework. To get an understanding of (2.5), let us consider
a degenerated flow field where the local energy dissipation rate assumes either a
value ε1 or ε2 and where there are particles moving in this field. Two very different
realizations of the energy dissipation rate along a particle trajectory are sketched in
figure 2. In case (a), the particle moves fast and it often switches from ε1 to ε2. In case
(b), the particle moves slowly and it switches only occasionally between ε1 and ε2.
When there are no preferential particles concentrations (which holds for particles with
Stp � 1) the fraction of time the particle samples an energy dissipation rate between ε

and ε+dε is given by the PDF of ε (Tennekes & Lumley 1972; Borgas 1993) which is
considered the same for the two cases. From this scenario, it is reasonable to assume
that the volume flux of fluid from region ε1 to region ε2 is proportional to the average
frequency with which the particles switch from ε1 and ε2, and further, that the average
frequency with which the particles switch from ε1 and ε2 is inversely proportional to
τε(ε2), i.e. the average time the particle spends in region ε2 per passage. Hence, the
volume flux is given by the volume of region ε2 divided by τε(ε2). Finally, the volume
of the inactive fluid, Vm, is the fraction of fluid with ε � εcr (x) which is given by

Vm/V =

∫ εcr (x)

0

pε(ε) dε. (2.6)

Combining these relations and expressing the sum in (2.4) through an integral, we
finally obtain the breakup rate function:

KB(x) =

∫ ∞

εcr (x)

pε(ε)/τε(ε) dε

∫ εcr (x)

0

pε(ε) dε

. (2.7)
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It is seen that the breakup rate function given by (2.7) contains three functions.
These are on one hand the two functions representing turbulence, i.e. pε(ε) and τε(ε),
which are only dependent on the properties of the flow. On the other hand, we
have the aggregate response function εcr (x) which is assumed to be only dependent
on the properties of the aggregates. The elegance of the present model is thus the
decomposition of the breakup problem into a turbulent part and a part addressing the
aggregate mechanics, i.e. the response of an aggregate to an applied stress. Both these
parts can be treated independently. It is noticed that this decomposition shows (2.7)
to be substantially different to the so-called eddy collision models that are developed
to describe the breakup of large fluid particles (i.e. bubbles and droplets with sizes
in the inertial subrange of turbulence) (Prince & Blanch 1990; Tsouris & Tavlarides
1994; Luo & Svendson 1996). In these models the breakup rate function is given as
the product of the collision frequency of a particle with eddies of comparable size
and a breakup efficiency relating the energy required to break a droplet to the energy
provided by the collision with the eddy. The resulting expression for KB consists
of an integral over all eddy sizes whose collisions lead to breakup. As pointed out
by Lasheras et al. (2002) the range of eddies considered capable of breaking the
particle (which essentially defines the integration boundaries) has a strong influence
on the value of KB and it is to a large extent arbitrary. Equation (2.7), on the other
hand, does not rely on the notion of eddy collision and, additionally, the integration
boundaries are well defined (the integration to infinity in the numerator of (2.7) is
benign since pε(ε) vanishes for ε → ∞ as shown shortly).

Before addressing the two parts comprising (2.7), the present modelling framework
is exploited to draw some conclusions about the FMD g(x, y).

2.2. Fragment mass distribution

Let us return to the simple picture sketched in figure 1(a). Aggregates in the inactive
fluid are engulfed into region i at a rate Qi where they break. Let us assume
the original aggregates have a mass y and the fragments leaving region i have
a distribution G(εi, x, y), where G(εi, x, y)dx is the number of fragments of mass
(x, x + dx) resulting from the breakup of an aggregate of mass y in an intense
region characterized by εi (figure 1b). Accordingly, G(εi, x, y) is referred to as the
elementary FMD. To be consistent with our notion of instantaneous breakup, we have
G(εi, x, y) = 0 for x >xcr (εi) (and for x >y), where xcr (εi) is the inverse of the aggreg-
ate response function εcr (x). Hence, the fragments that leave region i are all smaller
than the maximum mass sustainable in region i. This assumes in particular that a
series of breakup events leading to fragments smaller than xcr (εi) is also instantaneous.
Accounting for all active regions, the global FMD, g(x, y), to be used in (1.1) follows as

g(x, y) =

∑
i G(εi, x, y)Qi∑

i Qi

. (2.8)

Using Qi = Vi/τε(εi) and expressing Vi through the PDF of the local energy
dissipation rate results in

g(x, y) =

∫ ∞

εcr (y)

G(ε, x, y)pε(ε)/τε(ε) dε

∫ ∞

εcr (y)

pε(ε)/τε(ε) dε

, x � y. (2.9)

Analogous to the breakup rate function (2.7), the FMD given by (2.9) decomposes
the problem into a turbulent part represented by pε(ε) and τ (ε) and a part depending
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on the properties of the aggregates represented by G(ε, x, y). Unlike the aggregate
response function εcr (x), that is discussed shortly, the elementary FMD, G(ε, x, y),
is difficult to model rigorously: G(ε, x, y) gives the statistics of the breakup of an
individual (well-defined) aggregate of mass y in a (well-defined) flow of magnitude ε.
Simulations or experiments designed to study the breakup of an individual aggregate
must therefore be repeated several times in order to obtain a representative elementary
FMD. Therefore, we propose two simple empirical forms of G(ε, x, y) which, for
convenience, are presented within this section.

The first empirical model for G(ε, x, y) is a uniform FMD. That is, the probability
that the breakup of an aggregate of mass y >xcr (ε) in a region characterized by ε

leads to a fragment of mass x � xcr (ε) is uniform, i.e.

G(ε, x, y) =

{
A1, x � xcr (ε) and y > xcr (ε)
0, otherwise

(2.10)

where mass conservation,
∫ ∞

0
x G(ε, x, y) dx = y, imposes A1 = 2y/[xcr (ε)]2. Substi-

tuting (2.10) into (2.9) leads to a global FMD:

g(x, y) =

[ ∫ εcr (x)

εcr (y)

pε(ε)

τε(ε)

2y

[xcr (ε)]2
dε

][ ∫ ∞

εcr (y)

pε(ε)

τε(ε)
dε

]−1

, x � y. (2.11)

In the second empirical model for G(ε, x, y) it is assumed that the breakup of an
aggregate of mass y >xcr (ε) in a region characterized by ε forms only fragments of
mass xcr (ε). In the view of figure 1(b), the fragments leaving region i all assume the
maximum mass that is allowed to survive in region i. This leads to an elementary
FMD that is a Dirac delta function,

G(ε, x, y) = A2δ(x − xcr (ε)), y > xcr (ε), (2.12)

where mass conservation imposes A2 = y/xcr (ε). Substituting (2.12) into (2.9) leads to
a global FMD:

g(x, y) =

[
−

(y

x

)pε(εcr (x))

τε(εcr (x))

dεcr (x)

dx

][ ∫ ∞

εcr (y)

pε(ε)

τε(ε)
dε

]−1

, x � y. (2.13)

The two FMDs given by (2.11) and (2.13) contain the same three functions as (2.7)
to represent turbulence and the aggregate mechanics. It will be shown later that the
two FMDs differ substantially in the formation of small fragments but that they
lead to similar predictions for large fragments. Moreover, their simple form allows an
analytical treatment of the asymptotic CMD, c(x, t) as t → ∞, resulting from (1.1).
Finally, we note that we did not use the number of fragments to characterize the two
empirical models for the elementary FMDs, (2.10) and (2.12). This number is given
by w =

∫ ∞
0

G(ε, x, y)dx and it is seen that w depends on the mass of the breaking
aggregate, i.e. y. The elementary FMDs (and the global FMDs) proposed in this
work are therefore non-self similar (i.e. G(ε, x, y) cannot be expressed as a unique
function of x/y). Self-similar FMDs are used frequently in the literature (Spicer &
Pratsinis 1996; Flesch et al. 1999; Bäbler & Morbidelli 2007) but there is no physical
constraint that imposes a self-similar FMD.

3. Turbulent part of KB(x)

This section treats the turbulent part of the breakup model introduced in § 2. That
is, expressions for the PDF of the local energy dissipation rate, pε(ε), and the time
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Breakup of aggregates in turbulent flows 269

scale τε(ε) appearing in (2.7), (2.11) and (2.13) are provided. A multifractal model is
adopted to describe pε(ε), whereas for τε(ε) we will refer to Lagrangian statistics.

3.1. A multifractal model for pε(ε)

3.1.1. Multifractal formalism

(Multi)fractal models provide a statistical description of fine-scale turbulence, that
is, phenomena taking place in the equilibrium range of turbulence. Although these
models cannot be directly derived from the Navier–Stokes equation, they offer a
physically sound explanation for the Reynolds number dependence of pε(ε) and
its related quantities (e.g. skewness and flatness of ∂ui/∂xi) and the anomalous
scaling of inertial-range velocity structure functions (Frisch 1995). Historically, the
(multi)fractal description of turbulence originates from the concept of the energy
cascade of Richardson and Kolmogorov. In the view of the latter, the energy brought
into the flow feeds into large eddies of characteristic size l0 and characteristic velocity
v0, where l0 is comparable to the integral length scale of the flow, and v0 is understood
as the velocity difference between two points separated by a distance l0 which is
comparable to the root-mean-square velocity of the flow. The motion of these large
eddies is unstable which leads to the formation of somewhat smaller eddies of size
l1 and velocity v1 which now receive their energy from their larger mother eddies.
These smaller eddies are themselves unstable and form even smaller eddies of size l2
and velocity v2. This process continuous until the eddies reach a size where viscosity
is effective in dissipating the energy that is cascading from the large to successively
smaller eddies.

In (multi)fractal models, the Richardson–Kolmogorov eddy cascade is elaborated as
a multiplicative random process. Basically, the length and the velocity of eddies of the
nth generation are related to their mother eddies through ln = Wln−1 and vn = Mvn−1,
where M and W are random variables whose probability distribution is independent
of n, i.e. of the length and velocity scale (we continue to use the term eddy to link the
multiplicative process to the Kolmogorov–Richardson cascade; in the present context
an eddy refers simply to a parcel of fluid). For illustration, let us consider two simple
choices of M and W . In the β-model by Frisch, Sulem & Nelkin (1978) W = 1/2,
and M is such that a fraction β � 1 of the 23 eddies formed at each cascade step
have M = (2β)−1/3 whereas the remaining eddies have M = 0. Accordingly, the cascade
consists of eddies with finite velocity (active eddies) and eddies with zero velocity
(passive eddies). As shown shortly, this choice of M and W leads to a fractal cascade.
The other is the one-dimensional p-model of Meneveau & Sreenivasan (1987, 1991)
where W = 1/2, and for the two eddies formed at each cascade step M assumes either
a value P1 or P2, where energy conservation requires P 3

1 + P 3
2 = 1.

From these simple models it is seen that the fluctuations in vn become stronger as
n increases, i.e. as (ln/ l0) decreases. It is convenient in the following to express the
velocity scale at the nh generation through

vl = v0 (l/ l0)
h , (3.1)

where, for simplicity, vl ≡ vn and l ≡ ln, and where the scaling exponent h is a random
variable that fluctuates between limits that are independent of (l/ l0). Equation (3.1)
is also the starting point of a more detailed interpretation of multifractal models
(Frisch 1995) (where (3.1) is treated as a scaling relation instead of an equality) which
is based on the observation that in the limit of zero viscosity (i.e. infinite Reynolds
number and, accordingly, (l/ l0) → 0) the Navier–Stokes equation is invariant under
the scaling transformation u∗ = λhu, x∗ = λx, t∗ = λ1−ht , where λ is a positive factor.
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270 M. U. Bäbler, M. Morbidelli and J. Ba�ldyga

It is readily observed from our two simple cases of M and W that the fraction of
fluid assuming a certain value of h depends on the number of generations in the
cascade, that is, on (l/ l0). In the β-model where vl is either finite in the active regions
or zero in the passive regions, the fraction of fluid where h assumes a finite value is
(l/ l0)

− log2 β . Generally, within a constant factor, the fraction of fluid assuming a value
(h, h + dh) is expressed through

ph(h)dh ∼ (l/ l0)
ds−fh(h) dh, (3.2)

where ds is the dimension of the space and fh(h) is a function that becomes scale
invariant for (l/ l0) → 0. From (3.2) it is seen that for fh(h) < ds the fraction of fluid
assuming a certain value of h is decreasing with decreasing (l/ l0) which allows us to
interpret fh(h) as a fractal dimension. Accordingly, the function fh(h) is referred to
as the multifractal spectrum.

The multifractal spectrum resulting from both the β-model and the p-model lead
however to an inadequate description of the turbulent flow. In particular, the β-model
leads to a linear relation for the scaling exponent of the velocity structure function in
disagreement with experiments (Frisch 1995, p. 132). The p-model, on the other hand,
which is developed assuming a one-dimensional cascade, covers only scaling exponents
for which (in three dimensions) fh(h) > 2, or, in other words, only eddies that fill the
space with a fractal dimension larger than 2. Rare events that exhibit a small fractal
dimension and which are found to be very violent (i.e. large values of vl) are not
described by the p-model. A better description is thus obtained by estimating fh(h) dir-
ectly from experiments (Meneveau & Sreenivasan 1991) without assuming a model for
M and W . Before referring to fh(h) determined from experiments, let us elaborate how
the present results can be used to describe the PDF of the local energy dissipation rate.

Let us consider the cascade of successively smaller eddies from above. Following
the refined similarity hypothesis (Kolmogorov 1962), the volume-averaged energy
dissipation rate over an eddy of size l is εl ∼ v3

l / l (Frisch et al. 1978). Hence, analogous
to the characteristic eddy velocity vl resulting from a multiplicative process, so does
εl . Therefore, using vl ∼ (εll)

1/3 in (3.1) and (3.2) we obtain

εl = 〈ε〉 (l/ l0)
α−1 , (3.3)

and

pα(α) ∼ (l/ l0)
ds−fα (α) , (l/ l0) → 0, (3.4)

respectively, where the scaling exponent α = 3h and fα(α) = fh(α/3), and where
〈ε〉 = v3

0/l0. The cascade terminates when viscosity is effective in dissipating the energy
brought into the flow. This happens at a length scale ld = (ν3/εl)

1/4. Substituting this
expression into (3.3) results in

ε = 〈ε〉
(

η

l0

)4(α−1)/(α+3)

. (3.5)

Note that we do not to index the left hand side of (3.5), implying that the energy
dissipation rate averaged over the dissipation scale ld = l0 (η/l0)

4/(α+3) equals the local
energy dissipation rate. The probability of having ε ∈ (ε, ε + dε) is given in the
following by the probability of having a scaling exponent α ∈ (α, α + dα) for an eddy
of size ld , which is given by (3.4). Substituting for ld in (3.4) results in

Pα(α) ∼
(

η

l0

)4[ds−fα (α)]/(α+3)

, (η/l0) → 0 (3.6)
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fα
(1)(α)

α

Figure 3. One-dimensional multifractal spectrum f (1)
α (α). Solid symbols refer to measurements

of Meneveau & Sreenivasan (1991). The curves refer to f (1)
α (α) given by (3.8) (solid curve), She

& Leveque (1994) (dashed curve), and the p-model (dashed-dotted curve). For these models,
the minimum value of α that characterizes the most violent turbulent events is αmin = 0.12 (�),
0.33 (�) and 0.51 (+), respectively.

where a capital letter P is used to indicate that (3.6) refers to the dissipation length
scale. From (3.6), the PDF of the local energy dissipation rate, pε(ε), is obtained
within a constant factor through

pε(ε)dε = Pα(α)dα. (3.7)

3.1.2. The multifractal spectrum

Let us now turn to the multifractal spectrum fα(α). Figure 3 shows the one-
dimensional spectrum, f (1)

α (α) (the superscript indicates that the embedded dimension
of the spectrum is ds = 1), determined experimentally (Meneveau & Sreenivasan 1991).
Essentially, f (1)

α (α) is the logarithm of the PDF of α, whereas α itself is the negative
logarithm of ε ((3.5) and (3.6)). Hence, small values of α refer to large values of ε,
and vice versa. These assume small values of f (1)

α (α) and therefore appear with low
probability.

The estimation of the spectrum deserves some comments. Meneveau & Sreenivasan
(1991) determined f (1)

α (α) via the moments of εl . Thereby, high-order moments of εl

that emphasize regions of intense dissipation were obtained by extrapolating the tails
of the PDF of εl . This allowed them to estimate the left-hand tail of f (1)

α (α) shown in
figure 3. Also, the infimum of α was estimated through this procedure as αmin = 0.12
which is close to αmin = 0.15 found by van de Water & Herweijer (1999) by evaluating
high-order transverse velocity structure functions through a simple scaling argument
(applying their scaling argument to longitudinal velocity structure functions leads to
αmin = 0.48). On the other hand, negative high-order moments of εl that accentuate
regions of low dissipation were not calculated by Meneveau & Sreenivasan due to
insufficient statistical convergence and no extrapolation was applied to obtain these
moments. Hence, the right-hand tail of f (1)

α (α) shown in figure 3 where α assumes
large values contains relatively few data points.
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Figure 4. Length scale separation as a function of Rλ. The solid curve shows L11/L given
by (3.9) where L = k3/2/〈ε〉. Symbols refer to numerical simulations: �, Wang et al. (1996);
�, Vedula & Yeung (1999); �, Gotoh, Fukayama & Nakano (2002). The dashed curve shows
L11/η given by (3.11).

The experimental spectrum is fitted through (Ba�ldyga & Podgórska 1998)

f (1)
α (α) =

⎧⎨
⎩

8∑
i=0

aiα
i, αmin � α � b,

c1α + c0, b < α,

(3.8)

where a0 = −3.510, a1 = 18.721, a2 = −55.918, a3 = 120.900, a4 = −162.540,
a5 = 131.510, a6 = −62.572, a7 = 16.100, a8 = −1.7264, b = 1.61, c1 = −2.127 and
c0 = 3.913 and which is shown by the solid curve in figure 3. Describing the right-hand
tail of the spectrum (α > 1.61) by a linear function is motivated by a comparison
of the PDF of the local energy dissipation rate with that obtained from numerical
simulations as discussed shortly. For completeness, figure 3 shows also f (1)

α (α) given by
the p-model assuming P 3

1 = 0.4 and P 3
2 = 0.6 (Meneveau & Sreenivasan 1991) (dashed-

dotted curve; to emphasize the limits of the p-model the limiting values of α that admit
f (1)

α (α) = 0 are indicated by +). Additionally, figure 3 shows f (1)
α (α) derived by She &

Leveque (1994) (dashed curve) which was derived by relating the ratio of two adjacent
integer moments of εl to some flow structures. Regarding the left-hand tail of f (1)

α (α),
both the p-model and the model by She & Leveque give reasonable agreement with the
measurements. A significant difference is however observed for the infimum of α where
the p-model and the model by She & Leveque give αmin = 0.51 and 0.33, respectively,
which are significantly larger than αmin = 0.12 found by Meneveau & Sreenivasan
(1991). Ba�ldyga & Podgórska (1998) argue that αmin = 0.12 is more realistic since only
such small values of αmin can describe the asymptotic scaling of the maximum stable
drop size with 〈ε〉 in liquid–liquid dispersions of fluids of similar viscosity.

Having established a functional form of the multifractal spectrum, the PDF of
the local energy dissipation rate follows from (3.6) and (3.7), once the length scale
separation (η/l0) is fixed. The latter depends on the Reynolds number and it is this
dependence that implies the Reynolds-number dependence of pε(ε) in the multifractal
model. A reasonable estimate for l0 is the longitudinal integral length scale L11.
Figure 4 shows L11 normalized by L = k3/2/〈ε〉 as a function of Rλ, where k is the
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turbulent kinetic energy and Rλ is the Reynolds number based on the Taylor length
scale. It is found that with increasing Rλ the normalized integral length scale relaxes
to a constant value. The relaxation is fitted through

L11/L = b1 + (b2 + b3Rλ)
b4, (3.9)

where b1 = 0.243, b2 = 0.027, b3 = 0.082 and b4 = −1.727. Expressing the Reynolds
number through (Pope 2000, chap. 6)

Rλ =

(
20

3

k2

〈ε〉ν

)1/2

, (3.10)

results finally in

l0/η ≈ L11

η
=

(
3

20
R2

λ

)3/4
L11

L , (3.11)

which is shown by the dashed curve in figure 4.
Figure 5 compares pε(ε) obtained from the multifractal model with results from

direct numerical simulations. It shows pε(ε) for Rλ = 38–680 where the solid symbols
refer to the PDF reported by Vedula, Yeung & Fox (2001) and Yeung et al. (2006a).
The latter were obtained by solving the incompressible Navier–Stokes equation using
a pseudospectral method. The computational domain consisted of a periodic box
discretized in up to 20483 grid points. Statistically stationary fluid motion was realized
by large-scale forcing and time integration proceeded over several integral time scales.
The abscissa in figure 5 shows ε in normalized form where μ and σ refer to the
mean and the standard-deviation of ln(ε/〈ε〉), respectively. For Rλ = 38–243 they are
reported in Vedula et al. (2001) whereas for Rλ = 680, μ = −0.83 and σ = 1.616. For
Rλ = 90 and 141, the model based on (3.8) (solid curves) deviates from the simulations
for large values of ε; for Rλ = 38 and 243 a similar deviation is weak or absent. This
deviation might originate from an insufficient length scale separation (η/l0). Recall
that the multifractal model (3.6) requires (η/l0) → 0 in order for f (1)

α (α) to become
scale invariant (for the five Reynolds number shown in figure 5 we have from (3.11)
η/l0 = 22, 56, 104, 227, and 1043, respectively). It is further seen that the left-hand tail
decays approximately linearly in log–log coordinates which motivated us to extend
f (1)

α (α) in (3.8) by a linear right-hand tail. The model by She & Leveque (dashed
curves) predicts smaller probabilities for large values of ε and the distribution is
negatively skewed. Further, the simulations show clearly the appearance of violent
events that exceed the maximum value of ε predicted by She & Leveque (open
triangles).

Finally, for Rλ = 680, the multifractal model based on (3.8) leads to a distribution
that is close to log–normal (represented by the dotted curves). This is not surprising
since for such a large Reynolds number the range of ε shown in figure 5 corresponds to
0.3 <α < 2.4. In this region, the left-hand tail of f (1)

α (α) is approximately parabolic. A
parabolic multifractal spectrum results from the refined model of Kolmogorov (1962),
which assumes that εl (and ε) has a log–normal distribution, and, hence, we observe
a PDF that is log–normal in the core (the multifractal model deviates from log–
normality for Z = (lnε/〈ε〉 − μ)/σ > 5 which is not shown in figure 5; the probability
of events that deviate from log–normality are however very low). The log–normal
model implies, however, strong constraints on the scaling exponent of the velocity
structure functions (Frisch 1995) which have not received experimental confirmation.
Therefore, the log–normal model is not considered further (a comparison with the
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Figure 5. PDF of the local energy dissipation rate. Solid symbols refer to the PDF found by
Vedula et al. (2001) and Yeung et al. (2006a). The solid and the dashed curves refer to the
multifractal model with f (1)

α (α) given by (3.8) and by She & Leveque (1994), respectively. The
maximum value of ε which are characterized by αmin are indicated by � and � for the two
models, respectively. The dotted curve represents the normal distribution. For convenience, the
distributions for different Rλ are shifted upwards by a factor 102. The arrows mark the value
of ε corresponding to α = 1.61 above which f (1)

α (α) decays linearly.

scaling exponents of the velocity structure functions obtained experimentally and
those resulting from f (1)

α (α) given by (3.8) is shown in Bäbler (2007, p. 168)).
To summarize, the PDF of the local energy dissipation rate follows from (3.7) where

ε(α), Pα(α), f (1)
α (α), and (η/l0) are given by (3.5), (3.6), (3.8), and (3.11), respectively.

The most violent turbulent events that assume εmax are characterized by αmin = 0.12.
For the subsequent integration of pε(ε) it is convenient also to define a lower bound
of ε, or, equivalently, an upper bound for α which is taken as αmax = 3.0. This
is motivated by the observation that the decay of turbulence in any fluid element
occurs with a finite rate and, hence, the local energy dissipation rate never vanishes
(Borgas 1993). Further, based on the comparison of the multifractal model with direct
numerical simulations (figure 5), the multifractal model is considered to be applicable
for l0/η � 10 or Rλ � 10.

3.2. Time scale τε(ε)

The time scale τε(ε) gives the duration for which the flow in the vicinity of an aggregate
persists. For a discussion it is therefore appropriate to switch to a Lagrangian frame
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where we follow a particle that moves through the flow. Although considerable
progress in obtaining Lagrangian statistics of particles in turbulence has been made
recently, no statistical measure has been established to provide the duration of
individual turbulent events. Thus, the present discussion aims to determine τε(ε) from
the Lagrangian autocorrelation of the energy dissipation rate.

Pope (1990) and Yeung, Pope & Sawford (2006b) obtained the latter by tracking
the trajectories of fluid particles in a direct numerical simulation. A large range
of Reynolds numbers was investigated. These data are applicable to the aggregates
considered in this work, for which it is assumed that Rp � 1 and Stp � 1. The
autocorrelation of ε was found to decay relatively fast at the beginning followed by
a slow decay that persists for times of the order of the integral time scale (defined as
the integral over the Lagrangian velocity autocorrelation function). The fast decay at
the beginning scaled with the Kolmogorov time scale, τη = (ν/〈ε〉)1/2, independently
of Rλ; the slow decay at t � τη was found to scale with the integral time scale.
Hence, when scaled with τη the later part exhibited a Rλ-dependence such that the
decay became slower with increasing Rλ. Plots of the energy dissipation rate along a
particle trajectory are shown in Yeung (2001). The records show highly intermittent
signals with intense but short-lived bursts appearing irregularly. The persistence of the
slowly decaying tail in the autocorrelation function cannot therefore be interpreted
as having few but long-living intense events. Instead, the slowly decaying tail is likely
to be caused by a local crowding of short intense events along a particle trajectory.
This view is supported in particular by the trapping of particles within vortical
structures observed in experiments (La Porta et al. 2001) and simulations (Biferale
et al. 2005; Yeung et al. 2007). Particles entrapped in such structures undergo helical
(‘corkscrew’) motions with respect to a fixed frame of reference and are subject to
strong but short pulses of centripetal acceleration (Biferale & Toschi 2005). The
characteristic frequency of these helical motions is O(τ−1

η ) and the trapping can last
for as long as 10τη. Acceleration of a moving fluid particle is essentially caused by the
velocity gradient of the surrounding fluid; it is related to the local energy dissipation
rate via ε = 2νsij sij , where sij = 1

2
(∂ui/∂xj + ∂uj/∂xi) is the local rate of strain. Hence,

the short pulses of acceleration within the vertical structures correspond to short
pulses of high velocity gradients, and consequently to a high energy dissipation rate.

The shortness of the intense events is further supported by the autocorrelation
functions of the individual components of the velocity gradient tensor (Yeung 2001).
These decay relatively fast; the integral correlation time was found to be independent
of Rλ and 2 to 6 times τη depending on the particular component . Thus, any
directional information, and hence, the persistence of the flow in the vicinity of
a particle, is rapidly lost (note that by a ‘turbulent event’ we strictly refer to the
appearance of a certain value of the local energy dissipation rate).

The scaling of the autocorrelation function of ε with τη at short times suggests that
the duration of a turbulent event is governed by local interactions whereas non-local
interactions cause a crowding of events through vortical structures. Accordingly, τε(ε)
is taken to be proportional to the local Kolmogorov time scale,

τε(ε) = c−1 (ν/ε)1/2 , (3.12)

where c is a positive factor. Taking (3.12) instead of τε(ε) ∼ τη is motivated in particular
by numerical measurements of the acceleration autocorrelation function conditioned
on ε (Yeung et al. 2007). This is rapidly decaying and the decay is faster the larger
ε upon which the correlation function is conditioned. From the fast decay of the
Langrangian autocorrelations of ε, ∂ui/∂xj , and the acceleration we conclude that
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the factor c ∼ O(1). Finally, note that the time scale given in (3.12) was also used in
the droplet breakup model of Ba�ldyga & Podgórska (1998).

4. Aggregate response function
This section treats the aggregate response function εcr (x) that provides the

boundaries of the integrals in the breakup rate function (2.7). Basically, we are
interested in the response of an aggregate to an applied hydrodynamic stress generated
by a flow of energy dissipation rate magnitude ε. Throughout this section, it is
therefore convenient to express the aggregate response function through its inverse
xcr (ε), where xcr is the critical aggregate mass above which breakup occurs in a
flow of magnitude ε. Experimental (Sonntag & Russel 1986) and numerical studies
(Higashitani et al. 2001) suggest that xcr (ε) assumes a power law relationship,

xcr = Csε
−q, (4.1)

where Cs and q are positive parameters. A rationale for (4.1) is given by Zaccone et al.
(2007). Assuming an aggregate behaves linearly elastically to the point of breakup
they developed a model where Cs reduces to a parameter expressing the bond strength
between the primary particles in the aggregate. The exponent q , on the other hand,
depends on the packing of the primary particles, that is, on the aggregate structure.
The present discussion focuses on the exponent q .

4.1. Scaling approaches

Aggregates smaller than the Kolmogorov length scale are subject to a hydrodynamic
stress τf ∼ μ (ε/ν)1/2 where ε (and therefore the local velocity gradient) is constant
on the length scale of the aggregate. In order to withstand this stress the aggregate
strength τa has to be larger than τf . Tomi & Bagster (1978) considered the aggregate
strength to be a property of the aggregated material which is independent of the
aggregate size. Since the hydrodynamic stress below the Kolmogorov length scale was
also independent of the aggregate size, the aggregates break independently of their
size once the hydrodynamic stress (i.e. the local energy dissipation rate) exceeds τa

(i.e. a critical energy dissipation rate). In regard of the breakup model introduced in
this work, this translates into εcr (x) = constant, which results in a constant breakup
rate function. This is, however, infeasible as discussed in the context of (1.2).

Note however that a constant aggregate strength does not take into account the
fractal structure of the aggregates. It is well known that the aggregation of small
particles leads to structures that fill the space as a fractal (Lin et al. 1989). The mass
of an aggregate then exhibits the following scaling with its size:

x ∼ adf (4.2)

where df is the mass fractal dimension of an aggregate. Kusters (1991) assumed that
the aggregate strength is a function of the local solid volume fraction, ϕ(r), that
is written as τa ∼ ϕ(r)n, where r refers to the spatial position inside the aggregate
with r = 0 at the centre of mass of the aggregate. The exponent n is a parameter
depending on the number of contacts among the primary particles in the aggregate.
From (4.2), the local solid volume fraction is estimated as ϕ(r) ∼ rdf −3, where r = |r |,
from which the aggregate strength follows as τa ∼ an(df −3) (Kusters 1991; Ba�ldyga &
Bourne 1995). Balancing τa with τf results in (Potanin 1993)

acr ∼ ε−p, p = 1/[2n(3 − df )], (4.3)
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where acr is the critical aggregate size above which breakup occurs. Substituting the
left-hand side of (4.3) into (4.2), we obtain

xcr ∼ ε−q, q = df /[2n(3 − df )]. (4.4)

A more detailed analysis by Sonntag & Russel (1987b) using a power-law dependence
of the elastic shear modulus on the local solid volume fraction and modelling the
aggregate as a permeable sphere results in

p = (df − 1)/[4n(3 − df )], q = df p, (4.5)

which leads to slightly smaller values than (4.3) and (4.4). Measurements of the elastic
shear modulus for space-filling networks (Sonntag & Russel 1987a) gave n ≈ 2.5−4.4.

Equations (4.4) and (4.5) predict a strong dependence of the exponent q on df ,
and for df → 3, i.e. for uniformly packed aggregates, the exponent q diverges and the
critical aggregate size drops to zero above a critical energy dissipation rate, which
reflects the situation of a size-independent aggregate strength. These findings are in
qualitative agreement with the results of Horwatt et al. (1992a ,b) who investigated the
breakup of computer-generated aggregates. They found that with increasing fractal
dimension, the breakup exponent q increases while at the same time the scatter in q

as a function of df increases. The latter observation is explained by the increasing
importance of flaws due to structure irregularities that become more pronounced as
the aggregate becomes more dense (i.e. as df increases).

Potanin (1993) points out that the scaling analysis given above holds for colloidal
bonds that exhibit angular rigidity which enables the stress acting on an aggregate
to be transmitted to the structure (West, Melrose & Ball 1994). For bonds that
exhibit no angular rigidity, i.e. no resistance to a tangential force, Potanin derived
p = 1/4 through a simple force balance (Kobayashi et al. 1999). In this model the
total hydrodynamic force acting on an aggregate, Ff ∼ τf a2, is balanced by a force
holding the aggregate together. Assuming the latter is constant, i.e. independent
of the aggregate size, results in a ∼ τ

−1/2
f ∼ ε−1/4. This latter exponent (p = 1/4) is

the typical value found in experiments for the scaling of a mean aggregate size at
steady state (Selomulya et al. 2002; Coufort, Bouyer & Liné 2005; Kusters, Wijers
& Thoenes 1997). Computer simulations of non-rigid aggregates confirm this result,
e.g. Higashitani et al. (2001) considered radial interactions between the primary
particles and a tangential resistance was only implemented for particles at contact.
For aggregates with df = 1.7–2.5 it was found that in simple shear p ≈ 0.2 which is
close to p ≈ 0.24 for df = 1.9 found by Harada et al. (2006). It is important however
to notice the difference with breakup in extensional flow for which Higashitani et al.
(2001) found p to be twice as large.

In summary, the aggregate response function is given (through its inverse) by (4.1),
where the parameters Cs and q are assumed to depend on the aggregate properties,
e.g. df . In order to have a non-dimensional form, it is convenient to introduce a
reference mass x0 that is defined as the mass of the largest aggregate that can survive
in a turbulent event of magnitude 〈ε〉. The aggregate response function then becomes

xcr = x0(ε/〈ε〉)−q, x0 = Cs〈ε〉−q, (4.6)

which is the form used in the following sections.

4.2. Instantaneous breakup

Let us finally turn to the assumption of instantaneous breakup for which experiments
and simulations that are currently available provide only an indication: Blaser (2000)
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investigated the breakup of aggregates in a flow through an orifice, and the sequences
of images of the breaking aggregates shown in the paper allows us to conclude that
breakup is fast. In a similar study by Sonntag & Russel (1987c), it was pointed
out that for the flow through an orifice the duration over which the stress peaks is
short. The study of Yeung & Pelton (1996) suggests that polymeric aggregates are
brittle and, therefore, they break instantaneously once the stress exceeds a critical
stress. More information is gained from simulations: those of Higashitani et al. (2001)
where the bonds show partial rigidity only at contact gave a characteristic time for
the breakup event of ∼10G−1 in simple shear, and ∼G−1 in extensional flow. Potanin’s
(1993) simulations with bonds that exhibit partial rigidity suggest that breakup in
simple shear takes ∼G−1 which indicates that an essential factor that determines
the dynamics of the breakup event is the rigidity of the bonds between the primary
particles. In particular, it is expected that an aggregate whose bonds are non-rigid
will exhibit a longer characteristic time for the breakup event.

5. Results
In this section we present an explicit expression for the breakup rate function

resulting from the general expression given by (2.7). Further, we explore the breakup
rate function that results from a Gaussian velocity gradient. Finally, we investigate
the kinetics of a pure breakup process which is described by (1.1).

5.1. Explicit expression for KB(x)

A key factor in the breakup rate function given by (2.7) is the PDF of the local energy
dissipation rate, from which it is observed that ε is bounded (i.e. ε fluctuates between
εmin and εmax). In the multifractal model, the local energy dissipation rate is mapped
by a scaling exponent α through (3.5). The most violent turbulent events that exhibit
εmax are characterized by αmin = 0.12. The critical aggregate mass corresponding to
these events is denoted as xL and from (3.5) and (4.6) is given by

xL = x0

(
η

l0

)−4q(αmin−1)/(αmin+3)

. (5.1)

Since there are no turbulent events violent enough to break aggregates smaller than
xL we have KB(x) = 0 for x � xL, which is a direct consequence of the fact that ε

is bounded. On the other hand, the weakest turbulent events that exhibit εmin are
characterized by αmax = 3.0. The critical aggregate mass corresponding to these events
is denoted as xR and is given by (5.1), where αmin is substituted for αmax. Aggregates
larger than xR are broken up by any turbulent event and therefore cannot exist.
Hence, KB(x) → ∞ for x >xR . From these considerations, it is recognized that only
aggregates in the range xL < x < xR are subject to breakup with a finite rate. The
width of this range increases with increasing q and with increasing l0/η, that is to
say, with increasing Reynolds number. Figure 6 summarizes these findings by means
of the aggregate response function εcr (x). Table 1 lists xL and xR for typical values of
l0/η and q .

The mapping of the local energy dissipation rate by the scaling exponent α motivates
us further to substitute the integration variable in (2.7) for α. Using (3.7) for pε(ε)
and expressing the time scale τε(ε) through (3.12), the breakup rate function becomes

KB(x) = c

(
〈ε〉
ν

)1/2[ ∫ αcr (x)

αmin

Pα(α)

(
ε(α)

〈ε〉

)1/2

dα

][ ∫ αmax

αcr (x)

Pα(α) dα

]−1

(5.2)
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l0/η = 100 (Rλ ≈ 137) l0/η = 1000 (Rλ ≈ 660)

εmax/〈ε〉 1.8 × 102 2.4 × 103

εmin/〈ε〉 2.2 × 10−3 10−4

q xL/x0 xR/x0 xL/x0 xR/x0

0.5 7.4 × 10−2 2.2 × 101 2 × 10−2 102

1.0 5.5 × 10−3 4.6 × 102 4.1 × 10−4 104

1.5 4.1 × 10−4 104 8.4 × 10−6 106

Table 1. Critical aggregate masses.

εcr(x)

εmax

εmin

xL xR xx0

�ε�

α

αmax

α = 1

ε ≤ εcr (x)
no breakup

αmin

ε < εcr (x)
instantaneous

breakup

Figure 6. Aggregates in the range xL < x < xR are subject to breakup with a finite rate. xL

and xR are thereby determined by the most violent and the weakest turbulent events which
are characterized by αmin and αmax, respectively.

where ε(α) and Pα(α) are given by (3.5) and (3.6), respectively, and αcr (x) corresponds
to εcr (x) which follows from (4.6) as

αcr (x) =
3J + 4

4 − J
, J =

1

q

ln x/x0

ln l0/η
, xL < x < xR. (5.3)

Explicit expressions for the FMDs ((2.11) and (2.13)), are obtained in a similar way
which is not described further.

Figure 7 shows the breakup rate function given by (5.2) as a function of x/x0

for four pairs of values of q and the length scale separation l0/η, where the latter
enters (5.2) through Pα(α). As deduced above, KB(x) vanishes for x → xL and diverges
for x → xR where xL (xR) decreases (increases) with increasing q and l0/η. In the
normalized coordinates shown in figure 7, the dependence of KB(x) on l0/η appears
weak. This means that an increase of Rλ, which implies an increase of l0/η, changes
the shape of KB(x) only slightly; its position and its magnitude changes with x0 and τη

which are both decreasing with increasing Rλ. The change in the shape of KB(x) with
increasing Rλ has a significant influence on the scaling of the asymptotic aggregate
size however, as shown below. For a fixed value of l0/η, the curves at different values
of q cross at x/x0 = 1, which is due to the fact that for x = x0, we have αcr (x) = 1,
and the numerator and denominator in (5.2) become independent of q . Regarding
the dependence on l0/η it is found that KB(x) at x = x0 is weakly dependent, and for
l0/η = 100 and 1000 we have KB(x0)c/τη = 0.552 and 0.516, respectively.
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10–4 10–2 100 102 104
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10–10

102
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x/x0

K
B
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η
/c

1
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3

4

Figure 7. Breakup rate function given by (5.2) (curves 1 and 2) and (5.7) (curves 3 and 4).
For 1 and 2 solid and dashed lines refer to l0/η = 100 and 1000 respectively. Curves 1 and 3
have q = 0.5 and curves 2 and 4 have q = 1.0.
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log10zlog10z

xL/x0

xL/x0

xR/x0xR/x0

(b)

Figure 8. FMD based on a (a) uniform elementary FMD and a (b) Dirac elementary FMD
for q = 1.0 and l0/η = 100. The solid curves refer to the FMD for y � xR and the dashed
curves to y = x0. On the axis, z = x/x0 and p(z, y) = g(x, y)x/y.

The FMDs resulting from (2.11) and (2.13) are shown in figure 8 as a function
of the normalized aggregate mass z = x/x0. It is observed that the FMD based on
a uniform elementary FMD (figure 8a, (2.11)) leads to a large number of small
fragments. On the other hand, the smallest fragments formed by the FMD based on
a Dirac elementary FMD (figure 8b, (2.13)) have a mass equal to xL. It is further
seen that the position of the FMD is determined by x0. The mass of the breaking
aggregate, y, determines solely the right-hand boundary of the FMD. This becomes
clear by comparing the solid and the dashed curves that refer to g(x, y) for y � xR

and y = x0, respectively. It is this behaviour that demontrates the FMDs given by
(2.11) and (2.13) to be non-self-similar with respect to the mass ratio x/y.

5.2. KB(x) based on a Gaussian velocity gradient

An alternative formulation of the breakup rate function is obtained by considering
the characteristic local velocity gradient, γ ∼ ε1/2, as the fluctuating quantity that
induces breakup instead of the local energy dissipation rate. Since γ can be either
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positive or negative, the equivalent expression to (2.7) in this case is

KB(x) =

∫
|γ |>γcr (x)

pγ (γ )/τ (γ ) dγ

∫
|γ |�γcr (x)

pγ (γ ) dγ

, (5.4)

where pγ (γ ) and τγ (γ ) are the PDF and the characteristic time of the local velocity
gradient, respectively, and γcr (x) is the critical velocity gradient above which an
aggregate of mass x breaks up. To proceed, let us assume γ to be given by the local
longitudinal velocity gradient, (∂ui/∂xi), and let us approximate the PDF of γ to be
Gaussian (Saffman & Turner 1956) with zero mean and a variance equal to

σ 2 =

〈(
∂ui

∂xi

)2
〉

=
1

15

〈ε〉
ν

. (5.5)

It has to be emphasized that this is a severe assumption, and (∂ui/∂xi) deviates
significantly from being Gaussian. In particular, the PDF of (∂ui/∂xi) is negatively
skewed (Sreenivasan & Antonia 1997) and the tails are wider than Gaussian (Castaing,
Gagne & Hopfinger 1990; Kailasnath, Sreenivasan & Stolovitzky 1992; Sreenivasan
1999). However, as shown shortly, this assumption leads to a breakup rate function
that in the limit of very small and very large aggregates reduces to an exponential
function and a power law that are formally identical to (1.2) and (1.3), respectively.
This demonstrates the strength of the present model in interpretting the existing rate
expressions.

The remaining functions in (5.4) are described in accordance with (5.2). That is, the
characteristic time of the velocity gradient is taken as τ (γ ) = (c′γ )−1, where c′ ≈ c, and
the aggregate response function is xcr = C ′

sγ
−2q , where (using γ ≈ (ε/ν)1/2) C ′

s ≈ Csν
−q .

As above, it is convenient to introduce a reference mass x ′
0, such that

xcr = x ′
0(γ /G)−2q, x ′

0 = C ′
sG

−2q . (5.6)

Substitution into (5.4) results in

KB(x) =
2c′σ√

2π

exp(−X2)

erf(X)
= c′

√
2

15π

(
〈ε〉
ν

)1/2
exp(−X2)

erf(X)
, (5.7)

where erf(.) is the error function, and

X =
γcr (x)√

2 σ
=

√
15

2

(
x

x ′
0

)−1/(2q)

=

√
15

2

(
〈ε〉
ν

)−1/2 (
x

C ′
s

)−1/(2q)

. (5.8)

Curve 3 and 4 in figure 7 show KB(x) given by (5.7) as a function of (x/x ′
0)

for q = 0.5 and 1.0, respectively (axis labels x0 and c should be read as x ′
0 and

c′, respectively). It is observed that KB(x) exhibits a strong dependence on x for
(x/x ′

0) around unity, and that it falls off rapidly with decreasing x. This reflects the
narrowness of the Gaussian PDF which causes aggregates smaller than x ′

0 to exhibit
very slow breakup rates. On the other hand, for x � x ′

0 KB(x) increases linearly in
log–log coordinates where the slope is decreasing with increasing q .

From (5.7), it is seen that for x � x ′
0 we have X � 1 and erf(X) → 1, and (5.7)

reduces to (1.2) with the difference in c′ that according to the derivation of Kusters
(1991) c′ =

√
2. Flesch et al. (1999) proposed further that q = df (i.e. the critical

aggregate size above which breakup occurs is assumed to scale as acr ∼ γ −2) which
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leads to X2 ∼ a−1 for the argument of the exponential. On the other hand, for x � x ′
0

it follows that X � 1 and noting that erf(X) = X for X → 0 (5.7) reduces to

KB(x) =
c′

√
30

(
〈ε〉
ν

)1/2

X−1 = c′

√
2

450

〈ε〉
ν

(
x

C ′
s

)1/(2q)

, x � x ′
0, (5.9)

which is recognized as a power-law breakup rate function. Hence, the assumption of
a Gaussian velocity gradient allows as to recover both (1.2) and (1.3).

The simple form of pγ (γ ) allows us also to derive explicit expressions for the global
FMDs. In the case of a uniform elementary FMD, from (2.11) the global FMD
equates to

g(x, y) = 2

(
2

15

)2q(
y

x2
0

)
�(2q+1, Y 2) − �(2q+1, X2)

exp(−Y 2)
, x � y, (5.10)

where � is the upper incomplete gamma function, and Y is given by (5.8) by
substituting x for y. In the case of a Dirac elementary FMD, from (2.13) we have

g(x, y) =
1

q

(
y

x2

)
X2 exp(−X2)

exp(−Y 2)
, x � y. (5.11)

The FMDs given by (5.10) and (5.11) (not shown) are qualitatively similar to the
FMDs resulting from the multifractal model shown in figure 8, with the difference
in the formation of large fragments: the FMDs resulting from the Gaussian model
produce fragments in the range (0, y) while in the multifractal model the largest
fragments have a mass equal to xR .

5.3. Breakup kinetics

Breakup kinetics are investigated in two parts. In the first part we remain with non-
dimensional variables and focus on the evolution of the CMD and on the influence of
the FMD. In the second part, we consider a specific flow and investigate the scaling
of the mean aggregate size with the Reynolds number.

5.3.1. Time evolution of the CMD

Let us consider a monodisperse suspension of aggregates of mass x0 undergoing
breakup. The time evolution of the CMD is described by (1.1) subject to

t = 0 : c(x, t) = C0δ(x − x0), (5.12)

where C0 is the initial number of aggregates. The breakup rate function and the FMD
are given by (5.2), (2.11) or (2.13), respectively. Equation (1.1) is solved numerically
using the discretization scheme developed by Kumar and Ramkrishna (see Bäbler
2007, § 2).

Figure 9 shows the time evolution of the mean aggregate mass x̄ (solid curve) and
a mass-weighted mean aggregate mass I0 (dashed curve) for a uniform elementary
FMD (curve 1) and a Dirac elementary FMD (curve 2). Here, x̄ and I0 are defined as

x̄ =

∫ ∞

0

c(x, t)x dx

∫ ∞

0

c(x, t) dx

, I0 =

∫ ∞

0

c(x, t)x2 dx

∫ ∞

0

c(x, t)x dx

. (5.13)

I0 is experimentally accessible through static light scattering where the mass-weighted
mean aggregate mass is proportional to the scattering intensity at zero scattering angle
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Figure 9. Time evolution of the mean aggregate mass (solid curves) and the mass-weighted
mean aggregate mass (dashed curves) resulting from the breakup of a monodisperse distribution
of aggregates of mass x0. The ordinate is normalized by the reference mass x0. Curves 1
(uniform elementary FMD) and 2 (Dirac elementary FMD) refer to the multifractal model
where q = 1.0 and l0/η = 100. Curves 3 (uniform elementary FMD) and 4 (Dirac elementary
FMD) refer to the Gaussian model where q = 1.0. The inset shows the initial decay in linear
coordinates for the multifractal model.

(explaining the meaning of the symbol I0). The ordinate in figure 9 is normalized by
x0, and the abscissa is plotted in log-coordinates which reveals the transient decay of
the mean aggregate size. It is seen that the FMD has little influence on the evolution
of the mean aggregate size. The Dirac elementary FMD (curve 2) leads to a mean
aggregate size that is only slightly larger that one resulting from a uniform elementary
FMD (curve 1). For the latter, the asymptotic values for x̄ and I0 are 1

2
xL and 2

3
xL,

respectively. For a Dirac FMD both x̄ and I0 converge to xL, which in the present case
equates to xL/x0 = 5.5 × 10−3. Curves 3 and 4 in figure 9 show additionally the time
evolution of x̄ and I0 resulting from the Gaussian model, that is, KB(x) given by (5.7)
and g(x, y) given by (5.10) (curve 3) or (5.11) (curve 4), respectively. In this case the
decay of the mean aggregate mass is significantly slower, and at ct/τη = 106 we have
x̄/x0 = 0.29 and 0.58 for the uniform and the Dirac elementary FMD, respectively.

The evolution of the CMD resulting from the multifractal model is shown in
figure 10. In the case of a uniform elementary FMD (figure 10a) fragments of all
sizes are produced in the first instance, and fragments larger than xL are consumed
in the course of the process, shifting the CMD to the left. For t → ∞ the CMD for
the considered FMD is

c(x, ∞) =

{
c∞, x � xL

0, otherwise,
(5.14)

where c∞ = 2C0x0/x
2
L. In the case of a Dirac elementary FMD (figure 10b) in the first

instance breakup produces only fragments in the range xL <x <x0, and the larger
fragments are consumed in the course of the process. For t → ∞, the CMD converges
to a monodisperse distribution,

c(x, ∞) = C∞δ(x − xL), (5.15)

where C∞ = C0x0/xL. It is further seen that in this case x̄ and I0, shown by the filled
and open symbols in figure 10, respectively, assume very similar values except at
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N εav kav τη η Rλ l0/η

(rpm) (m2 s−3) (cm2 s−2) (10−3 s) (μm) (–) (–)

200 0.0304 27 5.74 76 40 22
417 0.268 123 1.93 44 61 35
635 0.932 294 1.04 32 79 47
854 2.24 542 0.67 26 94 59

1073 4.40 870 0.48 22 107 71

Table 2. Characteristics of the turbulent flow.

–3 –2 –1 0 –3
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10–10

p z
(z

) 
× 

z 
× 

ln
 1

0

log10z log10z

(a)

1
2

3
45

xL/x0

–2 –1 0

(b)

1
23

4
5

Figure 10. CMD resulting from the breakup of a monodisperse distribution of aggregates
of mass x0 using (a) a uniform elementary FMD and (b) a Dirac elementary FMD. q = 1.0
and l0/η = 100, and curves 1–5 refer to ct/τη = 1, 10, 102, 104, and 106, respectively. On the
axis, z = x/x0 and pz(z) = c(x)/C0 where C0 is the initial number of aggregates. Solid and
open symbols indicate the mean aggregate mass and the mass-weighted mean aggregate mass,
respectively.

the very beginning. The Gaussian model (not shown) leads to a qualitatively similar
behaviour which is not discussed further.

5.3.2. Scaling of the asymptotic mean aggregate size

To investigate the asymptotic scaling of the mean aggregate size let us consider a
specific case: Soos et al. (2008) studied the aggregation of polystyrene particles in a
stirred tank. The radius of the primary particles was ap = 0.405 μm and the particles
were fully destabilized. The characteristics of the turbulent flow in the stirred tank used
in this study are listed in table 2, where the subscript ‘av’ refers to volume averages of
the stirred tank and N is the stirring speed. For simplicity, in the subsequent analysis
the flow is treated as homogeneous, and εav and kav are interpreted as the mean values
of the flow. To proceed, (1.1) with the initial condition given by (5.12) is solved for
the five sets of parameters listed in table 2 assuming a uniform elementary FMD.
Figure 11 shows the asymptotic values of the mean aggregate mass (figure 11a) and
the mean radius of gyration (figure 11b) as a function of 〈ε〉. The non-dimensional
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Figure 11. Asymptotic values of the mean aggregate mass (a) and the mean radius of gyration
(b) as a function of 〈ε〉 calculated assuming a uniform elementary FMD. The solid lines in (a)
and (b) refer to the asymptotic values of x̄ and ρ, respectively. The dashed and the dotted lines
in (a) refer to xL and x0, respectively, while in (b) they refer to the corresponding aggregate

sizes x
1/df

L and x
1/df

0 , respectively. The open symbols in (b) refer to the experimental values
reported in Soos et al. (2008).

mean radius of gyration is given by (Lattuada et al. 2003)

ρ =

⎡
⎢⎢⎣

∫ ∞

0

c(x, t)x2(Rg(x)/ap)2 dx

∫ ∞

0

c(x, t)x2 dx

⎤
⎥⎥⎦

1/2

, (5.16)

where Rg(x) = apx1/df is the radius of gyration of an aggregate of mass x, whereas
df = 2.6 was assumed (Soos et al. 2008). The reference mass x0 = Cs〈ε〉−q , where
Cs = 6 × 103 (m2 s−3)q , and q = 0.55 was selected such that the asymptotic mean
radius of gyration resulting from the simulations agrees with the values for a vanishing
solid volume fraction reported by Soos et al. (2008) (shown by the open symbols in
figure 11b). It is found that the asymptotic mean aggregate mass is proportional
to xL (solid and dashed lines in figure 11a, respectively) whose scaling follows
from (5.1) using l0/η ∼ (Rλ)

1.16 and Rλ ∼ 〈ε〉0.20 (cf. table 2) as xL ∼ 〈ε〉−1.26q ∼ 〈ε〉−0.69.
Further, from figure 11(b) it is seen that the asymptotic mean radius of gyration

is proportional to x
1/df

L ∼ 〈ε〉−1.26q/df ∼ 〈ε〉−0.26 (solid and dashed line in figure 11b).
From these findings we conclude that due to turbulent intermittency the asymptotic
mean aggregate size exhibits a scaling exponent that is 26% larger than the scaling
exponent of the aggregate response function shown by the dotted line in figure 11(a).
A similar conclusion was drawn by Ba�ldyga & Podgórska (1998) for droplet breakup.

Let us close this discussion by turning to the experimental data shown in figure 11(b)
(open symbols) that are described using q = 0.55 and df = 2.6. According to (4.5),
this leads to p = 0.21 and n = 4.7. On the other hand, fitting the experimental data
by the Gaussian model (in this case the experimental data shown in figure 11(b)
is interpreted as the aggregate size at t = 120 min, where c′ = 1 is assumed) gives
C ′

s = 1.22 × 107 (s)−2q and q = 0.68 from which p = 0.26 and n = 3.8. Notably, the
former value of p is closer to p ≈ 0.18 found by Sonntag & Russel (1986) for
aggregate breakup in laminar flow whereas the values of n from both models are well
within the range of values reported in the literature (Sonntag & Russel 1987a).
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6. Conclusions
A model for the kinetics of aggregate breakup in a turbulent flow is proposed.

It is assumed that the first-order breakup kinetics are governed by the turbulent
fluctuations of the local energy dissipation rate that lead to fluctuations in the
hydrodynamic stress acting on the aggregates. Under the assumption that breakup
is instantaneous when the stress exceeds a certain critical stress (i.e. the local energy
dissipation rate exceeds a certain critical value), the (macroscopic) characteristic time
of breakup is given by the frequency with which the energy dissipation exceeds a
critical value. This critical value depends on the properties of the aggregate. The
fluctuations of the local energy dissipation rate are modelled using a multifractal
model that provides an accurate description of the PDF of ε. Further, the critical
local energy dissipation rate above which breakup occurs is related through a power
law to the aggregate mass. The model leads to an expression for KB(x) that drops to
zero below a limiting aggregate mass, xL.

Two models for the FMD are proposed that differ in the formation of small
fragments: a global FMD based on a uniform elementary FMD leads to fragments
smaller than xL while for a global FMD based on a Dirac elementary FMD, the
smallest fragments have a mass xL. Considering a pure breakup process, in both cases
the asymptotic CMD becomes proportional to the elementary FMD G(ε, x, y)|ε = εmax

which is a consequence of the simple expressions used for G(ε, x, y), and the result
cannot be generalized to an arbitrary elementary FMD. It is further noted that
although the asymptotic CMD in the case of a Dirac elementary FMD (that is
a monodisperse CMD at xL) appears infeasible, the time evolution of low-order
moments is little influenced by the FMD.

Finally, assuming a Gaussian velocity gradient we derived an expression for KB(x)
that for x → 0 and x → ∞ reduces to an exponential function and a power law. The
former is identical to the exponential breakup rate function proposed by Kusters
(1991) and Flesch et al. (1999). Fitting both the multifractal and the Gaussian model
to literature data on the asymptotic aggregate size found in a stirred tank leads to
values of the response exponent q that differ by 24%. The value of q (respectively p)
from the multifractal model was closer to the value found in laminar flows.

This work was financially supported by the Swiss National Science Foundation
(Grant No. 200020-113805/1) and the Foundation Claude et Giuliana. Suggestions by
Dr Marco Lattuada and Dr Jan Sefcik are gratefully acknowledged.
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