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Abstract

In previous work, we introduced a version of distributed temporal logic that is well-suited both for verifying
security protocols and as a metalogic for reasoning about, and relating, different security protocol models.
In this paper, we formally investigate the relationship between our approach and strand spaces, which is one
of the most successful and widespread formalisms for analyzing security protocols. We define translations
between models in our logic and strand-space models of security protocols, and we compare the results
obtained with respect to the level of abstraction that is inherent in each of the formalisms. This allows us
to clarify different aspects of strand spaces that are often left implicit, as well as pave the way to transfer
results, techniques and tools across the two approaches.1
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1 Introduction

Many security protocols have been proposed to help build secure distributed systems and
many of them have later turned out to have subtle flaws. Due to the severity of this problem,
a wide variety of different formalisms and associated tools have been proposed for, and
applied to, the analysis of security protocols. These include process algebras [5, 18, 28, 33],
model-checking and related techniques [1, 2, 12, 31, 34], special-purpose epistemic logics [11],
and inductive theorem proving in higher-order logic [32].

This explosion in formalisms is natural in a young research area as researchers explore the
problem domain in its many facets. But as the area matures, it becomes increasingly impor-
tant to consolidate knowledge by clarifying the precise relationships between the formalisms,
thereby developing a deeper understanding of them and their strengths and weaknesses. This
consolidation phase is now underway, e.g. [3, 4, 10, 11, 15, 16, 20, 21, 25, 29].

One of the most successful and widespread formalisms for analyzing security protocols is
that of strand spaces [24, 34, 36]. Given the naturalness of this formalism, it provides a good
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(step1) a→ b : (n1). {n1; a}Kb

(step2) b→ a : (n2). {n1;n2}Ka

(step3) a→ b : {n2}Kb

Fig. 1. The (authentication part of the) Needham-Schroeder Public Key Protocol.

focal point for a consolidation effort, and a number of authors, e.g. [10, 15, 16, 25], have
formalized the relationship of their protocol analysis approaches with strand spaces. In this
paper, we contribute to this program by relating strand spaces to a distributed temporal
logic for security protocol analysis.

In [7, 8], we introduced the Distributed Temporal Protocol Logic DTPL, a version of dis-
tributed temporal logic [19] that provides a language for formalizing both local and global
properties of distributed communicating processes. We showed that DTPL can be effectively
applied to security protocol analysis, for example formalizing security properties and reason-
ing about interleaved protocol executions. In addition, DTPL is well-suited as a metalogic.
Its metalogical applications include rigorously formalizing and proving metalevel proper-
ties of different protocol models, establishing relationships between models, and showing
the correctness of different modeling and simplification techniques used in building effective
protocol-analysis tools.

We investigate here the relationship between our approach and strand spaces (which
transitively yields a comparison with the approaches that have been related to strand spaces,
mentioned above). Our main technical result is to define property-preserving translations
between DTPL models and strand-space models. This is nontrivial as, despite the similarities
between the two formalisms (for example, both are based on partially-ordered sets of events
with labeling information), there are substantial differences. The differences concern the way
the principals and the intruder executing a protocol are represented, the way communication
is formalized, and the locality of information.

We show how to overcome these differences, defining a suitable equivalence between the
two kinds of models, and formalizing back-and-forth translations that map strand-space
models to equivalent DTPL models, and vice-versa. Both translations preserve the essen-
tial ingredients of protocol execution and thereby also security properties like secrecy and
authentication. The translations also illuminate different implicit aspects of strand spaces
and pave the way to transfer results, techniques and tools across the two formalisms that
we consider in this paper, thereby gaining the advantages of both.

We proceed as follows. In Section 2, we summarize the main features of DTPL and strand
spaces. Then, in Section 3, we investigate the relationship between the two approaches. We
conclude in Section 4, discussing related and future work.

2 The two formalisms

We begin in this section by introducing a running example that allows us to illustrate the
common features of DTPL and strand spaces. Afterwards we will summarize the character-
istic features of each formalism.
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2.1 Common features

Security protocols are typically described informally by short sequences of messages that
are exchanged by principals in order to achieve particular security goals in open, hostile
environments. A popular example is the (authentication part of the) Needham-Schroeder
Public Key Protocol NSPK [26], presented in Fig. 1. In this notation, a and b are variables
of sort name, denoting the roles played in one execution of the protocol, and n1 and n2 are
variables of sort nonce. The arrows represent communication from the sender to the receiver.
The parenthesized nonces prefixing the first two messages signify that these nonces must
be freshly generated before the message is sent. Moreover, it is assumed that public and
private keys have been generated and appropriately distributed: Ka represents the public
key of a, whose inverse key should be privately held by a.

As we remarked above, a large number of formal methods and tools have been developed
to prove security protocols correct or to identify attacks on them. For instance, the NSPK
protocol does not provide the mutual authentication property it was designed for, but rather
suffers from a man-in-the-middle attack [26]. While the various protocol analysis methods
are often based on different approaches and formalisms, they all share a common starting
point, namely the description of the correct sequences of message exchanges that should be
performed by each of the principals running the protocol.

Both DTPL and strand-space protocol models are based on partially-ordered sets of events
with labeling information. We thus employ sequences (e.g. sequences of events or sequences
of labels) to represent protocol executions and, as notation, we use w = 〈w1.w2.w3 . . . 〉 to
denote a (possibly infinite) sequence composed of the elements w1, w2, w3, . . . , and we write
|w| to denote its length. So, 〈〉 denotes the empty sequence and |〈〉| = 0. We assume that
|w| = ∞, if w is infinite. We write w � w′ to denote sequence concatenation, provided that
the first sequence is finite.

Another key ingredient in both approaches is the flow of information between princi-
pals. We assume as given a context consisting of a finite set Princ of principal identifiers
A,B,C, . . . , and an indexed family Name = {NameA}A∈Princ of pairwise disjoint finite sets
of names, corresponding to the possible aliases used by each principal. We use primed no-
tation to denote names, e.g. writing A′ to denote a name used by principal A. By abuse of
notation, we also use Name =

⋃
A∈Princ NameA. We also assume fixed two sets Nonce and

Key of “numbers” that can be used as nonces and keys, respectively, and whose members
we denote by N and K. We assume that several kinds of keys can coexist and that each
key K has an inverse key K−1. Messages, which we denote by M , are built inductively
from atomic messages (names and numbers) using concatenation ; and encryption { }K

under a key K. The set Msg of messages is thus defined by

Msg ::= Name | Nonce | Key | Msg;Msg | {Msg}Key .

Note that we employ a sorted signature, with a sort for messages and subsorts for names,
nonces, and keys.

2.2 The distributed temporal protocol logic DTPL

2.2.1 The logic.
The distributed temporal logic DTL [19] is a logic for reasoning about temporal properties
of distributed systems from the local point of view of the system agents, which are assumed
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to execute sequentially and to interact by means of synchronous event sharing. Distribution
is implicit, making it easier to state the properties of an entire system through the local
properties of its agents and their interaction. In [7, 8], we have introduced the distributed
temporal protocol logic DTPL, a version of DTL that can be used to reason about protocols
and their properties, as well as about different protocol models. We now summarize the
main features of DTPL.

DTPL supports the formal specification of and reasoning about systems built over a
generic open network, where principals interact by exchanging messages through an insecure
public channel, denoted by Ch. The local alphabet of each principal A consists of actions
ActA and state propositions PropA. ActA includes

• send(M,B′): sending of the message M to B′,
• rec(M): reception of the message M ,
• spy(M): eavesdropping of the message M ,
• nonce(N): generation of the fresh nonce N , and
• key(K): generation of the fresh key K,

and PropA includes knows(M), which represents A’s knowledge of the message M (although
note that we do not explore the epistemic properties of this knowledge).

For the channel, Ch, we do not require state propositions, i.e. PropCh = ∅, whereas the
actions ActCh include

• in(M,A′): arrival at the channel of the message M addressed to A′,
• out(M,A′): delivery of the message M from the channel to principal A, and
• leak: leaking of messages.

Given these ingredients, the global language L is defined by the grammar

L ::= @i[Li] | ⊥ | L⇒ L ,
for i ∈ Id, where the local languages Li are defined by

Li ::= Acti | Propi | ⊥ | Li ⇒Li | Li U Li | Li S Li | j:Lj ,

with j ∈ Id. Actions correspond to true statements about an agent when they have just
occurred, whereas state propositions characterize the current local states of the agents.
Locally for an agent, U and S are the temporal operators until and since. Note that the
global formula @i[ϕ] means that ϕ holds at the current local state of agent i. A local formula
j:ϕ appearing inside a formula in Li is called a communication formula and it means that
agent i has just communicated with agent j for whom ϕ held.

The interpretation structures of L are suitably labeled distributed life-cycles, built upon a
simplified form of Winskel’s event structures [37]. A distributed life-cycle λ is a prime event
structure without conflict, built from a discrete, linearly ordered, set of events Evi for each
agent i ∈ I. Events can however be shared by several agents at communication points, as
long as no causality loops are introduced. If we denote by →i the local successor relation
between the events in Evi, we obtain the overall event structure by taking Ev =

⋃
i∈IdEvi

and the global causality relation by the reflexive and transitive closure →∗ of → =
⋃

i∈Id →i.
Collecting all the local events that have occurred up to a given point, we obtain the local
configuration of an agent i: a finite set ξi ⊆ Evi closed under local causality, i.e. if e →∗

i e
′
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A e1 �� e4 �� e5 �� e8 �� . . .

B e2 �� e4 �� e7 �� e8 �� . . .

C e3 �� e4 �� e6 �� e7 �� e9 �� . . .

Fig. 2. A distributed life-cycle for agents A, B and C.

πA(∅) αA(e1)�� πA({e1})
αA(e4)�� πA({e1, e4})

αA(e5)�� πA({e1, e4, e5})
αA(e8) �� . . .

Fig. 3. The progress of agent A.

{e1} �� {e1, e2} �� {e1, e2, e3, e4, e5}
��

∅
������
������ {e2} �����

����� {e1, e3} {e1e2, e3} {e1, e2, e3, e4} ��

��
. . .

		
{e3}



 {e2, e3}


 {e1, e2, e3, e4, e6}

Fig. 4. The lattice of global configurations.

and e′ ∈ ξi then also e ∈ ξi. Each non-empty local configuration ξi is reached, by the
occurrence of an event that we call last(ξi), from the local configuration ξi \ {last(ξi)}. A
global configuration is a finite set ξ ⊆ Ev closed for global causality, i.e. if e →∗ e′ and
e′ ∈ ξ then also e ∈ ξ. Clearly, every global configuration ξ includes the local configuration
ξ|i = ξ ∩ Evi of each agent i. Given e ∈ Ev, note that e↓= {e′ ∈ Ev | e′ →∗ e} is always
a global configuration. An interpretation structure µ = 〈λ, α, π〉 of DTPL is a labeled
distributed life-cycle, where labeling is local to each agent. For each i ∈ I, the function
αi : Evi → Acti associates a local action to each local event, and πi : Ξi → ℘(Propi)
associates a set of local state propositions to each local configuration.

Fig. 2 illustrates a distributed life-cycle, where each row comprises the local life-cycle of
one agent. In particular, EvA = {e1, e4, e5, e8, . . . } and →A corresponds to the arrows in
A’s row. We can think of the occurrence of the event e1 as leading agent A from its initial
configuration ∅ to the configuration {e1}, and then of the occurrence of the event e4 as
leading to configuration {e1, e4}, and so on. The state-transition sequence of agent A is
displayed in Fig. 3. Shared events at communication points are highlighted by the dotted
vertical lines. Note that the numbers annotating the events are there only for convenience
since no global total order on events is imposed in general. Fig. 4 shows the corresponding
lattice of global configurations.

We can then define the global satisfaction relation at a global configuration ξ of µ as

• µ, ξ � @i[ϕ] if µ, ξ|i �i ϕ,
• µ, ξ �� ⊥,
• µ, ξ � γ⇒ δ if µ, ξ �� γ or µ, ξ � δ,

where the local satisfaction relations at local configurations are defined by

• µ, ξi �i act if ξi �= ∅ and αi(last(ξi)) = act,



642 Relating Strand Spaces and Distributed Temporal Protocol Logic
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A e1
ϕ

�� e4
¬ϕ

�� e5
ϕ

�� e8
ϕ

�� . . .

B e2
ψ

�� e4
ψ

�� e7
ψ

�� e8
A:ϕ

�� . . .

Fig. 5. Satisfaction of formulas.

• µ, ξi �i p if p ∈ πi(ξi),
• µ, ξi ��i ⊥,
• µ, ξi �i ϕ⇒ ψ if µ, ξi ��i ϕ or µ, ξi �i ψ,
• µ, ξi �i ϕUψ if there exists ξ′′i ∈ Ξi with ξi � ξ′′i such that µ, ξ′′i �i ψ, and µ, ξ′i �i ϕ for

every ξ′i ∈ Ξi with ξi � ξ′i � ξ′′i ,
• µ, ξi �i ϕ S ψ if there exists ξ′′i ∈ Ξi with ξ′′i � ξi such that µ, ξ′′i �i ψ, and µ, ξ′i �i ϕ for

every ξ′i ∈ Ξi with ξ′′i � ξ′i � ξi, and
• µ, ξi �i j:ϕ if ξi �= ∅, last(ξi) ∈ Evj and µ, (last(ξi) ↓)|j �j ϕ.

Fig. 5 illustrates the satisfaction relation with respect to communication formulas. Clearly
µ, ∅ � @B [ψ U A:ϕ], because µ, ξ′ � @B [A:ϕ]. Note however that µ, ξ �� @B [A:ϕ], although
µ, ξ � @A[ϕ].

We say that µ is a model of Γ ⊆ L if µ, ξ � γ for every global configuration ξ of µ and
every γ ∈ Γ. Other standard operators are defined as abbreviations, e.g. connectives and
also (local) temporal operators:

Xϕ ≡ ⊥ U ϕ next
Yϕ ≡ ⊥ S ϕ previous
Fϕ ≡ � U ϕ sometime in the future
Pϕ ≡ � S ϕ sometime in the past
Gϕ ≡ ¬F¬ϕ always in the future
Hϕ ≡ ¬P¬ϕ always in the past

† ≡ ¬X� in the end
∗ ≡ ¬Y� in the beginning

F◦ ϕ ≡ ϕ ∨ Fϕ now or sometime in the future
P◦ ϕ ≡ ϕ ∨ Pϕ now or sometime in the past
G◦ ϕ ≡ ϕ ∧ Gϕ now and always in the future
H◦ ϕ ≡ ϕ ∧ Hϕ now and always in the past

Rules for proving invariants by induction can also be formulated and proved in our logic
in the standard way, see [6, 7, 8].

We can now introduce the specification of the communication network, where principals
can send and receive messages at will, but always through the channel. If the principal A
sends a message to B′, then the message synchronously arrives at the channel, where it is
stored for future delivery to B. If delivery ever happens, it must be synchronized with the
corresponding receive action of B. However, A can only send M to B′ if A knows both
the name B′ and how to produce the message M . In addition to their initial knowledge,
principals gain knowledge from the messages they receive and from the fresh nonces and
keys they generate. Dishonest principals may also spy on messages leaked by the channel
and learn their content. We do not allow principals to explicitly divert messages, but we
also do not guarantee that messages delivered to the channel are ever received.
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To ensure that principals only learn new information through the messages they receive
and the fresh data they generate, we specify that the knows propositions only hold where
necessary. To this end, we follow the idea underlying Paulson’s inductive model [32], in
accordance with the usual assumption of perfect cryptography (that the only way to decrypt
an encrypted message is to have the appropriate key). We restrict attention to those inter-
pretation structures µ such that, for every principal A, the following condition holds for all
messages M and non-empty local configurations ξA:

(K) µ, ξA �A knows(M) iff M ∈ synth(analz({M ′ | µ, ξA �A (Y knows(M ′)) ∨ rec(M ′) ∨
spy(M ′) ∨ nonce(M ′) ∨ key(M ′)})),

where analz and synth are analysis and synthesis functions that formalize how principals can
compose messages by concatenation and encryption, and decompose messages by projection
and decryption [32]. Formally, given a set S of messages:

• analz(S) is the least set containing S such that
– M1 ∈ analz(S) and M2 ∈ analz(S) if M1;M2 ∈ analz(S), and
– M ∈ analz(S) if {M}K ∈ analz(S) and K−1 ∈ analz(S),

• synth(S) is the least set containing S such that
– M1;M2 ∈ synth(S) if M1 ∈ synth(S) and M2 ∈ synth(S), and
– {M}K ∈ synth(S) if M ∈ synth(S) and K ∈ synth(S).

Note that (K) implies that, in every model µ = 〈λ, α, π〉 of the specification, π is completely
determined by λ and α, given πA(∅) for each A ∈ Princ. This is equivalent to saying that
the knowledge of each principal only depends on his initial knowledge and on the actions
that have occurred. In fact, as shown in [6, 7, 8], (K) entails a number of useful properties
about knows, characterizing how principals acquire knowledge. Namely, for each principal
A ∈ Princ we have that:

(K1) @A[knows(M1;M2) ⇔ (knows(M1) ∧ knows(M2))],
(K2) @A[(knows(M) ∧ knows(K)) ⇒ knows({M}K)],
(K3) @A[(knows({M}K) ∧ knows(K−1)) ⇒ knows(M)],
(K4) @A[knows(M) ⇒ G◦ knows(M)],
(K5) @A[rec(M) ⇒ knows(M)],
(K6) @A[spy(M) ⇒ knows(M)],
(K7) @A[nonce(N) ⇒ knows(N)], and
(K8) @A[key(K) ⇒ knows(K)].

The full specification of the communication network also comprises a number of axiom
schemas that characterize the behavior of the channel and of each principal A ∈ Princ, as
well as the way they can communicate:

(C1) @Ch[in(M,A′) ⇒ ∨
B∈PrincB:send(M,A′)],

(C2) @Ch[out(M,A′) ⇒ P in(M,A′)],
(C3) @Ch[out(M,A′) ⇒A:rec(M)],
(P1) @A[send(M,B′) ⇒ Y(knows(M) ∧ knows(B′))],
(P2) @A[send(M,B′) ⇒ Ch:in(M,B′)],
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(P3) @A[rec(M) ⇒ Ch:
∨

A′∈NameA
out(M,A′)],

(P4) @A[spy(M) ⇒ Ch:(leak ∧ P
∨

B′∈Name in(M,B′))],
(P5) @A[

∧
B∈Princ\{A} ¬B:�],

(P6) @A[nonce(N) ⇒¬Ch:�], and
(P7) @A[key(K) ⇒¬Ch:�].

The channel axiom schemas (C1–C3) are straightforward. They state that a message
addressed to A′ only arrives at the channel if it is sent to A′ by some principal B; that
the channel only delivers a message to A′ if such a message for A′ has previously arrived;
and that if the channel delivers a message to A′, then A receives it. The principal axiom
schemas are also simple. (P1) is a precondition for sending a message, stating that the
sender must know both the message and the recipient’s name beforehand. The next three
formulas are related to interaction. (P2) and (P3) state that the sending and receiving of
messages, respectively, must be shared with the corresponding arrival and delivery actions
of the channel. (P4) guarantees that a spied message must have arrived at the channel,
addressed to some recipient. The three final axiom schemas limit the possible interactions:
(P5) guarantees that principals never communicate directly (only through the channel),
(P6) and (P7) state that nonce and key generating actions are not communication actions.

To guarantee the freshness and uniqueness of the nonces and keys generated by each
principal, in our network models we could also require the axiom schemas

(N1) @A[nonce(N) ⇒ Y¬ knows(MN )], and
(N2) @A[nonce(N)] ⇒ ∧

B∈Princ\{A} @B [¬ knows(MN )],

where MN ranges over all the messages containing the nonce N . Together with (K7), (N1)
and (N2) guarantee that every nonce is generated at most once, if at all, in each model, and
always freshly (also taking into account the initial knowledge of all principals). Analogous
formulas can be written regarding key generation. However, in the present work, we shall
not consider them for the reasons explained at the end of Section 4.

Note that the specification given can, of course, be extended in many ways, e.g. by includ-
ing other kinds of message constructors (such as for hashing), additional actions and state
propositions, or additional channels with distinct accessibility and reliability properties. We
consider some of these extensions in [6]. The above is however enough to abstractly formal-
ize and reason about the properties of communication between principals executing security
protocols.

2.2.2 Protocol modeling.
Formalizing in DTPL a protocol like NSPK as described in Fig. 1 involves defining the
sequences of actions (send, rec, nonce, and key) taken by honest principals executing the
protocol. Namely, for each role, we formalize the actions taken and the order in which they
must be taken. In the case of the NSPK protocol, there are two roles: an initiator role Init,
represented by a, and a responder role Resp, represented by b. Given distinct names A′ and
B′, of principals A and B respectively, and nonces N1 and N2, the role instantiations should
correspond to the execution, by principal A, of the following sequence runInit

A (A′, B′, N1, N2)
of actions for the initiator role:

〈nonce(N1).send({N1;A′}KB′ , B
′).rec({N1;N2}KA′ ).send({N2}KB′ , B

′)〉 ,
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and similarly for the responder role.
In general, a protocol description like the one above may involve j name variables a1, . . . , aj ,

corresponding to j distinct roles,m nonce variables n1, . . . , nm, and p key variables k1, . . . , kp,
and consist of a sequence 〈step1 . . . stepu〉 of message exchange steps, each of the form

(stepq) as → ar : (nqt1
, . . . , nqtν

, kqv1
, . . . , kqvκ

). M ,

where 1 ≤ qt1 , . . . , qtν
≤ m, 1 ≤ qv1 , . . . , qvκ

≤ p, and M can include any of the name,
nonce, and key variables. A protocol instantiation is a variable substitution σ such that
each σ(ai) ∈ Name, each σ(ni) ∈ Nonce, each σ(ki) ∈ Key, and σ is injective on name
variables. We extend σ to messages, actions, sequences, and formulas in the natural way.
Each instantiation prescribes a concrete sequence of actions to be executed by each of the
participants in a run of the protocol: for each role i, if σ(ai) ∈ NameA then we have the
corresponding sequence runi

A(σ) = σ(stepi
1) � · · · � σ(stepi

u) where

stepi
q =






〈nonce(nqt1
) . . . nonce(nqtν

).key(kqv1
) . . . key(kqvκ

).send(M,ar)〉 if i = s ,

〈rec(M)〉 if i = r ,

〈〉 otherwise.

In general, if we denote the set of all protocol instantiations by Inst, we can define the set
Runsi

A of all possible concrete runs of principal A in role i, and the set RunsA of all of A’s
possible concrete runs in any of the j roles: Runsi

A =
⋃

σ∈Inst{runi
A(σ) | σ(ai) ∈ NameA}

and RunsA =
⋃j

i=1 Runsi
A.

Since it is enough to consider one dishonest principal, as we show in [8], we consider that
Z is the identity of the intruder and Hon = Princ \ {Z}. While NameZ , the set of names
used by Z, can include many elements, we assume that NameA = {A}, for every A ∈ Hon.

We define the initial knowledge of a principal A ∈ Princ as the set of all messages built
from a subset of all principal names plus a set KA, where KA typically contains all public
keys, all private keys held by A, and each symmetric key KAx shared by A with a principal
x. A DTPL axiomatization of initial knowledge can be found in [6, 7, 8].

Models of a protocol are those network models where, furthermore, all honest principals
strictly follow the rules of the protocol. That is, for every A ∈ Hon, if the local life-cycle
of A is e1 →A e2 →A e3 →A . . . , then the corresponding (possibly infinite) sequence of
actions w(A) = 〈αA(e1).αA(e2).αA(e3) . . . 〉 must be an interleaving of prefixes of sequences
in RunsA, but using distinct fresh nonces in each of them.

For the NSPK protocol, this means that the life-cycle of each honest principal must be built
by interleaving prefixes of sequences of the form runInit

A (A,B′, N1, N2) or runResp
A (B′, A,N1, N2),

where no two such initiator runs can have the same N1, no two responder runs can have the
same N2, and the N1 of an initiator run must be different from the N2 of any responder run.

2.2.3 Security goals.
The aim of protocol analysis is to prove (or disprove) the correctness of a protocol with
respect to the security goals that the protocol should achieve. Two of the most important
goals concern the secrecy of data and the authentication of principals and message origi-
nation. There are many approaches to specifying these goals in the literature, depending
in part on the underlying model used. However, the various approaches mostly agree on
the general picture. Below, we just briefly sketch how such properties can be expressed in
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DTPL; further details can be found in [6, 7, 8]. More specifically, we show how below to
formulate the required secrecy and authentication goals of protocols in the general case,
illustrating them by means of the NSPK protocol.

Let us start with secrecy. We can formalize that the messages in a finite set S will remain
shared secrets between the participants A1, . . . , Aj after the complete execution of a protocol
instantiation σ, with each σ(ai) ∈ NameAi

, by the formula

j∧

i=1

@Ai
[P◦ rolei

Ai
(σ)] ⇒

∧

B∈Princ\{A1,...,Aj}

∧

M∈S

@B [¬ knows(M)].

There are many possible notions of authentication (see, e.g., [27]). However, most authors
agree that authentication expresses some kind of correspondence property. The typical
authentication goal states that if an honest principal A completes his part of a run of a
protocol in role i, with certain partners and data, then it must be the case that these
partners have also been actively involved by sending to A the messages that A received.
Given a protocol instantiation σ such that σ(ai) = A ∈ Hon and σ(aj) ∈ NameB, the
property that A authenticates B in role j at step q of the protocol can be defined in our
logic by the formula

@A[rolei
A(σ)] ⇒ @B[P◦ send(σ(M), A)],

assuming that the protocol stepq requires that aj send the message M to ai.
Given a security goal γ, we call an attack on a protocol any protocol model µ and config-

uration ξ for which the formula expressing the goal does not hold, i.e. such that µ, ξ �� γ.

2.3 Strand spaces

2.3.1 The approach.
In this section, we summarize strand spaces, closely following [36]. A strand is a sequence
of events that represents either the actions of a legitimate party (i.e. an honest principal)
in a security protocol or the actions of an intruder. One speaks of legitimate strands in the
former case and intruder strands in the latter.2 A strand space is a collection of strands,
equipped with a graph structure formalizing causal interaction: a bundle is a subspace of a
strand space, representing communication between different strands.

More formally, let us consider a set M of messages that can be exchanged between prin-
cipals in a protocol (the results that we present here are independent of the actual structure
of the elements of M). A signed term is a pair 〈Σ,M〉, with Σ ∈ {+,−} and M ∈ M. We
write signed terms as +M or −M , and we use the projections Π1 and Π2 to return the sign
and the term part, respectively, of a signed term. Moreover, we denote the set of finite se-
quences of signed terms by (±M)∗, whose elements are of the form 〈〈Σ1,M1〉 . . . 〈Σn,Mn〉〉.
We will slightly abuse notation and refer to subterms of signed terms.

A strand space over M is a set S together with a trace mapping tr : S → (±M)∗,
associating each strand in S with a sequence of signed terms. As is standard, we usually
represent a strand space by its underlying set of strands S.

Given a strand space S, a node is a pair (s, i), where s ∈ S and i is an integer, 1 ≤ i ≤
|tr(s)|. We denote the set of nodes of S by NS or simply by N . Further, we say that the node

2In strands terminology, the intruder is called penetrator (and one speaks of penetrator strands), but in this paper we use

only the name “intruder” for simplicity.
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(s, i) belongs to the strand s. It follows by definition that every node belongs to a unique
strand. Given a node n = (s, i), we define str(n) = s, index (n) = i, and term(n) = tr(s)i,
i.e. the i-th signed term in the trace of s.

Two nodes n1 and n2 can be connected by one of two different kinds of edges. If there
is an edge n1 → n2, then term(n1) = +M and term(n2) = −M , for some M ∈ M. This
edge expresses that n1 sends M , which is received by n2, thereby recording a causal link
between their respective strands. There is an edge n1 ⇒ n2 iff n1 and n2 are both on the
same strand, n1 = (s, i), and n2 = (s, i + 1). This edge expresses that n1 is an immediate
causal predecessor of n2 on the strand s. We write ⇒+ for the transitive closure of ⇒.

An unsigned term M occurs in n ∈ N iff M is a subterm of term(n). If U is a set
of unsigned terms, then the node n ∈ N is an entry point for U iff term(n) = +M for
some M ∈ U , and term(n′) /∈ U whenever n′ ⇒+ n. An unsigned term M originates on
n ∈ N iff n is an entry point for the set U = {M ′ | M is a subterm of M ′}, and M is
uniquely originating iff it originates on a unique n ∈ N . If a term M originates uniquely in
a particular strand space, then it can play the role of a nonce or generated (session) key in
that structure.

The set N of nodes together with the two sets of edges n1 → n2 and n1 ⇒ n2 form
a directed graph 〈N , (→ ∪ ⇒)〉. A bundle is a finite subgraph of this graph for which
we can regard the edges as expressing the causal dependencies between the nodes. Let
C = 〈NC , (→C ∪ ⇒C)〉, with →C ⊆ →, and let ⇒C ⊆ ⇒ be a subgraph of 〈N , (→ ∪ ⇒)〉.
Then C is a bundle if (1) C is finite; (2) if n2 ∈ NC and term(n2) is negative, then there is
a unique n1 such that n1 →C n2; (3) if n2 ∈ NC and n1 ⇒ n2, then n1 ⇒C n2; and (4) C is
acyclic. Note that in conditions (2) and (3), it follows that n1 ∈ NC , because C is a graph.

In strand spaces, like in most other approaches to security protocol analysis, such as ours
based on DTPL, it is customary to follow Dolev and Yao [17] and consider the model of
an active intruder who controls the network but cannot break cryptography. In particular,
the intruder can intercept messages and analyze and decrypt them if he possesses the cor-
responding keys for decryption, and he can generate messages from his knowledge and send
them under any agent’s name. Such an intruder is modeled in [36] as a principal whose capa-
bilities are characterized by the set KZ of keys initially known to him and a set of intruder
strands that allow him to discard messages, compose messages, and apply cryptographic
operations using the keys that become available to him.

An intruder trace is one of the following kinds:

• M(essage): 〈+M〉, for M an atomic message,

• K(ey): 〈+K〉, where K ∈ KZ ,

• F(lushing): 〈−M〉,
• T(ee): 〈−M.+M.+M〉,
• C(oncatenation): 〈−M1.−M2.+M1;M2〉,
• E(ncryption): 〈−K.−M.+ {M}K〉,
• S(eparation): 〈−M1;M2.+M1.+M2〉,
• D(ecryption): 〈−{M}K .−K−1.+M〉.
Fig. 6 shows the diagrams that represent graphically the intruder traces T, S, and K and

E, where the open circles ◦ show the points at which other diagrams can be connected. Here
we have explicitly added the trace names, but we usually omit these to improve readability.
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◦ M �� T•
��• M ��

��
◦

• M �� ◦

◦ M1;M2 �� S•
��• M1 ��

��
◦

• M2 �� ◦

K•
K �� E•

��◦ M �� •
��• {M}K �� ◦

Fig. 6. Intruder traces T, S, and K and E.

Note that it is possible to extend this collection of intruder traces to model additional
capabilities of the intruder. Note also that, contrarily to [36], which we follow, more recent
presentations of strand spaces, such as [24], do not consider T and F traces. Indeed, neither
of these traces appears to be essential. We consider them here because they help in clarifying
the relationship between strand spaces and DTPL, as explained in Section 3.

2.3.2 Protocol modeling.
An infiltrated strand space is a strand space that contains both legitimate strands and
intruder strands, i.e. it is a pair (S,Z), where S is a strand space, Z ⊆ S, and tr(z) is an
intruder trace for all z ∈ Z. A strand s ∈ S is an intruder strand if it belongs to Z, and
a node is an intruder node if it lies on an intruder strand. Otherwise we call it a regular
(or honest) strand or node. A node n is an M-node (K-node, etc.), if it lies on an intruder
strand with a trace of kind M (K, etc.). From now on, by strand space we will always mean
an infiltrated strand space, and a bundle for a protocol will be a bundle that consists of the
legitimate strands plus the intruder strands. Moreover, for simplicity, we will often identify
an intruder strand with its corresponding intruder trace.

To fix the set of allowed legitimate strands, we depart from a given specification as before,
yielding a set of concrete runs. To each such run, we also associate an honest strand.
All these honest strands, together with the intruder strands, comprise our strand space of
interest. Moreover, K and M intruder strands can only appear for the intruder’s initial
knowledge, or for uniquely originating data (no guessing). Of course, fresh data generation
actions by honest principals have to be left implicit in strands and can only be derived
through the notion of unique origination in the bundles including them. Essentially, we
assign to A ∈ Hon all strands

run2str(w) = act2str(act1) � · · · � act2str(actn)

obtained from a run w = 〈act1 . . . actn〉 of A as follows:

act2str(act) =






〈+M〉 if act = send(M,B′), for some B′ ∈ Name ,
〈−M〉 if act = rec(M) ,
〈〉 otherwise.

There may, however, be several prefixes of a run w that are mapped to the same prefix
of run2str(w) since internal nonce and key generation actions are hidden from the resulting
strand. In any case, we shall say that the i-th node in run2str(w) corresponds to the j-th
action of w if j − i is the number of internal actions (nonce and key generation) occurring
in 〈act1 . . . actj−1〉.
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run2str(w) run2str(u)

�� ��• M ��

��

•
��

. . .A •send(M,C)
. . . . . .

. . .Ch •
in(M,C)

. . . •out(M,B)
. . .

. . .B . . . •
rec(M)

. . .

Fig. 7. Message destination is absent in strands: a problem.

�� ��• M ��

��

•
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��
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��

. . .A •send(M,C)
. . . . . .

. . .Ch •
in(M,C)

. . . •leak •in(M,B)
. . . •out(M,B)

. . .

. . .Z . . . •
spy(M)

•
send(M,B)

. . . . . .

. . .B . . . •
rec(M)

. . .

Fig. 8. Message destination is absent in strands: a solution of the problem.

Note also that all information concerning message destinations is absent in strands. Still,
we believe that the concretization of this missing information is important, aside from being
technically useful. Neglecting this information may lead to situations where strand models
appear unnatural, and where the role effectively played by the intruder is not made com-
pletely explicit. Fig. 7 illustrates such a situation, where an honest +M is directly connected
to an honest −M , but the +M corresponds to a run of the protocol containing send(M,C)
and the agent owning the strand with −M is not C, but rather B. In this case, there is an
implicit interposition of the intruder, who does spy(M) and then send(M,B), which we can
make explicit by using a T intruder strand (possibly along with an F strand to flush the
additional M).

To overcome this problem, we assume in this paper that situations such as the one in
Fig. 7 do not occur, or are replaced as illustrated in Fig. 8. For similar reasons, we also
assume that bundles never contain more than one M or K node labeled with the same
message. If such a message is needed more than once, we just replicate it using T strands,
making it possible to maintain control on the origin of data, especially for fresh data in M
nodes, which can now be captured through the notion of unique origination.

Fig. 9 shows, on the left, the “infiltrated NSPK protocol”, where the intruder Z performs a
man-in-the-middle attack on two principals A and B who are executing the NSPK protocol.
The open circles and dotted double arrows indicate the points at which the two “internal”
steps of the intruder mesh with A and B’s strands, and on the right of the figure, we show
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A Z B

• {N1;A}KZ ��

��

◦
��◦ {N1;A}KB �� •

��•
��

•{N1;N2}KA��

��

• {N2}KZ �� ◦
��◦ {N2}KZ �� •

◦ {N1;A}KZ �� D•

��
K•

K−1
Z �� •

��• N1;A �� E•

��
K•

KB �� •

��• {N1;A}KB �� ◦

Fig. 9. Infiltrated NSPK and the intruder’s first step.

the details of the first step of the intruder, i.e. how he uses his private key K−1
Z and B’s

public key KB to transform A’s message {N1;A}KZ
into {N1;A}KB

. The second intruder
step is similar.

For the sake of our comparison with DTPL, we also introduce the following notions. We
say that n = (s, i) is a sending or receiving node depending on the sign Π1(tr(s)i) of the
corresponding message. Furthermore, for a node n in a bundle, we say that:

• n is a dangling node if it is not connected via → (then n must be a sending node, in
which case we also say that the corresponding unsigned message is dangling);

• n is an interface node if it is an intruder node that is dangling or connected via → to an
honest node; and

• n is a productive node if it is an intruder node and causally precedes a sending interface
node, or is itself one.

2.3.3 Security goals.
Although a specific syntax has been proposed in [34] for expressing properties of bundles,
we here follow [36] where both secrecy and authentication goals are formulated as metalevel
assertions. No formal definitions are given, but the general shape of such properties is
discussed. Given also the worked examples in [24, 36], we can come up with formulations
that match the same situations that we have considered with DTPL.

In particular, the secrecy of the messages in a set S after the completion of a protocol
instantiation σ by honest principals A1, . . . , Aj can be formulated by requiring that if a
protocol bundle contains the corresponding regular strands then none of the messages in S
occurs in an intruder node. On the other hand, suppose the honest principal A has completed
his role in a given protocol instantiation σ, where the honest principal B is supposed to have
sent a message M to A. The authentication of B by A can now be formulated by requiring
that if a protocol bundle contains the regular strand corresponding to A’s execution of the
protocol, then it must also contain B’s strand, or at least a prefix of it with a node labeled
with +M .
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With respect to such security goals, it is worth mentioning that [24] contains a notion of
bundle equivalence: two bundles on a given strand space are equivalent iff they contain ex-
actly the same regular nodes. As explained there, both secrecy and authentication properties
as expressed above are invariant under bundle equivalence.

3 Comparing DTPL and strand-space protocol models

3.1 The differences

To compare DTPL and strand-space protocol models, we must overcome several differences.
We focus here on the three main ones and describe the solutions we have adopted. The first
difference stems from the fact that although both approaches are based on partially-ordered
sets of events with labeling information, they each have distinct starting points. In DTPL,
both honest principals and the intruder have the same first-class status and their differences
are made explicit only by different constraints on the way they can behave. In contrast, the
strand-space approach focuses almost exclusively on the intruder (penetrator): while the
smallest internal details of the way the intruder builds messages are explicitly represented
in bundles, honest behavior is only represented in terms of interaction with the environment
and all internal details are omitted. We may say that strand spaces provide an intruder
view of protocols. In the extreme case, even protocol executability by honest participants
must just be assumed. In contrast, DTPL models express whether a certain message can
be assembled or not, but do not tell us how. To compare the two approaches, we shall have
to choose, in each case, one of the potentially many ways to produce a message from the
available information.

The second difference is that strand spaces abstract away the communication medium.
In DTPL models, we have an explicit communication channel through which all message
exchanges pass, and we can model the act of the intruder spying a message. In strands,
no such medium exists. We can however view the strand space as also representing the
intruder’s view on the channel, according to its Dolev-Yao capabilities. Still, to make the
approach meaningful, we must understand a dangling +M node in a bundle as a resource
that can be used by the intruder, rather than a message in transit. This resource-oriented
interpretation underlies the usefulness of intruder strands of type T and F, although, as we
remarked above, one can do without these strands. Hence, we shall assume that T and F
strands are the way that bundles can model a channel that can loose or duplicate messages,
like the channel we modeled in DTPL. According to this view, we will require → to be
functional, i.e. no +M node can be linked by → to more than a single −M node. If several
such arrows exist, then we can use T strands to replicate M as many times as necessary.
Furthermore, F strands can be used to model the situation where a message is deliberately
not spied by the intruder (the intruder node involved will not be productive).

Another related issue concerns the precise origin of messages. In bundles, the precise
origin of a received or spied message is made explicit. In contrast, DTPL models express
that particular messages can be received by the principals, but if a message has several
possible origination points, then we shall have to choose one of them.

The third difference between the two approaches, as also noted by Halpern and Pucella
in [25], is that the strand approach does not account for information about agents who
may be involved in several distinct, possibly interleaved, executions of a protocol. Indeed,
emphasizing the fact that honest principals should never reuse information from one pro-
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tocol execution in another, each execution is treated as an independent honest strand. To
overcome this situation, we have chosen to associate to each honest principal its own set of
honest strands, according to the definition of run2str in the preceding section. Although
we agree with Halpern and Pucella’s argument about the need to make this information
explicit if one is interested in reasoning about the evolution of each agent, we believe that
our solution is cleaner.

Given these differences, it makes sense to compare a bundle C and a global configuration
ξ of a DTPL model µ of a given protocol along the following lines.

Same honest behavior For every A ∈ Hon, αA(ξA) is an interleaving of the run prefixes
u1, . . . , un if and only if the regular nodes in C correspond precisely to A’s strand prefixes
run2str(u1), . . . , run2str(un).

Same intruder output If an event labeled with send(M,A′) appears in ξZ , then an in-
truder interface node labeled with +M appears in C, either dangling or connected by →
to a node of A.

Same intruder knowledge For every message M , µ, ξ � @Z [knows(M)] if and only if
M ∈ synth(analz(S)), where S is the set of all (unsigned) messages occurring in dangling
or productive nodes of C.

Whenever these three conditions are fulfilled, we will say that the global configuration ξ of
µ is equivalent to C.

Note that the definition of same intruder output is asymmetric because a dangling interface
node can be seen either as a message in transit or as an internal action of the intruder. The
statement of same intruder knowledge reflects that the data in productive nodes is precisely
the relevant data manipulated by the intruder, whereas dangling nodes represent the data
that the intruder can spy.

3.2 From DTPL model configurations to bundles

Let µ be a DTPL model of a given protocol and ξ a global configuration of µ. Our goal
is to build an equivalent bundle C = mc2b(µ, ξ), in the sense defined above. As we have
discussed, DTPL models do not contain explicit information on how the intruder produces
messages from the available information. This is however essential for the translation at
hand.

Let us say that a bundle is M -producing if it contains a dangling node labeled with +M .
Further, given a set S of messages, let us call an S-bundle any bundle-like structure with
only intruder strands, but excluding M and K intruder strands, where receiving nodes −M
can be dangling provided that M ∈ S.

The construction of bundles from DTPL models and configurations relies on the possibility
of building S-bundles and integrating them in a structure with dangling +M nodes for every
M ∈ S. The next two lemmas show how to accomplish this.

Lemma 3.1
Let S be a set of messages. Then M ∈ synth(analz(S)) if and only if there exists an
M -producing S-bundle.

Proof. (Sketch) Suppose that M ∈ synth(analz(S)). If M ∈ S, then just consider the
empty S-bundle. Otherwise, just use the induction hypothesis and the C, S, E, or D
intruder strands to build the appropriate S-bundle.
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M1;M2 �� •
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Fig. 10. Two ways of producing M1;M2;M3 from M1;M2 and M2;M3.

{M ;M}K �� •
��K−1

�� •
��• M ;M ��

M ;M ′
�� •

��•
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M �� •
��•M ′

�� • M ��

��

•
��• M �� •
��• M ;M ��

Fig. 11. Two possible bundles producing M ;M from {M ;M}K and K−1, and M ;M ′.

For the converse, we proceed by cases, with M and K excluded. F strands are irrelevant
since they do not produce new messages, as well as T strands because they only duplicate
already existing messages. We are then left with C, S, E, or D, which are precisely covered
by analysis and synthesis.

Fig. 10 shows two possible S-bundles producing M1;M2;M3 from M1;M2 and M2;M3.
Note that there are many other possibilities for producing such a message. Indeed, it is
always the case that messages can be produced in several different ways. Fig. 11 shows also
two possible S-bundles producing M ;M from {M ;M}K and K−1, and from M ;M ′. Still,
as shown in [24], one can always choose a bundle without redundancies.

Lemma 3.2
Let S be the set of all dangling messages in a bundle C, and M a message. Then, every
M -producing S-bundle can be used to extend C into a bundle C′ whose set of dangling
messages contains S ∪ {M}.
Proof. (Sketch) Given an M -producing S-bundle, build C′ by gluing it to C through a
number of intruder T strands to allow messages to be used multiple times. In general, for
each dangling occurrence of −M ′ in the S-bundle, use a T strand 〈−M ′. + M ′. + M ′〉,
connecting the −M ′ to any dangling +M ′, the first +M ′ to the −M ′ of the S-bundle, and
leaving the second +M ′ dangling for future use.

The general construction of mc2b(µ, ξ) is then the following:

1. Collect the prefixes run2str(u) of all honest strands corresponding to the prefixes u of
the honest runs used to build ξA, for each A ∈ Hon.
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Here nonce1 = nonce(N1), M1 = {N1; A}KZ
, M ′

1 = {N1; A}KB
, nonce2 = nonce(N2), and M2 =

{N1; N2}KA
.

Fig. 12. Part of the DTPL model of the man-in-the-middle attack on the NSPK protocol.
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Fig. 13: Part of a bundle obtained from Fig. 12 (the unnamed strands are intruder strands).

2. Add a K intruder node for each key K ∈ KZ , where knows(K) ∈ πZ(∅).
3. Add an M intruder node for each name A′, where knows(A) ∈ πZ(∅).
4. Following the order of ξZ , for each event labeled with
(a) send(M,A′): enlarge the structure with an S-bundle producing M , according to Lem-

mas 3.1 and 3.2, where S is the set of all messages currently dangling in the structure
(note that this is always possible without introducing cycles);

(b) rec(M) or spy(M): ignore for now;
(c) nonce(N) or key(K): add an M intruder node +N or +K, respectively.

5. Introduce an edge → to each honest −M from a compatible existing +M previously
duplicated by a T strand (again, this can always be done without cycles).
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6. Finally, flush the dangling +M that occur in honest nodes, or in T nodes that only
depend causally on honest nodes, for all messages M that have not been received or
spied by the intruder in ξZ .

As an illustration of the overall construction of bundles from DTPL models, consider the
configuration depicted in Fig. 12, which corresponds to a part of the man-in-the-middle
attack on the NSPK protocol. Fig. 13 illustrates part of a possible bundle obtained by the
construction, assuming that KZ = {K−1

Z ,KB}. (Details on our analysis of NSPK and the
corrected version NSL [26] can be found in [6, 7, 8]).

We thus have the following result:

Theorem 3.3
mc2b(µ, ξ) is a bundle and is equivalent to the configuration ξ of µ.

The fact that mc2b(µ, ξ) is a bundle is due to the successive integration of S-bundles in step
4, together with step 5, which removes dangling receives. The absence of cycles can always
be guaranteed if in steps 4 and 5 we choose resources corresponding to previously occurring
messages (e.g. with respect to the channel ordering in µ). This can be explicitly achieved
by tagging all the nodes of the bundle according to the order of ξZ as follows: in step 1, tag
each honest node with the order (1, 2, 3, . . . ) of the corresponding in/out event; in steps 2,
3, and 4(c), tag all nodes with 0; in step 4(a), tag all nodes of the S-bundle with the order
of the corresponding in(M,A′) event, and all nodes of the needed T strands with the same
tag as their linking node. In this way, steps 4 and 5 can be accomplished by connecting a
−M tagged i to a +M tagged j with j < i. This is always possible given the specification
of DTPL models, namely the channel axiom schemas (C1–3).

Note that steps 4(a) and 5 of our construction involve choices and hence this construction
can also be seen as defining a collection of bundles. In step 4(a) we must choose both an
adequate S-bundle and how to glue it to the rest of the structure, and there may be several
choices for both. Step 5 includes choosing connections between sending and receiving nodes,
and again there may be different possible choices of a sending node for each receiving node.
These choices reflect the amount of indetermination that we can find in DTPL models, with
respect to bundles. The internal behavior of the intruder is left implicit, and the direct
correspondence between sent and received messages is not present in DTPL models. Still,
any bundle mc2b(µ, ξ) built in this way ends up with dangling nodes corresponding precisely
to the data actually held by the intruder. Most of these nodes should however be interpreted
as internal resources of the intruder, rather than messages that he actually sent.

The first step of the construction, together with the fact that all other steps can only
introduce intruder strands, guarantees that the bundle mc2b(µ, ξ) has the same honest
behavior as the configuration ξ of µ. Step 4(a) guarantees that they also have the same
intruder output, since steps 5 and 6 do not invalidate it. The same intruder knowledge
is guaranteed by the fact that the set S of dangling messages of C contains all the initial
knowledge of Z (steps 2 and 3), plus all the messages Z received or spied (not flushed in
the last step), plus all the fresh data Z generated (step 4(c)), possibly along with additional
messages that could already be produced from these.

3.3 From bundles to DTPL model configurations

Let C be a bundle over the infiltrated strand space of a protocol. Our goal is to define a
translation b2mc(C) that builds a DTPL model µ of the given protocol that has a global
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configuration ξ equivalent to C. The general construction of (µ, ξ) = b2mc(C) is as follows:

1. Extend the bundle to a well-founded total order ≤.
2. Collect in a set UA the prefixes u of honest runs corresponding to the prefixes run2str(u)

of each of the honest strands of A occurring in C, for each A ∈ Hon.
3. For each A ∈ Hon:
(a) let EvA = {〈u, i〉 | u ∈ UA, 1 ≤ i ≤ |u|},
(b) choose →A such that

• if 〈u, i〉, 〈u, j〉 ∈ UA and i < j then 〈u, i〉 →∗
A 〈u, j〉, and

• if two nodes n, n′ in C such that n ≤ n′ correspond to 〈u, i〉, 〈u′, i′〉 ∈ UA, respectively,
then 〈u, i〉 →∗

A 〈u′, i′〉,
(c) define αA(〈u, i〉) = ui, and
(d) define πA(∅) = {knows(M) | M ∈ synth(analz(SA))}, where SA includes all principal

names and public keys, as well as A’s private keys.
4. For the intruder:
(a) fix the subset D of the set of all dangling intruder nodes of C that are to be considered

as sending actions,
(b) let EvZ contain an event eN or eK for each nonce N or key K uniquely originating in

a productive intruder M node (we call these nodes o(N) or o(K), respectively), and
additionally an event corresponding to every node n of C that is either a receiving
interface node that is productive, a dangling honest node, or a sending interface node
that is not dangling or is in D,

(c) choose →Z such that
• if n ≤ n′ then n→∗

Z n′, and
• if o(X) ≤ n then eX →∗

Z n,
(d) define

• αZ(eN ) = nonce(N),
• αZ(eK) = key(K),
• αZ(n) = spy(M), if n is a productive receiving or dangling honest node whose

unsigned label is M ,
• αZ(n) = send(M,A′), if n is a sending interface node labeled with +M and such

that A′ ∈ NameA if n is linked by → to an A strand,
and

(e) define πZ(∅) = {knows(M) | M ∈ synth(analz(SZ))}, where SZ includes all principal
names and keys from KZ that occur in productive intruder nodes.

5. For the channel:
(a) let EvCh consist of all honest events labeled with send/rec actions plus all events of Z

labeled with send/spy actions,
(b) define →Ch to be compatible with ≤, by taking the node corresponding to each honest

〈u, i〉 instead of 〈u, i〉 itself, and such that 〈u, i〉 →∗
Ch n if 〈u, i〉 ∈ EvA with label

send(M,B′) corresponds to a dangling node n,
(c) define

• αCh(e) = in(M,A′), if e is already labeled send(M,A′),
• αCh(e) = out(M,A), if e ∈ EvA is already labeled rec(M), and
• αCh(e) = leak if e ∈ EvZ is already labeled spy(M) for some message M ,
and

(d) πCh(∅) = ∅.
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Here nonce1 = nonce(N1), M1 = {N1; A}KZ
, M ′

1 = {N1; A}KB
, nonce2 = nonce(N2), and M2 =

{N1; N2}KA
.

Fig. 14. Part of the DTPL model and configuration obtained from Fig. 9.

To illustrate the construction of DTPL models and configurations from protocol bundles,
we shall consider as a starting point the bundle shown in Fig. 9. For simplicity, we exclude
the last nodes of both A’s and B’s strands, as well as the (unspecified) second step of the
intruder. Part of the resulting DTPL model and configuration are given in Fig. 14.

The following result holds independently of the choices made in the construction:

Theorem 3.4
Let (µ, ξ) = b2mc(C). µ is a DTPL model and ξ is a configuration of µ equivalent to C.

First, note that linearizing the whole bundle order in step 1 is necessary to guarantee that
the local orders subsequently chosen for each principal and the channel are compatible with
each other. In this way, we can choose each local →A in step 3 to be compatible with
≤ by just inserting the internal actions nonce/key in a suitable order with respect to the
definition of the runs introduced in step 2. The two conditions on →A stated in step 3(b)
guarantee precisely this: the first ensures that the order of actions in each run is kept, and
the second that the total order ≤ is not violated. A similar situation happens in step 4.
Step 5 is slightly different due to the fact that a dangling honest node labeled with +M
may correspond to an intruder spy event in addition to an the honest send event. In the
case of a spy event, we just introduce the corresponding channel event leak sometime after
the corresponding in event, compatibly with ≤. Overall, these conditions guarantee that
we have a distributed life-cycle. The fact that it meets the specification is straightforward,
once we assume that the protocol is executable.

Given (µ, ξ) = b2mc(C), the global configuration ξ required is precisely the set of all
events of µ. Note however that, as in the previous translation, the construction defines not
just a DTPL model, but rather a collection of models. The possible choices now reflect
the information that is absent in bundles but needs to be made explicit in DTPL models.
Namely, the total order chosen in step 1 affects the whole construction. But there is also
a choice of the relative ordering of nonce/key actions, both for honest principals and for
the intruder, in steps 3(b) and 4(c). In the channel, we also have a choice of how to order
spying actions corresponding to dangling honest nodes at step 5(b). Moreover, we also have
a choice in step 4(d) in the case that the node is not connected. This highlights the fact that
the strand-space approach does not make explicit any information about the destination of a
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sent message. Step 4(a), in turn, fixes a classification of dangling intruder nodes as sending
actions or just internal activity.

The property of honest behavior follows straightforwardly from steps 2 and 3. The same
intruder output is guaranteed by steps 4(a) and 4(d). The same intruder knowledge can
be shown by noting that at ξ of b2mc(C) the intruder has precisely all messages that he
can build using his initial information, plus the messages he gained through spying, and the
nonces and keys he generated. The result then follows by observing that all this information
must be gathered in dangling or productive nodes of C, according to steps 4(e), 4(d), and
again 4(d), respectively. It is clear that further information at productive nodes must be
built from the information gathered in preceding interface receiving nodes, or M/K nodes
with uniquely originating data.

3.4 Analysis of the translations

Above we have shown that it is possible to start from a bundle model of a given protocol
and build a collection of equivalent DTPL models and configurations, and vice-versa. We
can analyze additional properties of the two translations, characterizing, in particular, what
happens when we do a “full loop”. That is, what is the relationship between a given bundle
C and C′ = mc2b(b2mc(C)), and between a given DTPL model and configuration, µ and ξ,
and (µ′, ξ′) = b2mc(mc2b(µ, ξ))?

Let us start with the first question. In general, independently of the choices made during
each of the constructions, the equivalences proved guarantee that both C and C′ have exactly
the same honest (prefixes of) strands. This in turn guarantees that they are equivalent
bundles, in the sense introduced in [24], and that the two bundles satisfy precisely the
same security goals. Of course, due to the different possibilities for producing messages
and obtaining information, the activity of the intruder may be quite different. However, in
general, the equivalences also guarantee that the overall knowledge of the intruder, given
the data he manipulated or has available in dangling nodes, is precisely the same in the
two bundles. Intruder output may however increase from C to C′ since the translations will
create dangling nodes for all the resources available to him.

Concerning the second question, let us analyze the equivalences guaranteed by the trans-
lations. In general, µ′ will consist of an interleaving of prefixes of exactly the same honest
runs that are interleaved in µ. However, the choices that occur along the translations may
lead to a different interleaving, or even to considering in µ′ shorter prefixes for certain runs
than those considered in µ. The latter reflects the fact that honest nonce/key actions are
not represented in bundles, unless through the future use of the generated data. Among
the possible choices, however, it is possible to obtain µ′ with exactly the same prefixes and
interleaved in the same way. In this case, it is an easy exercise to check that all the DTPL
formulas local to honest principals that are needed to express security goals will hold equally
at µ and at µ′. With respect to the intruder, µ′ features an intruder who will be more ea-
ger in spying messages (and thus no longer bothers receiving them), and whose sending
activity can vary, with respect to those messages that are never received by any principal.
Again, however, it is possible to choose to send precisely the same messages. In any case,
the intruder of µ′ is guaranteed to possess precisely the same information at ξ′ that was
held by the intruder of µ at ξ. Thus, ξ and ξ′ are also equivalent with respect to all the
DTPL intruder formulas that may appear in a security goal. This allows us to conclude that
security goals expressed in DTPL are preserved and reflected by the translations.
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Although a detailed analysis of different security goals and how they can be expressed in
either formalism is out of the scope of this paper, we note here that the DTPL approach has
the advantage of using an expressive formal language. Moreover, the formulation of security
goals in the strand-space approach suffers from a bias towards the strict separation of honest
principals, on the one hand, and the intruder, on the other. Secrecy, for instance, requires
that certain data cannot be known by the intruder. In DTPL, however, the formulation of
secrecy guarantees that the very same data cannot be known by any principal that has not
participated in the execution of the protocol, which can of course include honest principals.
In the end, the protocols that guarantee any of the two formulations are exactly the same.
For this purpose, if a secret item can fall in the hands of an honest principal who did not
participate in the execution of the protocol, then it can also fall in the hands of the intruder,
if the intruder acts honestly and replaces that honest agent in another execution. Still, if
we stick to the DTPL formulation, we can at least recognize as an attack on the secrecy
property the model where the wrong honest principal got the secret instead of the intruder.
We cannot do this using the intruder-centered strand-space formalism.

The case of authentication is even more interesting since the principal being authenticated
must be honest in the strand-space formalism, but not in DTPL. Certainly it is unrealistic
to assume that honest principals have any a priori knowledge about who the intruder is,
and moreover no one can prevent the intruder from engaging in whatever protocol execution
he decides to start, or is solicited to respond to. Therefore, the DTPL formulation of
authentication is strictly stronger than the one used in the strand-space formalism. Indeed,
it is possible that an attack on a DTPL authentication property happens in a model where
an honest principal has run the protocol with the intruder without knowing it and fails
to authenticate him, for instance because the intruder tricked someone else into producing
relevant authentication messages. Such a model will not be an attack on the property if
we consider the strand-space formalism, although it might constitute an attack on another
property since the intruder may have tricked another principal. In any case, if we exclude
this possibility also in the formulation of authentication in DTPL, then the two coincide.

4 Related work and concluding remarks

We have given back and forth translations between bundles over the strand space of a given
protocol and configurations of the corresponding DTPL models. Both translations preserve
the essential ingredients of protocol execution, despite the substantial differences between
the two approaches. We have shown too that both translations preserve and reflect security
goals like secrecy and authentication.

Our results show that DTPL and strand-space models are compatible, although they
offer different views of protocol executions. As previously remarked, other authors have
also formalized the relationship of their protocol analysis approaches with strand spaces
(which transitively yields an indirect comparison with our DTPL models). We consider
here [10, 15, 16, 25], which are the most prominent of these works. The differences between
our work and these lie in the comparison methodology used and the results obtained.

Both [10] and [25] consider variants of the strand-space model, while [16] proposes various
extensions. Moreover, both Halpern and Pucella [25] and Crazzolara and Winskel [15, 16]
compare their formalisms with strand spaces as a model of general distributed systems as
opposed to a formalism for security protocol analysis. For such comparisons, intruder strands
play no essential role and are basically neglected. In contrast, our comparison is focused
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around security protocol analysis, where the role of the intruder is central.
The key issue in [25] in comparing multi-agent systems and strand spaces is how agents

are modeled. The view taken there is that multi-agent systems should capture additional
information about the knowledge and belief of the agents. This in turn requires a clear
notion of an agent participating in a protocol interaction, which multi-agent systems provide
as each agent has a state that is shared across all the interactions that the agent performs.
In contrast, strand spaces provide no such notion. Halpern and Pucella provide translations
from strand spaces to strand systems, a subclass of multi-agent systems that they define
to capture the intuitions underlying strand spaces. The translations are parameterized by
the choice of agents in the strand space (via an assignment from strands to agents). In our
comparison, a similar situation arises. We have guided the choice of agents in the strand,
however, based on the underlying protocol, as explained in Section 3.1.

In [10], Cervesato et al. compare strand spaces with multiset rewriting with existential
quantification, which provides a precise way of specifying protocols with a bounded initial-
ization phase but allowing arbitrarily many instances of each protocol role. A number of
modifications are made in each setting to obtain a meaningful equivalence between the mod-
els. The authors extend the strand formalism with a means of incrementally constructing
bundles in order to emulate an execution of a protocol with parametric strands. They omit
the initialization part of the multiset rewriting setting, which formalizes the choice of initial
data, such as shared public or private keys, and which has no counterpart in the strand-space
setting. The correspondence between the modified formalisms directly relates the intruder
theory from the multiset rewriting formalism to the intruder strands. In contrast to our
work, their comparison has an operational flavor, where the notion of step that they define
in their models simulates the one they define on bundles (similar one-step transitions are
also considered in [25]). We have not adopted this operational view, but we could achieve
something similar using the notion of an immediately successive configuration, which would
relate any configuration to all those obtained by adding one further event.

In [15], Crazzolara and Winskel introduce the security protocol language SPL and study
its semantics. They remark that events and their causal dependencies underlie both strand
spaces and the inductive method, but that neither of these approaches builds up the events
of a protocol in a compositional way and hence there is an informal jump from the protocol
to its model. By broadening the models to certain kinds of Petri nets (a restricted form
of contextual nets), they give a compositional, event-based semantics for a simple, but
expressive, language for describing protocols. The net semantics is formally related to a
transition semantics, strand spaces and inductive rules, as well as trace languages. Event
structures are dealt with in more detail in [16], where extensions of strand spaces are given
that are designed to address compositionality issues.

Overall, the approach of [16] is probably the closest to our own work, even though it relies
on a notion of bundle equivalence that is too strict for our purposes as we mentioned before.
Nevertheless, we anticipate that we can profit from some of their ideas. For example, strand
spaces with a built-in notion of conflict (also mentioned in [25]) can be adapted for DTPL
models once we consider the full-fledged extraction of protocol models from Alice&Bob-style
specifications [6, 7, 8, 9]. Strand spaces with conflict would also enable one to correctly model
freshness of data in strand spaces, by excluding from bundles the simultaneous occurrence
of honest strands that use intersecting sets of “fresh” nonces or keys. In this way, the
properties of the translations would still be valid for DTPL models with additional axioms
for modeling freshness (cf. Section 2.2). Moreover, [16] also introduces a compositionality
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mechanism that relies on the notion of an open bundle, which is essentially the same as
our notion of an S-bundle. In fact, we have recently begun investigating the application of
DTPL for reasoning about protocol composition.

We have also started defining a deduction system for DTPL. The system will capitalize on
the combined nature of the logic, in the sense that the resulting global deduction system will
glue together the different linear temporal deduction systems that are local to each agent.
Such a deduction system will complement the semantic-based analysis that can be carried
out both in strand spaces and in DTPL models.

Further work in progress is the application of DTPL to investigate general metatheoretic
properties of underlying protocol models and model simplification techniques. Although
these results are independent of our investigation of the interplay between DTPL and strand
spaces, they also point to trade-offs in the formalisms. For example, in [8], we have used
DTPL to prove a general lemma about secret data that is similar to the protocol-independent
secrecy results of [14, 30], which capitalize on the notion of honest ideals on strand spaces
introduced in [35]. We also believe that it will be interesting to use DTPL in the context
of the authentication tests proposed in [22, 24], or the protocol compositionality results
stemming from the disjoint encryption theorems of [22, 23]. The combination of results,
techniques and tools from these and other approaches will play an important role in the
consolidation of the security protocol analysis discipline.

Clearly, on the one hand, results like the normal forms for intruder strands in protocol
bundles obtained in [24] will not have a DTPL counterpart. On the other hand, DTPL does
allow one to reason about the number of intruders or the role of the communication channel;
for instance, in [8] we also prove the soundness and completeness, with respect to typical
security goals, of two further model-simplification techniques: one intruder is enough, in the
lines of [13], and the predatory-intruder, a bound on the behavior of the intruder that goes
in the direction of the trace models used in practice, e.g. [32]. Similar kinds of analysis are
either impossible or quite artificial in the strand-space approach.

To conclude, we observe that while similar model-simplification techniques, mutatis mu-
tandis, have already been shown for other protocol analysis formalisms, DTPL provides a
means for proving them in a general and uniform way, within the same formalism, and pro-
vides a basis for further general investigations. In fact, our formalization has also allowed us
to clarify aspects of these simplification properties (e.g. concerning principals’ identities and
the way security properties are established) that are often neglected or cannot be specified
in strand spaces and other approaches.
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