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Huntington’s disease is an autosomal dominant inherited neurodegenerative disease with motor symptoms that are variably

co-expressed with mood and cognitive symptoms, and in which variable neuronal degeneration is also observed in the basal

ganglia and the cerebral cortex. We have recently shown that the variable symptomatology in Huntington’s disease correlates

with the variable compartmental pattern of GABAA receptor and cell loss in the striatum. To determine whether the phenotypic

variability in Huntington’s disease is also related to variable neuronal degeneration in the cerebral cortex, we undertook a

double-blind study using unbiased stereological cell counting methods to determine the pattern of cell loss in the primary motor

and anterior cingulate cortices in the brains of 12 cases of Huntington’s disease and 15 controls, and collected detailed data on

the clinical symptomatology of the patients with Huntington’s disease from family members and clinical records. The results

showed a significant association between: (i) pronounced motor dysfunction and cell loss in the primary motor cortex; and

(ii) major mood symptomatology and cell loss in the anterior cingulate cortex. This association held for both total neuronal loss

(neuronal N staining) and pyramidal cell loss (SMI32 staining), and also correlated with marked dystrophic changes in the

remaining cortical neurons. There was also an association between cortical cell loss and striatal neuropathological grade, but no

significant association with CAG repeat length in the Huntington’s disease gene. These findings suggest that the heterogeneity

in clinical symptomatology that characterizes Huntington’s disease is associated with variation in the extent of cell loss in the

corresponding functional regions of the cerebral cortex whereby motor dysfunction correlates with primary motor cortex cell loss

and mood symptomatology is associated with cell loss in the cingulate cortex.
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Introduction
Huntington’s disease is an autosomal dominant neurodegenerative

disease caused by a CAG expansion in the HD gene (IT15) on

the short arm of chromosome 4 (The Huntington’s Disease

Collaborative Research Group, 1993). The disease results in neu-

rodegeneration, principally in the basal ganglia and cerebral cortex

of the forebrain (Vonsattel et al., 1997), and is characterized by

involuntary choreiform movements, as well as mood, cognitive

and behavioural symptoms (Vonsattel et al., 1997; Vonsattel

and DiFiglia, 1998). Despite the single gene aetiology of

Huntington’s disease there is considerable phenotypic variation

between cases in the pattern of symptomatology during

the course of the disease. Some patients show mainly motor

symptomatology at clinical onset and minimal dysfunction

of either mood or cognition; while at the other extreme,

others show mainly mood and/or cognitive changes, with minimal

movement dysfunction until the late stages of the disease. In

addition, others show a variable mixed phenotype of motor,

mood and cognitive symptoms throughout the course of the dis-

ease (Brandt and Butters, 1986; Folstein, 1989; Myers et al., 1991;

Claes et al., 1995; Zappacosta et al., 1996; Thompson et al.,

2002). Although the number of CAG repeats in the

Huntington’s disease gene is negatively correlated with the age

of symptom onset (Wexler et al., 2004), there is no clear corre-

lation between the variable symptom profile and CAG repeat

number. Indeed, this lack of correlation between clinical

phenotype and Huntington’s disease genotype has been clearly

demonstrated for monozygotic twins, who showed marked

differences in symptom profile despite the inheritance of

identical Huntington’s disease genes (Georgiou et al., 1999;

Gomez-Esteban et al., 2007).

The major neuronal degeneration in Huntington’s disease occurs

in the striatum of the basal ganglia and in the neocortex

(Vonsattel et al., 1997). Although Huntington’s disease is charac-

terized by an extensive degeneration of the GABAergic output

neurons of the striatum (Reiner et al., 1988; Vonsattel and

DiFiglia, 1998; Deng et al., 2004), there is considerable variation

between Huntington’s disease cases in the pattern of neurodegen-

eration between the two major compartments of the striatum—

the striosome and matrix (Tippett et al., 2007). Some cases show

selective loss of striatal neurons and neurochemical markers in the

striosomes (Morton et al., 1993; Hedreen and Folstein, 1995;

Augood et al., 1996), while others show selective changes in

the matrix (Olsen et al., 1986; Ferrante et al., 1987;

Seto-Oshima et al., 1988; Faull et al., 1993), and yet other

cases show dual compartmental degeneration (Tippett et al.,

2007). Since the differential pattern of connectivity of the strio-

some and matrix compartments in the mammalian brain suggest

that the striosomes may play a role in limbic (e.g. mood) related

functions, and the matrix compartment may contribute to

motor functions, we recently investigated whether the differential

compartmental pattern of striatal degeneration correlated with

the variable symptomatology in Huntington’s disease cases. In

our study of 35 Huntington’s disease cases (Tippett et al.,

2007), we showed a significant association between pronounced

mood dysfunction and GABAA receptor and cell loss in

the striosomes, suggesting that part of the variation in clinical

symptomatology in Huntington’s disease correlates with the

variable pattern of compartmental neurodegeneration in the

striatum.

In the present study, we have now extended our findings to

determine whether the pattern of neurodegeneration in the cere-

bral cortex, the other major forebrain region known to be affected

in Huntington’s disease, also shows an association with symptom

profile. Previous quantitative cell studies have established that

widespread regions of the cerebral cortex are affected in

Huntington’s disease (Cudkowicz and Kowall, 1990; Hedreen

et al., 1991; Heinsen et al., 1994; Macdonald et al., 1997;

Macdonald and Halliday, 2002; Selemon et al., 2004). Major

losses of pyramidal projection neurons have been documented

for cases of Huntington’s disease in various regions of the cerebral

cortex including the motor cortex (Macdonald and Halliday,

2002), superior frontal cortex, cingulate gyrus (Cudkowicz and

Kowall, 1990) and the angular gyrus of the parietal lobe

(Macdonald et al., 1997). These findings of cortical degeneration

have been more recently extended in studies using high resolution

in vivo magnetic resonance imaging and automated surface

reconstruction to measure cortical thickness (Rosas et al., 2002,

2003, 2004, 2005). These in vivo studies in over 30 individuals

with Huntington’s disease have elegantly shown a heterogeneous

pattern of region-specific thinning of the cerebral cortex in

Huntington’s disease with some of the most marked changes

being in the sensorimotor cortex and areas of the visual cortex

(Rosas et al., 2002, 2008). Distinct motor phenotypes were shown

to be associated with discrete patterns of cortical thinning,

whereas caudate volumes failed to discriminate the two clinical

phenotypes. Rosas et al. (2008) concluded that cortical changes

begin early in Huntington’s disease, are regionally heterogeneous

and that topologically selective changes in the cerebral cortex

might explain much of the clinical heterogeneity found in

Huntington’s disease.

In the present study, we first tested the hypothesis that there is

a loss of neurons in the primary motor cortex and the anterior

cingulate cortex in 12 Huntington’s disease brains compared to

15 control brains for our specific cohort of brains from the

Neurological Foundation of New Zealand Human Brain Bank.

We then tested the hypothesis that there is heterogeneity in cor-

tical cell loss in Huntington’s disease and that this heterogeneity

correlates with symptomatology in a double-blind study of the
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12 Huntington’s disease cases. We used unbiased stereological cell

counting methods to determine the pattern of total and pyramidal

cell loss found post-mortem in the primary motor cortex and the

anterior cingulate cortex. These are two functionally diverse

regions of the cerebral cortex: the primary motor cortex is

known to be involved in the control of motor functions, whilst

the anterior cingulate cortex is involved in emotional regulation

and mood disturbances (Ebert and Ebmeier, 1996; Davidson

et al., 2002; Harrison, 2002; Alexopoulos et al., 2008; Konarski

et al., 2008). We then compared the pattern of cortical cell loss in

the Huntington’s disease cases with the pattern of motor and

mood symptoms present during the disease for each case, as

determined by retrospective analysis of clinical symptom data col-

lected from patients, family members and clinical records. Our

findings show that the heterogeneity in the motor and mood clin-

ical symptomatology in Huntington’s disease correlates with the

heterogeneity of cell loss in the corresponding functional regions

of the cerebral cortex and suggest that the pattern of cortical

pathology contributes to the variability in behavioural symptoma-

tology in Huntington’s disease.

Materials and methods
All protocols used in this study were approved by the University of

Auckland Human Participants Ethics Committee and informed consent

was obtained from all families.

Neuroanatomical studies
Brain tissue from 12 cases of Huntington’s disease (Table 1) and 15

controls (Table 2) was obtained from the Neurological Foundation of

New Zealand Human Brain Bank. The cases of Huntington’s disease

included six males and six females, aged 35–75 years (average

61 years), with a post-mortem interval prior to perfusion between

3 and 24 h (average 14 h). The control cases included 10 males and

five females with no history of neurological disease, aged 46–79 years

(average 64 years), with a post-mortem interval between 5 and 21 h

(average 12 h).

Brains were perfused as described previously (Waldvogel et al.,

2006) through the basilar and internal carotid arteries, first with phos-

phate buffered saline with 1% sodium nitrite, followed by 15% of

formalin in 0.1 M phosphate buffer (pH 7.4) for 1 h. Following

Table 2 Control cases

Case number Gender Age of death CAG repeat length Post-mortem
delay (hours)

Cause of death

H 108 Male 58 15/17 16 Coronary atherosclerosis

H 110 Female 83 17/17 14 Ruptured aortic aneurysm

H 111 Male 46 17/20 10 Coronary artery disease

H 112 Male 79 14/15 8 Bleeding stomach ulcer

H 115 Male 61 17/19 12 Hypertensive heart disease

H 118 Male 57 15/16 10 Coronary artery disease

H 120 Male 62 18/22 11 Ischaemic heart disease

H 121 Female 64 18/23 5 Pulmonary embolism

H 127 Female 59 15/17 21 Pulmonary embolism

H 129 Male 48 20/21 12 Pulmonary embolism

H 131 Female 73 17/17 13 Ischaemic heart disease

H 132 Female 63 15/19 12 Ruptured aorta

H 136 Male 75 N/A 13 Ruptured abdominal aortic aneurysm

H 139 Male 73 N/A 5.5 Ischaemic heart disease

H 330 Male 66 15/15 13 Cor pulmonale

Table 1 Huntington’s disease cases

Case
number

Gender Age at
death

CAG repeat
length HD gene

Post-mortem
delay (hours)

Grade Symptoms Cause of death

HC 60 Male 64 18/43 23 3 Mixed Pneumonia

HC 68 Female 65 17/42 11 1 Motor Cardiac arrest

HC 72 Female 63 17/42 24 2 Motor Pneumonia

HC 73 Male 47 19/49 4 2 Motor Pneumonia

HC 79 Female 56 17/42 4 1 Mixed Cardio-respiratory failure

HC 82 Male 74 15/42 16 2 Mood Pneumonia

HC 85 Female 61 24/44 19 3 Mood Huntington’s disease

HC 93 Female 56 20/43 17 3 Mixed Pneumonia

HC 95 Female 66 20/39 12 2 Mood Huntington’s disease

HC 99 Male 68 21/41 13 2 Motor Broncho-pneumonia

HC 101 Male 35 17/44 24 1 Mood Asphyxia

HC 107 Male 75 19/43 3 3 Mixed Broncho-pneumonia
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perfusion, blocks (0.75–1.5 cm) were taken from the primary motor

cortex and the anterior cingulate cortex of the right hemisphere and

kept in the same fixative for 24 h. The blocks from the primary motor

cortex were carefully selected from just above the mid dorsoventral

region of the precentral gyrus, i.e. the portion corresponding

topographically to cortical areas of the upper limb (Fig. 1A). The

blocks from the cingulate gyrus were taken from the region of

the anterior cingulate cortex immediately dorsal to the genu of the

corpus callosum (Fig. 1B). The blocks were then cryoprotected in

20% sucrose in 0.1 M phosphate buffer with 0.1% sodium–azide

for 2–3 days and in 30% sucrose in 0.1 M phosphate buffer with

0.1% sodium-azide for a further 2–3 days, then stored at –80�C

until further processing.

Blocks were also taken from the basal ganglia for pathological exam-

ination. The neuropathologic ‘striatal’ grading of the Huntington’s

disease cases was undertaken according to the Vonsattel grading

criteria (Grades 0–4) (Vonsattel et al., 1985; Vonsattel and DiFiglia,

1998) by a neuropathologist (B.J.S.) with extensive experience in

Huntington’s disease neuropathology. On pathological examination,

the control cases showed no neuropathological abnormalities.

For immunohistochemistry each cortical block was sectioned at

50 mm on a freezing microtome and the sections were processed

free-floating in six-well tissue culture plates. Two random systematic

series of sections were sampled from each entire tissue block from the

motor cortex and cingulate cortex for each brain. Each series of sec-

tions were washed (3�15 min) in phosphate buffered saline and 0.2%

Triton-X (phosphate buffered saline-triton), incubated for 20 min in

50% methanol and 1% H2O2, washed, and incubated in primary anti-

body for 3 days on a shaker at 4�C. The primary antibodies used were

mouse anti-neuronal N (NeuN; Chemicon, 1:1000) to immunostain the

total population of neurons and mouse anti-SMI32 (Sternberger

Monoclonals Incorporated, 1:1000), against the non-phosphorylated

epitopes in neurofilaments, to immunostain a subpopulation of

pyramidal neurons. Sections that were stained with SMI32 underwent

antigen retrieval treatment as described previously (Waldvogel et al.,

2006). Sections from both series were washed, incubated over-

night in biotinylated goat anti-mouse secondary antibody (Sigma,

1:500), washed, incubated for 4 h at room temperature

in ExtrAvidinTM (Sigma, 1:1000), washed, then exposed to 0.05%

3,3-diaminobenzidine tetrahydrochloride (Sigma) and 0.01% H2O2

for 15–20 min to produce a brown reaction product. The sections

were washed, mounted on gelatine–chrome–alum coated slides,

dried, dehydrated through a graded alcohol series to xylene and cover-

slipped with Hystomount (Hughes and Hughes, UK). Sections

processed to determine non-specific staining by following the same

immunohistochemical procedures, but with omission of the primary

antibody, showed no immunohistochemical labelling. Before the

stereological analyses all sections were coded and blinded.

Figure 1 Diagram showing the location of each cortical block (indicated at 1) that was used for stereological analysis (A) in the primary

motor cortex and (B) in the anterior cingulate cortex. Each cross-section of a block indicates the specific Brodmann cytoarchitectural

region.
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Stereology
In this study, a block (0.75–1.5 cm) of tissue in a well defined subre-

gion of either the primary motor cortex (Fig. 1A) or the anterior

cingulate cortex (Fig. 1B) was completely serially sectioned for subse-

quent stereological analyses. The absolute number of neurons within

all of the primary motor cortex (i.e. all of Brodmann area 4) and all of

the anterior cingulate cortex (Brodmann area 24) could not be mea-

sured because of a lack of tissue availability. While this approach is not

stereologically optimal (Oorschot, 1994), an assumption was made

that analysis of a quarter to a tenth of each of these cortical regions

would yield data that were representative of each entire cortical

region. For the primary motor cortex, the observed results were com-

pared with previously reported control and Huntington’s disease data

on the absolute number of neurons within the entire primary cortex

(i.e. all of Brodmann area 4, Macdonald and Halliday, 2002; see

Results and Discussion sections). For the cingulate cortex, the observed

results were compared with previously reported control and

Huntington’s disease data on the number of neurons per length of

cerebral cortex for Brodmann area 24 (Cudkowicz and Kowall, 1990).

The total number of neurons (N) within a defined volume of

Brodmann area 4 in the primary motor cortex (Fig. 1A), and within

a defined volume of Brodmann area 24 in the anterior cingulate cortex

(Fig. 1B), was derived from random systematically sampled sections of

each cortical block. The total reference volume (Vref) of each block or

defined region was multiplied by the number of neurons in a defined

subvolume of each central region (Nv). Thus, N = Vref�Nv.

The total reference volume of each region of interest was deter-

mined by using Cavalieri’s direct volume estimate (Gundersen and

Jensen, 1987). This was obtained by estimating the cross-sectional

area of each region of interest in 10 systematically sampled sections

throughout the defined volume of interest and multiplying the sum of

the area of the 10 sections by the distance between each sampled

section. The cross-sectional area of each section was estimated using a

point-counting method. Each sampled section was projected onto a

colour monitor at a known magnification and a lattice of regularly

arranged points was superimposed on it. The number of points falling

on the region of interest was counted (�P) and the total volume was

determined using the formula: Vref = �P�a(p)�t�10, where a(p) is the

real area that each point represents, t is the average thickness of

the sections and ‘10’ is the distance between the sampled sections.

The real interpoint distance and real a(p) of a lattice used for each

cortical region are listed in Table 3.

The numerical density (Nv) within each cortical region was estimated

by using the optical disector method. The sections used for each

region were the same set of sections that were used for Cavalieri’s

estimate of volume (Vref) above. Each sampled section was viewed

using a 100�oil immersion objective. The microscope was equipped

with a microcator on the focus control (to measure the z-axis), an

automated mechanical stage and a video camera that projected the

image onto an adjacent colour monitor. An unbiased sampling frame

of known area was drawn on a transparency sheet and superimposed

on the monitor. Each section was sampled systematically (e.g. every

10th area) with a random start. For each cortical region, the area of

the unbiased sampling frame used and the sampling interval through

each section is listed in Table 4. For each area sampled, neurons were

counted only if the neuron fell inside the sampling frame, did not

touch the exclusion lines and came into focus through a certain

distance (i.e. the disector height, h) in the middle of each section.

The disector height for each cortical region for each staining is listed

in Table 4. The number of neurons (Q–) in a disector volume [V(dis)] in

the section was obtained. The V(dis) was determined by multiplying the

area of the disector frame [a(frame)], which was corrected for mag-

nification, by the disector height (h). Thus, �V(dis) = ha(frame). Then,

the total value of neuronal density (Nv) in the region of interest for an

individual was determined from the formula: Nv = �Q / �V(dis).

Statistical analysis
The precision of the estimates made on each case could be estimated

with data derived from the set of systematically sampled sections of

each case (West and Gundersen, 1990). This precision is termed the

coefficient of error and was calculated for the total number of points

counted over the sectional profiles of the reference volume (�P), and

the total number of neurons (N). The coefficients of error were calcu-

lated using a revised Matheron’s quadratic approximation formula

described in Gundersen et al. (1999). The average coefficient of

error for each volume, and for the total number estimate, for each

control and Huntington’s disease group was calculated using the for-

mula coefficient of error = (1/n �i CE2
i )1/2, where n is the number of

cases (West and Gundersen, 1990; Gundersen et al., 1999).

Table 4 Real sampling frame area, sampling interval and disector height used for the estimate of Nv by the
optical disector method for neurons stained with NeuN and SMI32 in various cortical regions

NeuN SMI32

Region Real sampling
frame area (mm2)

Sampling
interval

Disector
height (mm)

Real sampling
frame area (mm2)

Sampling
interval

Disector
height (mm)

Primary motor
cortex (BA 4)

0.002 1/10th 0.006 0.0037 1/10th 0.006

Anterior cingulate
cortex (BA 24)

0.0017 1/10th 0.008 0.0037 1/10th 0.008

Table 3 Real interpoint distance and the real area of each
point used for Cavalieri’s estimate of the total volume of
each cortical region

Region Real interpoint
distance (mm)

Real area of each
point (mm2)

Primary motor cortex
(BA 4)

2.717 7.38

Anterior cingulate cortex
(BA 24)

2.000 4.00

BA = Brodmann area.

1098 | Brain 2010: 133; 1094–1110 D. C. V. Thu et al.



The average data resulting from the neuronal cell estimates for the

entire tissue block (within Brodmann area 4 in the primary motor

cortex and within Brodmann area 24 in the anterior cingulate

cortex) were analysed between groups using analysis of variance

(ANOVA). A statistical package for social scientists (SPSS), version

12 was used for these ANOVA analyses. Comparison of specific inter-

est groups was analysed using Bonferroni’s post hoc test.

The formula for Bonferroni’s post hoc test =

ð�1 � �2Þ

fEMS½ð1=n1Þ þ ð1=n2Þ�g
1=2

where �1 is the larger and m2 is the smaller of the group means, which

correspond to the sample size n1 and n2, respectively. The EMS is the

error mean square which was derived by: EMS = error of the sum of

squares/degrees of freedom for this error.

This value of error mean square was obtained from the SPSS version

12 computer output.

Correlation of neuroanatomy and the
number of CAG repeats
For each Huntington’s disease case, the number of CAG repeats in

both alleles of the HD gene was determined by polymerase chain

reaction amplification of DNA as previously described (Whitefield

et al., 1996). The DNA for amplification was isolated either from

blood samples or from cerebellar brain tissue from the same

Huntington’s disease cases.

Methods to assess clinical
symptomatology
Clinical data were collected retrospectively from family members of

the 12 individuals who had died with Huntington’s disease

and whose families had requested donation of their brain tissue to

the Neurological Foundation of New Zealand Human Brain

Bank. The clinical data were collected as part of a larger study

using a semi-structured interview and a questionnaire, adminis-

tered by researchers blind to the neuroanatomical analyses of the

brains as previously detailed (van Roon-Mom et al., 2006; Tippett

et al., 2007).

The interview format was designed to facilitate the collection of

accurate information about the age of clinical onset of Huntington’s

disease and the patterns of clinical change related to the disease for

each Huntington’s disease case. Initial questions were open and broad

and subsequent questions became more specific, which enabled inter-

viewees to tell their version of events before being exposed to the

prompts and possible constraints of specific questions. The Clinical

Huntington’s disease Questionnaire was developed to provide a com-

prehensive representation of all reported changes observed in

Huntington’s disease and an estimate of the severity of impairment

in the motor and mood domains of clinical change in the disease, both

at clinical onset and near end-stage (see Tippett et al., 2007 for a

detailed description). Due to the retrospective aspect of data collec-

tion, assessment of cognitive symptoms was not possible. Questions

were posed in language that was readily understandable to the

lay-person and were administered with the assistance of the researcher

who clarified the content of individual items. Any inconsistencies

between information given in the semi-structured interview and

responses on the questionnaire were investigated at the end of the

session.

Total clinical data for each case (i.e. content of the semi-structured

interview and responses on the Clinical Huntington’s disease

Questionnaire) were then viewed independently by two psychologists

experienced with Huntington’s disease who were blind to the anatom-

ical data obtained for the Huntington’s disease cases. They classified

each case according to whether motor symptoms were dominant

during the course of the disease, mood symptoms were dominant,

or both types of symptoms were significant. Definitions used for

these classifications were as follows.

Motor: motor symptoms were present with no significant presence

of mood symptoms during the disease course.

Mood: mood disturbance was a dominant clinical feature of

Huntington’s disease across the disease course of the individual.

There was, however, almost always some degree of motor sympto-

matology as well, but these symptoms were either very mild, or, only

emerged in the very late stages of the disease.

Mixed motor–mood: significant levels of both symptom-types were

present during a large part of the disease.

The classifications of the two psychologists were concordant for

90% of cases in the larger study. For any case where there was a

difference, the case materials were reviewed by both psychologists

until a consensus was reached.

Results

Overall cell loss in the motor and
cingulate cortices in Huntington’s
disease
In order to investigate the overall cell loss in the primary motor

cortex and anterior cingulate cortex in Huntington’s disease, the

average total number of cells in a tissue block from each cortical

region was measured using unbiased stereological counting tech-

niques in 12 cases of Huntington’s disease and in 15 controls,

matched for sex, age and post-mortem delay. There was a signif-

icant overall total neuronal cell loss in both Brodmann area 4 of

the primary motor cortex and Brodmann area 24 of the anterior

cingulate cortex in Huntington’s disease compared to controls

(Fig. 2A). In the primary motor cortex (Fig. 2A), there was an

average cell loss of 24% (P50.002, single-factor ANOVA test)

in the Huntington’s disease cases whereas in the anterior cingulate

cortex (Fig. 2A) there was a more pronounced cell loss averaging

36% (P50.0005). The subpopulation of SMI32-positive pyramidal

neurons showed a similar pattern of cell reduction in both the

primary motor cortex and the anterior cingulate cortex in

Huntington’s disease (Fig. 2B) compared to the control cases.

On average, there was a significant pyramidal cell reduction of

27% (P50.03) in the primary motor cortex (Fig. 2B) and a reduc-

tion of 34% (P50.003) in the anterior cingulate cortex in

Huntington’s disease (Fig. 2B). These results are consistent with

the findings from an analysis of the absolute number of neurons in

the entire primary motor cortex in Huntington’s disease versus

control cases (Macdonald and Halliday, 2002). These results are

also consistent with the findings from an analysis of the number of

SMI32-positive neurons per length of cerebral cortex in the ante-

rior cingulate cortex for Huntington’s disease versus control cases

(Cudkowicz and Kowall, 1990). Since there is a reduction in grey
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matter volume of the frontal cortex in Huntington’s disease rather

than an increased volume due to gliosis (e.g. Halliday et al.,

1998), a reduced number of neurons in a subvolume, or per

length of cerebral cortex, compared to control cases is likely to

be a real biological decrease.

For all stereological analyses for the control and Huntington’s

disease cases, the average coefficient of error for the reference

volume [i.e. CE(�P)] was less than 0.08 and the average coeffi-

cient of error for the total number of neurons [i.e. CE(N)]

was mostly less than 0.10 and always less than 0.13. This indicates

that the estimates of reference volume and total neuronal number

were generally reliable (i.e. CE40.10). For all analyses,

the observed mean variance of the individual total number

estimates (i.e. CE2) was less than half of the observed mean vari-

ance of the group (i.e. the coefficient of variation, CV2). This

indicates that the variability is due to a true difference between

cases in the total neuronal number rather than a lack of precision

in the stereological counting methods employed (West and

Gundersen, 1990).

Variation in the cortical cell loss
between Huntington’s disease cases
There was considerable variation between the 12 individual

Huntington’s disease cases in the percentage of total neuronal

and pyramidal cells lost in both the primary motor cortex and

anterior cingulate cortex. As detailed in Fig. 3A, in the motor

cortex the total neuronal loss varied from around 50% in four

cases (HC60, HC72, HC73, HC93) to 6–28% loss in seven cases

(HC68 HC79, HC85, HC95, HC99, HC101, HC107), with one

case (HC82) showing no significant cell loss. Similarly, in the cin-

gulate cortex, where the cell loss was generally more extensive,

the percentage cell loss varied from around 65% in two cases

(HC95, HC101), 42–49% in five cases (HC79, HC82, HC85,

HC93, HC107), 18–31% in 3 cases (HC60, HC72, HC99), with

no significant cell loss in two cases (HC68, HC73; Fig. 3A). Similar

trends were also observed in the pattern of pyramidal cell (SMI32)

loss; comparison between Huntington’s disease cases showed that

the pyramidal cell loss varied in the motor cortex from 59% to no

Figure 2 Graphs showing the total average number of (A) NeuN-positive neurons and (B) SMI32-positive pyramidal neurons in a defined

volume of Brodmann area 4 of the primary motor cortex and in a defined volume of Brodmann area 24 of the anterior cingulate cortex in

12 Huntington’s disease cases compared to 15 control cases. In the Huntington’s disease cases, there is (A) an average total cell loss of

24� 8% (mean� SEM) in the primary motor cortex and 36� 10% in the anterior cingulate cortex, and (B) an average pyramidal cell loss

of 27� 13% in the primary motor cortex and an average cell loss of 34� 11% in the anterior cingulate cortex. Asterisks indicate

statistically significant difference from the control (P50.002) using single factor ANOVA test.
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cell loss, and in the cingulate cortex from 61% to no cell loss

(Fig. 3B).

Most interestingly, the total cell loss and pyramidal cell loss in

the motor cortex did not always follow the pattern of cell loss in

the cingulate cortex (Fig. 3A and B). That is, some cases which

showed major cell loss in the motor cortex showed minimal cell

loss in the cingulate cortex (e.g. HC73); other cases showed the

reverse trend (e.g. HC82) and some showed similar patterns of

loss in both cortical regions (e.g. HC93).

Relation between clinical symptoms and
differential cell loss in the cerebral
cortex
We next investigated whether the variation in the pattern of cell

loss in the motor cortex and cingulate cortex was related to the

variation in symptomatology. We found marked heterogeneity in

the symptoms expressed by the Huntington’s disease patients

during the course of the disease. Using the criteria described in

the methods, of the 12 Huntington’s disease cases in this study

(Table 1), four cases were classified as motor cases (HC68, HC72,

HC73, HC99), four were classified as mood cases (HC82, HC85,

HC95, HC101) and four were classified as mixed cases, with sig-

nificant levels of both symptom-types present during a large part

of the disease course (HC60, HC79, HC93, HC107). To test

whether the differential cortical cell loss between the motor and

cingulate cortices was related to the different symptom subtypes

exhibited by the different cases, the blinding of the clinical and

anatomical assessments was broken, and we compared the aver-

age total cell loss and pyramidal cell loss of the cases in each of

the three phenotypic groups (motor, mood and mixed motor–

mood symptom groups, Fig. 4).

Comparison of the total cell loss in the primary motor cortex

and anterior cingulate cortex, in the groups comprising motor or

mood cases, showed a clear association between cell loss and

symptom phenotype (Fig. 4). In the group of Huntington’s disease

cases who experienced mainly motor symptoms, major cortical cell

loss was found in the motor cortex [average cell loss of 28%

(P50.02, Bonferroni’s post hoc test)] with no significant cell loss

Figure 3 Graph showing the variation of (A) total number of NeuN-positive neurons and (B) SMI32-positive pyramidal neurons

expressed as a percentage of control in Brodmann area 4 of the primary motor cortex and Brodmann area 24 of the anterior cingulate

cortex between the Huntington’s disease cases.
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in the cingulate cortex (Fig. 4A). In contrast, in the Huntington’s

disease group where mood was the major phenotype of the cases,

an extensive cell loss averaging 54% (P50.0002) was found in

the cingulate cortex with no significant cell loss in the motor

cortex (Fig. 4A). In agreement with this general pattern, the

group showing a mixed motor–mood symptomatology showed

an extensive cell loss in both the motor cortex (36%, P50.002)

and the cingulate cortex [42% (P50.001), Fig. 4A].

Furthermore, the pattern of cell loss of SMI32-positive pyrami-

dal cells in the motor and cingulate cortices in the mainly motor

and mood phenotypic groups (Fig. 4B) closely follows the pattern

seen in the total neuronal loss (Fig. 4A); there was a significant

major loss of pyramidal cells in the motor symptom group in the

motor cortex (45%, P50.05) with no significant loss in

the cingulate cortex (Fig. 4B). The reverse profile applied in the

mood subgroup which showed a major pyramidal cell loss in

the cingulate cortex (40%, P5 0.05) with no significant cell loss

in the primary motor cortex (Fig. 4B). Similar to the pattern of

total neuronal cell loss, the group of cases showing a mixed

motor–mood phenotype collectively showed a significant

pyramidal cell loss in both the primary motor cortex (33%,

P50.05) and anterior cingulate cortex [47%, (P50.05), Fig. 4B].

Examination of the cell morphology at high magnification at five

representative levels of each cortical block showed the presence of

major morphological cell changes in the remaining neurons of the

affected cortical regions (Figs 4–6). In all of the cases in the motor

and mixed motor–mood phenotype groups, which both showed

marked total and pyramidal cell losses in the primary motor cortex,

many of the surviving cortical neurons showed marked dystrophic

changes suggestive of ongoing pathology (Fig. 5). This was most

clearly seen in the surviving pyramidal neurons in layers III and V

stained with NeuN and SMI32 which showed marked shrinkage of

the cell bodies and extensive loss of dendritic staining (both apical

and basal dendrites) (Fig. 5B, C, F and G). In contrast, no obvious

change in the neuronal morphology was apparent in the surviving

neurons (Fig. 5D and H) in cases with dominant mood sympto-

matology in which there was no significant cell loss in the motor

cortex (Fig. 4). Similar clear-cut morphological changes were also

seen in the anterior cingulate cortex of cases with mood symp-

toms. In all of the mood and mixed mood/motor cases where the

Figure 4 Graph showing (A) the total number of NeuN-positive neurons and (B) SMI32-positive pyramidal neurons (expressed as a

percentage of the control) in the primary motor cortex and the anterior cingulate cortex of the three different symptom profile groups of

Huntington’s disease cases (HD; motor, mixed and mood). Asterisks indicate statistically significant differences from the control (P50.05)

using the Bonferroni post hoc test. Note that the cell loss in the primary motor cortex shows an opposite trend to the anterior cingulate

cortex across the three Huntington’s disease symptom groups.
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cingulate cortex showed major and selective cell loss (Fig. 4),

many of the surviving neurons also showed dystrophic changes

(Fig. 6C, D, G and H) similar to those seen in the motor cortex

of the motor phenotype cases. In contrast, in the cases of mainly

motor symptomatology where there was no significant cell loss

in the cingulate cortex, no or minimal change in the morphology

of the neurons was shown in the remaining neurons (Fig. 6B

and F).

Relation between the pattern of cell
loss in the cerebral cortex and striatal
neuropathological grades
In this study, the 12 Huntington’s disease cases exhibited a range

of striatal neuropathological grades as determined by the

Vonsattel criteria (Table 1). In order to investigate if there was

any relationship between the pathology of the cerebral cortex

and the overall pathology of the striatum, we investigated

whether there was any relation between the extent of cortical

cell loss and the striatal Vonsattel neuropathological grades

(Fig. 7).

Analyses of total neuronal cell loss in the motor and cingulate

cortices (compared to the control brains) revealed a variable

neuronal cell loss in both cortical regions in the different striatal

neuropathological grades of the Huntington’s disease cases

(Fig. 7A). In general terms, the pattern of average cell loss in

the primary motor cortex appeared to parallel the overall increas-

ing striatal neuropathological grades (Fig. 7A). There was no sig-

nificant cell loss in the motor cortex in the Grades 0–1 group, but

there was significant neuronal loss in the motor cortex in the

higher neuropathological grades, which showed an increasing

trend from Grade 2 (22%, P50.02) to Grade 3 (35%,

P50.002). By contrast, neuronal loss in the anterior cingulate

cortex showed a different pattern with a less apparent correlation

to neuropathological grade (Fig. 7A). There was a dramatic and

significant cell loss in the cingulate cortex across all Huntington’s

disease grades compared to the control with average cell losses of

35% (P50.05) in Grades 0–1, 31% in Grade 2 (P50.02) and

42% in Grade 3 (P50.002) (Fig. 7A).

As shown in Fig. 7B, there was a variable cell loss of

SMI32-positive pyramidal neurons in the primary motor cortex

and the anterior cingulate cortex in Huntington’s disease across

the various striatal neuropathological grades. For the motor cortex,

there was a significant cell loss only at Grade 3, 34% (P50.05)

(Fig. 7B). In contrast, the cingulate cortex showed a pattern of

pyramidal cell loss which corresponded with the striatal

Figure 5 Photomicrographs illustrating the pyramidal neurons in layer III in Brodmann area 4 of the primary motor cortex of control

(A, E) and Huntington’s disease (B–D, F–H) cases (HD) with mainly motor (B, F), mixed (motor–mood) (C, G) and mainly mood (D, H)

symptom profiles. Note that the Huntington’s disease cases all have a similar number (42 and 43) of CAG repeats on the HD allele of the

IT15 gene. A–D, Pyramidal neurons in layer III of Brodmann area 4 stained with NeuN. E–H, Pyramidal neurons in layer III of Brodmann

area 4 stained with SMI32. Scale bars, A–D and E–H = 30 mm.
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neuropathological grades, with significant losses evident at the

higher neuropathological grades, 36% (P50.05) in Grade 2 and

45% (P50.002) in Grade 3 (Fig. 7B).

Comparison of the cell loss in the
cerebral cortex with the number of
CAG repeats in the HD gene
We next investigated whether the total cell loss and pyramidal

cell loss in the primary motor and anterior cingulate cortices cor-

related with the CAG repeat lengths in the HD gene. As shown in

Fig. 8A and B, there were no significant correlations between the

CAG repeat number and total cell loss in either primary motor

cortex (r2 = 0.1948, P = 0.1509) or anterior cingulate cortex

(r2 = 0.1858, P = 0.1618, Fig. 8B), although there appeared to be

a trend towards increasing cell loss with increasing CAG repeats in

both cortical areas. The correlations between the number of CAG

repeats and the loss of SMI32-positive pyramidal cells were also

not significant in either the primary motor cortex (r2 = 0.1101,

P = 0.3188, Fig. 9A) or the anterior cingulate cortex (r2 = 0.3215,

P = 0.0689, Fig. 9B).

Discussion
Our results suggest that in Huntington’s disease, cell loss in

two functionally diverse regions of the cerebral cortex—the

primary motor cortex and anterior cingulate cortex—is associated

with motor and mood symptomatology, respectively. This detailed

stereological study of 12 post-mortem Huntington’s disease

brains revealed a major cell loss in these two cortical regions,

but interestingly, showed that there is marked variation in

the extent of cell loss between individual Huntington’s disease

cases. The most striking finding of the study is that the heteroge-

neous pattern of cell loss in the motor and cingulate corti-

ces in different Huntington’s disease cases corresponds to

the variable pattern of motor and mood symptoms presented

clinically in these cases. The general implication of our results

is that the expanded CAG sequence in the HD gene can

produce variable topographical patterns of cortical neuronal

degeneration that contribute to specific symptoms. The relation-

ship demonstrated between symptom profiles and cortical

degeneration provides a novel perspective on understanding the

neural basis of clinical heterogeneity found in Huntington’s

disease.

Figure 6 Photomicrographs illustrating the pyramidal neurons in layer III in Brodmann area 24 of the anterior cingulate cortex of control

(A and E) and Huntington’s disease (B–D, F–H) cases (HD) with ‘mainly motor’ (B and F), ‘mixed’ (motor–mood) (C and G) and ‘mainly

mood’ (D and H) symptoms. Note that the Huntington’s disease cases all have the same number (42) of CAG repeats on the Huntington’s

disease allele of the IT15 gene. (A–D) Pyramidal neurons in layer III of Brodmann area 24 stained with NeuN. (E–H) Pyramidal neurons in

layer III of Brodmann area 24 stained with SMI32. Scale bars, A–D and E–H = 30 mm.
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Cell loss in the cerebral cortex in
Huntington’s disease
Our studies demonstrating marked neuronal loss throughout the

motor and cingulate cortices in Huntington’s disease complement

and extend the considerable literature showing cortical degenera-

tion throughout many regions of the cortex, such as decreases in

post-mortem cortical volume (Mann et al., 1993; Halliday et al.,

1998) and neuronal loss and morphological changes (de la Monte

et al., 1988; Hedreen et al., 1991; Sotrel et al., 1991, 1993;

Heinsen et al., 1994; Macdonald et al., 1997; Macdonald and

Halliday, 2002; Rosas et al., 2002, 2008; DiProspero et al.,

2004; Selemon et al., 2004). However, of these previous studies

only two quantitatively examined cell loss in the motor or cingu-

late cortices (Cudkowicz and Kowall, 1990; Macdonald and

Halliday, 2002).

Our study showed that there is an overall significant loss of

24% of the total neuronal population and 27% loss of

SMI32-positive pyramidal cells in the Huntington’s disease primary

motor cortex is in general agreement with the previous quantita-

tive study, which showed a major depletion of the total neuronal

number (42%) and SMI32-positive pyramidal neurons (41%) in

the primary motor cortex of five Grades 2–3 Huntington’s disease

cases (Macdonald and Halliday, 2002). Secondly, our studies in

the anterior cingulate cortex showed an average 36% total neu-

ronal loss and a 34% loss of SMI32-positive pyramidal cells

in Grades 1–3 Huntington’s disease cases; Cudkowicz and

Kowall (1990) previously found a significant loss of 25% of

SMI32-positive pyramidal neurons in the cingulate cortex in

Grade 2–4 Huntington’s disease cases, although Macdonald and

Halliday (2002) found no significant change in the total neuronal

number in the motor cingulate cortex (i.e. the posterior part of

Brodmann area 24) in Grades 2–3 Huntington’s disease cases

(Macdonald and Halliday, 2002).

While our findings of an extensive and significant cell loss in the

motor and cingulate cortices in Huntington’s disease are in general

agreement with the results of prior studies of cortical degeneration

in Huntington’s disease, our study demonstrates that there is a

surprisingly high variation in the extent of cell loss between the

cases that has not been highlighted in previous reports.

Comparison between Huntington’s disease cases in our study

shows a marked variation in the degree of both the total cell

Figure 7 Graphs showing the total average number of (A) NeuN-positive neurons and (B) SMI32-positive pyramidal neurons (expressed

as a percentage of the control) in the primary motor cortex and the anterior cingulate cortex with increasing striatal neuropathological

grades (Grades 0–3). Asterisks indicate statistically significant differences from the control (P50.05) using the Bonferroni post hoc test.

HD = Huntington’s disease cases.
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and pyramidal cell loss in the primary motor cortex (0–51% loss)

and the anterior cingulate cortex (0–65% loss). Most interestingly,

we found no association between the pattern of cell loss in

the motor cortex and cingulate cortices across the Huntington’s

disease cases. In addition, the cell loss in the total neuronal

population and in the SMI32-positive pyramidal neurons varied

from case to case within each cortical region, although in most

cases the pattern of pyramidal cell loss did follow the trend

of total cell loss (Fig. 2) confirming previous studies showing

that pyramidal cells are the major cell type in the cerebral

cortex which are affected in Huntington’s disease (Cudkowicz

and Kowall, 1990; Hedreen et al., 1991; Macdonald et al.,

1997; Macdonald and Halliday, 2002). This between-case

variation in the pattern of cell loss is a novel and characteristic

feature of our results showing that there is considerable hetero-

geneity in the pattern of cortical neuronal degeneration in

Huntington’s disease. Since it is well established that there is

also variation in symptom profile in Huntington’s disease, then,

as discussed below, the next step was to investigate whether

this marked variation in cell loss in the motor and cingulate corti-

ces in Huntington’s disease cases may be related to the variation

in symptomatology.

Relationship of cortical cell loss to
clinical symptom profile
Huntington’s disease is characterized by a diverse range of symp-

toms including motor, mood and cognitive disturbances, which

vary between patients (Gusella, 1991; Zappacosta et al., 1996;

Vonsattel and DiFiglia, 1998). Recently, several different imaging

studies in patients with Huntington’s disease have suggested that

cortical changes may play a crucial role in the development of

clinical symptoms (see Paulsen, 2009 for a review). Studies using

functional MRI have identified cortical regions of lower and higher

activation in early and premanifest Huntington’s disease during

performance on a variety of cognitive tasks (Kim et al., 2004;

Wolf et al., 2008), with two studies also demonstrating an asso-

ciation between poor task performance and changes in functional

connectivity between cortical regions (Thiruvady et al., 2007; Wolf

et al., 2008). These findings concur with results from studies using

structural MRI, most significantly those of Rosas et al. (2005,

2008), who measured cortical thinning in pre- and early

Huntington’s disease patients using high-resolution surface based

analysis of in vivo MRI data. The authors found greater cortical

thinning in Huntington’s disease patients with reduced functional

Figure 9 Comparison of the number of SMI32-positive pyra-

midal neurons in the (A) primary motor cortex and (B) anterior

cingulate cortex with the number of CAG repeats in the IT15

gene in the Huntington’s disease cases. There is no significant

correlation between the CAG repeats and the number of

SMI32-positive pyramidal neurons.

Figure 8 Comparison of total neuronal number (NeuN) in the

(A) primary motor cortex and (B) anterior cingulate cortex with

the number of CAG repeats in the IT15 gene in the Huntington’s

disease cases. There is no significant correlation between the

CAG repeats and the total number of neurons.
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scores, and heterogeneous regional patterns of cortical thinning

between cases which correlated with heterogeneity in clinical pro-

file (Rosas et al., 2002, 2005, 2008). As highlighted by Paulsen

(2009), however, imaging data to date still do not resolve the

issue as to whether or not changes in cortical activation or thick-

ness directly reflect death or dysfunction in cells in those regions,

or whether they reflect dysfunction from striatal alterations

(Paulsen, 2009). Our findings add strong support for the role of

cortical pathology in the expression of clinical symptoms in

Huntington’s disease by demonstrating a clear association

between the pattern of cortical neuronal loss in post-mortem

Huntington’s disease brains and the pattern of clinical symptoma-

tology experienced by those individuals during the course of the

disease.

In our study, we showed that in the primary motor cortex there

was a significant loss of total neurons and SMI32-positive pyrami-

dal neurons in Huntington’s disease cases with a dominant motor

symptom phenotype (but not in cases with a dominant mood

phenotype), which parallels the established role of the primary

motor cortex in voluntary movements. In contrast, the anterior

cingulate cortex exhibited a significant total cell and pyramidal

cell loss in the Huntington’s disease cases with a dominant

mood phenotype but not in cases with dominant motor pheno-

type. The anterior cingulate cortex is one of the major compo-

nents of the limbic system and may play an important role in both

mood and cognitive impairment (Davidson et al., 2002;

Georgiou-Karistianis et al., 2007; Thiruvady et al., 2007;

Alexopoulos et al., 2008). Our previous study on the basal ganglia

has shown a greater mood dysfunction associated with greater

damage to the striosome compartment of the striatum (Tippett

et al., 2007), which receives input from the limbic related cortical

areas including the anterior cingulate cortex (Eblen and Graybiel,

1995). This suggests that the profile of mood symptoms in

Huntington’s disease is likely to be associated with degeneration

in limbic regions with extensive projections to the striatum. Thus,

our results showing a variable pattern of neurodegeneration in the

two cortical regions studied provide evidence suggesting a signif-

icant association between neuronal degeneration in the human

cerebral cortex and the symptom profile in Huntington’s disease.

The correlation of the clinical symptom profiles in Huntington’s

disease with the cortical pathology was not only shown by the

pattern of cell loss but also in the dystrophic morphology of the

surviving neurons in the two cortical regions. In both the motor

and cingulate cortices, pyramidal neurons were particularly

affected, with major morphological changes evident, including

cell shrinkage and loss of stained dendritic processes in the corre-

sponding symptom profile cases—i.e. the most marked dystrophic

changes in the motor and cingulate cortices were seen in those

cases with the most marked motor and mood symptom profiles.

Morphological changes in the pyramidal cells including dendritic

remodelling, altered size and number of dendritic spines have been

previously observed in Huntington’s disease cortex prior to degen-

eration (Sapp et al., 1997) and transgenic mouse models of

Huntington’s disease (Laforet et al., 2001). The observation of

marked neuronal dystrophic changes correlating with symptom

profile in our studies provides suggestive evidence for ongoing

progressive neuronal dysfunction and physiological stress in the

cerebral cortex which may contribute to the variable developing

symptom phenotypes seen in Huntington’s disease.

Relationship of cortical cell loss
to striatal degeneration and
neuropathological grade
The extensive anatomical connections between the cerebral cortex

and the striatum through the topographically organized corticostri-

ate projection make it very difficult to define how dysfunction and

degeneration in the cerebral cortex and the striatum, alone or in

combination, contribute to symptom profile. Nevertheless, com-

parison of cortical cell loss in Huntington’s disease cases with

striatal neuropathological grade may well shed light on the patho-

genesis. In our study, the neuronal cell loss in the primary motor

cortex generally increased with increasing striatal neuropathologi-

cal grades suggesting a close relationship between cortical and

striatal degeneration; this is consistent with Macdonald and

Halliday (2002) who found major cortical neuronal loss of greater

than 40% in Grades 2–3 Huntington’s disease cases. These gen-

eral findings suggest a linkage of cortical and striatal degeneration.

Nevertheless, the finding in our study of significant major cell loss

in the cingulate cortex across all striatal neuropathological grades

suggests that the degeneration in the cerebral cortex does indeed

play a key role in Huntington’s disease pathogenesis.

Generally, in our study the pyramidal cell loss in Huntington’s

disease cases correlated closely with the total cell loss, suggesting

that in Huntington’s disease mainly projection neurons in layers III,

V and VI are affected. This agrees with previous cortical studies

(Cudkowicz and Kowall, 1990; Hedreen et al., 1991; Sotrel et al.,

1993; Macdonald et al., 1997; Macdonald and Halliday, 2002)

showing that the pyramidal cells, which are the major output neu-

rons of the cortex, are the major cortical cell type affected in

Huntington’s disease. Death of cortical pyramidal cells in the

Huntington’s disease brain may contribute to dysfunction in

other cortical and subcortical regions, particularly the striatum.

The dysfunctional changes in corticostriatal projections that occur

in Huntington’s disease may originate at the level of gene expres-

sion. This is supported by our recent microarray analysis of primary

motor cortex from 34 Grades 0–2 Huntington’s disease cases

(including cases used in the present study), which indicated that

3% of mRNAs (1482) were differentially expressed (Hodges et al.,

2006). In addition, this study showed greater abnormalities in

mRNA expression in the motor cortex than in prefrontal associa-

tion cortex, demonstrating a regionally distinct pattern of differ-

ential expression that may correspond to the severity of effects

(or, alternatively, to a heterogeneity of mechanisms) in different

cortical regions in Huntington’s disease. As a prominent example,

it is well established that brain-derived neurotrophic factor, a neu-

rotrophin important for striatal neuron survival (Cattaneo et al.,

2001; Ferrer et al., 2001; Zuccato et al., 2001), is produced by

cortico-striatal pyramidal projection neurons and transported in an

anterograde manner to the striatum (Altar et al., 1997) and that in

Huntington’s disease, decreases in cortical brain-derived neuro-

trophic factor gene transcription (Zuccato et al., 2001) and defects

in brain-derived neurotrophic factor transport (Gauthier et al.,

Cell loss in Huntington’s disease cortex Brain 2010: 133; 1094–1110 | 1107



2004) may result in reduced brain-derived neurotrophic factor

trophic support to the striatum leading to striatal neurodegenera-

tion. A recent study of mRNA changes in layer-five projection

neurons in the primary motor cortex in Huntington’s disease has

also shown a decrease in both mRNA and protein levels of Lin7b,

a protein involved in neuronal polarity and synaptic connectivity

(Zucker et al., unpublished).

Relationship of cortical cell loss to CAG
repeat length
We found no significant correlation between CAG repeat numbers

and neuronal cell loss in the cortex. This contrasts with findings of

a significant relation between CAG repeat numbers and the extent

of neuronal loss in the caudate nucleus and the putamen or gross

striatal neuropathological grade (Penney et al., 1997; Vonsattel

and DiFiglia, 1998). Although this may be due to the small

sample size in the present study, it could also suggest that the

neurodegeneration in the cortex (unlike the striatum) is not

strongly dependent on CAG repeat length. This is supported by

our finding that cases with the same number of CAG repeat

length showed a marked variation in the extent of cortical cell

loss and symptom profiles. In addition, clinical expression of

Huntington’s disease in monozygotic twins can also be markedly

different despite the same number of CAG repeats (Georgiou

et al., 1999; Gomez-Esteban et al., 2007), suggesting that the

effects of the mutant HD gene may be modified by other genetic

and environmental factors. Indeed, studies on transgenic animal

models of Huntington’s disease show that environmental enrich-

ment has a clear influence on neurochemical degenerative changes

in the basal ganglia and on symptom progression (van Dellen

et al., 2000; Glass et al., 2004; Spires et al., 2004). Also, consid-

eration of the correlation of age of onset with CAG repeat size in

Huntington’s disease, suggests that 40% of the variability may be

accounted for by modifying genes and environmental effects

(Wexler et al., 2004). Taken together with our present findings

that regional cortical pathologies correlate with specific sympto-

matologies, it is interesting to consider whether gene and environ-

mental modifier effects may also act on regionally variant

substrates to play a role in determining Huntington’s disease

phenotype characteristics.

Mechanisms of cortical degeneration
The exact mechanisms of neuronal cell death in Huntington’s

disease are currently unclear but may involve transcriptional

dysregulation, excitotoxicity, oxidative stress, changes in neuro-

transmitters, cortical brain-derived neurotrophic factor production,

and breakdown of cellular and vesicular transport mechanisms.

Recent transgenic animal studies have implicated dysfunction

of the cortex as one of the major indicators of phenotype;

this may occur through cortical synaptic dysfunction before cell

death (Cepeda et al., 2007; Cummings et al., 2009).

Dysfunction of the corticostriatal pathway involves complex

and multiple changes that have been documented and which

may lead to neurodegeneration of both cortical and striatal neu-

rons; mutant Huntingtin’s effects in cortical neurons cause

dysfunction of the corticostriatal pathway and dysregulation

of neurotransmitter and brain-derived neurotrophic factor release

which probably impairs the functioning of the striatal neurons

(Cepeda et al., 2007; Strand et al., 2007). Also, abnormal corti-

cal glutamate receptor functions have been implicated in

behavioural and motor impairments in transgenic mice with phys-

iological and morphological cortical changes predicting the onset

and severity of behavioural deficits (Laforet et al., 2001; Andre

et al., 2006). Furthermore, studies in the conditional mouse

model where cortical and/or striatal cells selectively expressed

mutant Huntingtin, dysfunction of the cortical neurons was essen-

tial to the development of significant behavioural and motor

deficits (Gu et al., 2007). Other transgenic mouse studies have

implicated dysfunction of both the cortical projection and inter-

neurons in the development of Huntington’s disease pathology

(Gu et al., 2005; Spampanato et al., 2008). All of these animal

studies provide accumulating mechanistic evidence that the cortex

plays a major role in the initiation and development of the

Huntington’s disease phenotype, and that dysfunction in the cor-

ticostriate neurons plays a central role in Huntington’s disease

forebrain pathology.

Our studies here in the post-mortem Huntington’s disease

human brain together with the in vivo findings of Rosas et al.

(2008) in patients with Huntington’s disease demonstrate that the

heterogeneous pattern of cortical degeneration correlates with

phenotype variability and further confirms the determining role

of the cerebral cortex in Huntington’s disease aetiology and

manifestation.

Conclusion
The results of the present study have shown major cell loss in the

primary motor and anterior cingulate cortices in Huntington’s dis-

ease. Loss in the primary motor cortex increases with Huntington’s

disease grade whereas loss in the anterior cingulate cortex was

similar across all grades. Most strikingly, when cases were classi-

fied into symptom categories, there was a marked cell loss in the

primary motor cortex in cases with prominent motor symptoms

and a marked cell loss in the anterior cingulate cortex in cases with

prominent mood symptoms. These results provide evidence that

the heterogeneity and specific nature of clinical symptomatologies

experienced by patients with Huntington’s disease can be at least

partly accounted for by heterogeneous neurodegeneration in par-

ticular functional regions of the cerebral cortex. These findings

extend and complement recent in vivo MRI findings of Rosas

and colleagues (2008) showing that variable patterns of cortical

thinning in patients with Huntington’s disease parallels clinical

heterogeneity. The mechanisms underlying neuronal loss in the

cerebral cortex are still unclear but may be a combination of dis-

rupted microcircuitry, excitotoxicity and neurochemical imbal-

ances. The cortical degeneration-to-symptom relationship we

report here suggests that cortical neurodegeneration is a key com-

ponent in understanding the neural basis of clinical hereogeneity in

Huntington’s disease.
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