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Abstract

In this paper, after a review of the evolution of the literature on climate change econom-
ics in agriculture, I present some evidence of the impact of different moments of the dis-
tribution of rainfall on farmers risk aversion. It is found that while more rainfall is
negatively associated with the probability of observing risk aversion, rainfall variability
is positively correlated. This result highlights an important behavioural dimension of
climatic factors.
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1. Introduction

Climate change is a fundamental threat to agricultural productivity, food secur-
ity and development prospects in Sub-Saharan Africa (SSA). In this part of the
world, production conditions can be particularly challenging. Millions of
small-scale subsistence farmers, generally with less than 1 hectare of land,
produce food crops facing a combination of low land productivity, missing
markets, low technology adoption and harsh weather conditions (e.g. high
average temperature, erratic rainfall). These result in very low yields and
food insecurity (Di Falco and Chavas, 2009). Given the reliance on rainfall
and the limited opportunities for economic diversification, SSA’s development
prospects have been closely associated with climate. Climate change is pro-
jected to further reduce food security (Rosenzweig and Parry, 1994; Parry,
Rosenzweig and Livermore, 2005; Cline, 2007; Lobell et al., 2008; McIntyre
et al., 2009; Schlenker and Lobell, 2010). As indicated in the fourth Intergovern-
mental Panel on Climate Change (IPCC), at lower latitudes, crop productivity is
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expected to decrease ‘for even small local temperature increases (1–28C)’
(IPCC, 2007). In many African countries access to food will be severely
affected, ‘yields from rain-fed agriculture could be reduced by up to 50% by
2020’ (IPCC, 2007, p. 10). Scientists tell us that future warming is not prevent-
able. As a matter of fact, even if agreements to limit emissions would be
achieved and implemented, farmers will thus still face a warmer production en-
vironment and agriculture will be more vulnerable.

The agricultural sector is more crucial where economic development is most
needed. Christiansen et al. (2011) showed the important contribution of agricul-
ture to poverty reduction among the poorest and most vulnerable populations.
Diao, Hazell and Thurlow (2010), using an economy-wide model, stressed
the key role that agriculture still plays in Africa. This is because of the job op-
portunities provided to the poorest compared with industrial growth. They con-
clude that there is little evidence showing that ‘African countries can bypass a
broad-based agricultural revolution to successfully launch their economic trans-
formations’. Climate change poses a serious risk to reverse progress towards
achieving the Millennium Development Goals. Climate change is both a devel-
opment and an environmental challenge. Given these premises, there is no ques-
tion that achieving successful adaptation processes in agriculture is of
paramount importance. This entails the understanding of barriers and drivers
to adaptation and the identification of its implications in terms of welfare.

This paper contribution is two-fold. First, it provides a brief review the evo-
lution of the literature on climate change economics in agriculture over the last
20 years. The focus is mostly on micro-studies in east Africa. I highlight some of
the main findings and underscore how the literature on impact of climate change
on agriculture as developed separately from the adaptation literature. I argue
that adaptation and impact need to be modelled jointly. I, therefore, present
an econometric procedure that allows analysing adaptation and its effect on a
given outcome (e.g. productivity, food security, revenues). Second, it provides
some preliminary evidence on the behavioural dimension of climate change.
I examine the causal effect of climate change on risk preferences. How do
climatic events affect some behavioural parameters? Are people who are
exposed to more or less rainfall, for instance, more likely to be risk averse?
I provide empirical evidence on the role of climatic factors in determining
farmers risk aversion. The paper proceeds as follows. The next section provides
some background on climate change in SSA. In Section 3, a structural model that
can be used for estimating both adaptation and its implications is presented.
Section 4 provides the empirical analysis of the role of climate on risk aversion
and rate of time preferences. Section 5 offers some reflections on future
research. Section 6 concludes the paper.

2. Agriculture and climate change in SSA

SSA is the part of Africa extended below the Sahara Desert. Its surface is
equal to an area of 2.4 × 109 ha. It is rich in natural resources (although not
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uniformly distributed) and presents different climatic and geological features
(IAASTD, 2009).

SSA’s economy is mostly driven by the agriculture sector in spite of the issue
of land degradation and desertification and poor land management systems
(UNEP, 2002a, in IAASTD, 2009). Over 60 per cent of the population rely on
agriculture for their livelihood, but only 8 per cent of the land is suitable for
staple production (IAASTD, 2009). Characterised by crop production and trad-
itional livestock, it is the sector where the majority of the labour force is
employed and contributes to a considerable part of the GDP, about 40 per
cent (Barrios et al., 2008). However, SSA countries are different one to
another. For instance, Ethiopia and Rwanda are land-locked countries, highly
populated; agriculture is the main economic activity and about four-fifth of
inhabitant live in rural areas. Nevertheless, Rwanda, with high altitude, has geo-
logical features that represent a hurdle to its agriculture development compared
with the costal countries such as Ghana and Kenya which present settled agro-
processing and industrial sectors. In contrast, Uganda is a land-locked country
but together with Ghana shows agriculture growth and a stable GDP (Diao et al.,
2010). Yet, in Tanzania, over 70 per cent of population rely on subsistence
rain-fed agriculture. It accounts for 50 per cent of Gross Net Product and
66 per cent of export earnings (Mary and Majule, 2009). In Kenya, agriculture
contributes to about 24 per cent of GDP and employment with about 70 per cent
of household living in rural areas. The main output is crop production which
depends on soils, hydrological and climate characteristics. The majority of
the land is classified as arid or semi-arid, therefore dedicated for extensive live-
stock production and only 12 per cent of the land is positively used for farming or
intense livestock production (Kabubo-Mariara and Karanja, 2007). In Ethiopia
85 per cent of the population based its livelihood on agriculture which does
account for more than 40 per cent of national GDP, 90 per cent of exports and
provides basic needs and income for more than 90 per cent of the poor (Diao
et al., IFPRI, 2010, p. 5). Cereals are the main product and source of Ethiopians’
daily calorie intake (62 per cent). About 70 per cent of land is used for cereal
production which is chiefly concentrated in the western regions (Diao et al.,
2010). Generally, in SSA it is possible to distinguish four different kinds of
farming systems:

† The maize-mixed system, which is based primarily on maize, cotton, cattle
and goats.

† Cereal/root crop-mixed system, which is based on maize, sorghum, millet,
cassava, yams and cattle.

† Irrigated system, based on maize, sorghum, millet, cassava yams and cattle.
† The tree crop-based system, anchored in cocoa, coffee, oil palm and rubber,

mixed with yams and maize (IAASTD, 2009)

They are mainly subsistence oriented and the use of technology is almost absent.
The farms are small-scaled and the average size decreased from 1.5 hectares in
1970 to 0.5 hectares in 1990 (IAASTD, 2009) in part due to the ‘exhaustion of
land frontiers’ (IAASTD, 2009).
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The diverse topography that characterises SSA is reflected in farm house-
holds operating areas.1 In Kenya, for example, there are seven agro-climate
zones identified following the moisture index.2 When the index is greater
than 50 per cent, it is favourable to crop production but those areas (zone I, II,
III) account for 18 per cent of the land. Generally, they are situated above
1,200 m of altitude with mean annual temperature lower than 188C. On the
other hand, the majority of the country, almost 80 per cent, presents the moisture
index less than 50 per cent, annual mean temperature between 22 and 408C,
mean annual rainfall less than 1,100 mm and is situated below 1,260 m. As a
result, they are semi-humid to arid regions (zones IV, V, VI and VII) hence,
low potential farming zone (Kabubo-Mariara and Karanja, 2007). According
to Hurni’s studies (1998), Ethiopia is divided into five major agro-ecological
zones that are dissimilar in altitude, soil and consequently in food production.
Those are Bereha (hot, arid lowlands), Kolla (warm, semi-arid lowlands),
Woina Dega (temperate, cool sub-humid highlands), Dega (cool, humid high-
lands) and Wurch (cold highlands). Zones are largely based on altitude and
climate dictates the crop types grown in each zone. The highland zones
contain much of Ethiopia’s crop production, while the lowland zones are domi-
nated by pastoral production systems. Precipitation and temperature changes
will not be consistent across these agro-ecological zones which each support dif-
fering livelihoods. For example, the lowlands are more reliant on livestock
grazing (Hurni, 1998). Yet, although Ethiopia has 3.5 million hectares of irrig-
able land, only 160,000 hectares (accounting for 3 per cent of the land available)
is irrigated. There are two main agriculture seasons that correspond to the rain
season Belg and Kirmet. Meher is the name of agriculture season during
Kirmet. It is extended between June and September, the period that registers
the highest quantity of output, 90–95 per cent of the national production.

It is clearly apparent a dependence of agriculture on the effect of weather and
climate. In fact, the occurrence of drought during the grown season, for instance,
it will generate a decrease of production and, consequently, a negative influence
on food security (Giorgis, Tadege and Tibebe, 2006). Climate variability in
Ethiopia is well documented and closely linked with the country’s economic
growth (Figure 1; Diao and Pratt, 2007; World Bank, 2010).

Climate extremes are not a novelty to Ethiopia but studies underline that
drought has occurred more often during the last few decades particularly in
the lowlands (Lautze et al., 2003). A study undertaken by the national meteoro-
logical service (published in 2007) highlights that annual minimum temperature
has been increasing by about 0.378C every 10 years over the past 55 years. Rain-
fall has been more erratic with some areas becoming drier while others relatively
wetter. These findings point out that climatic variations have already happened.
Further climate change can exacerbate this very difficult situation. Most climate

1 The ecological and agricultural characteristics (agro-climatic condition, livestock raising condi-

tion, land resource conditions) by which the landscape is classified.

2 Index based on annual rainfall expressed as a percentage of potential evaporation.
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models converge in forecasting gloomy scenarios of increased temperatures for
most of Ethiopia (Dinar et al., 2008).

SSA is the most vulnerable region in the world to climate change although its
contribution to the global GHGs emission is equal only at 2–3 per cent
(IAASTD, 2009). Its vulnerability depends on poverty and the limited capacity
to adapt (IPCC, 2007). Adaptation measures in agriculture might include water
conservation and irrigation Mendelsohn and Dinar (2003), crop species switch-
ing, improved seed varieties, improved on-farm technology, climate and
weather forecasting, application of fertilisers and soil nutrient which is the
lowest in the world, access to extension services, consideration of topographical
heterogeneity and investments in research and development.

3. The economics of climate change: impact
and adaptation as two separate issues

Until recently, most of the literature on the economics of climate change devel-
oped two independent streams. One focused on the study of the impact of
climate change on agriculture, and the other focused on the estimation of the bar-
riers and drivers to adaptation. In this section, I provide a review of these two
areas of research. Let me begin with the former. I highlight micro-studies under-
taken in SSA.

3.1. Impact of climate change on agriculture

Since the pioneering work by Mendelsohn, Nordhaus and Shaw (1994), the
so-called Ricardian approach represents the workhorse within the economic
analysis of the impact of climate change. It has been very frequently used to
estimate the impact of climatic variables on agriculture. In its traditional

Fig. 1. Ethiopia’s economic growth and climate variability. Source: World Bank, 2010 using

De Jong, 2005
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application, it is a cross-sectional analysis that measures the long-term impact of
climate and other variables on agricultural performance (e.g. land value and
farm revenues). This approach has the advantage to consider either of the con-
sequences of climate on productivity and how farmers adapt to it. Therefore, it
overcomes the main critique to the use of production functions in the context of
impact of climate change. Notably, Mendelsohn et al. (1994) claimed that the
production function approach consistently overestimates production damage
by omitting the variety of adaptations that farmers customarily make in response
to changing economic or environmental conditions.3 It is the so-called dumb-
farm scenario (Mendelsohn et al., 1994). In particular, the authors highlighted
the role of adaptation actions in which new activities displace activities no
longer (or less) profitable due to changes in climate variables.

Kurukulasuriya et al. (2006) used a Ricardian model to study how climate
variables influence farmers’ revenues in 11 African countries: Burkina Faso,
Cameron, Egypt, Ethiopia, Ghana, Kenya, Niger, Senegal, South Africa,
Zambia and Zimbabwe. In this case, the total net farm revenues resulted from
the incomes generated by dryland crops which are rain-fed, irrigated crops
and livestock. Separate regressions were estimated to highlight the response
of the three activities. Using data from a survey of about 9,000 farmers, the
study confirms that African crop production is sensitive to climate and the
hotter and drier regions are likely to be affected most. Temperature rises and
decreases in precipitations have a negative impact on the net revenue. Similarly
but to smaller extend will be the effect on the revenues generated by irrigated
land because less vulnerable to warming. To the contrary, an increase of rainfall
brings an overall beneficial effect.

Revenues show a quadratic relationship with both temperature and precipita-
tion. As a result, the marginal impact of climate change varies according to the
temperature and rainfall levels presented across different farms. In fact, al-
though Africa is overall hot and dry, the impacts of climate change are not
uniform across the country. For instance, dry land through SSA is under risk;
cropland with irrigation support located around the Nile or highlands of
Kenya have some benefits from warming; drier countries such as Egypt,
Niger or Senegal benefit for the livestock from rainfall increase (Kurukulasuriya
et al., 2006). With an increase of 18C, the African net revenues in dryland and
livestock showed a decrement of about $27 and $379 per hectare, respectively,
while the irrigated resulted in a rise (an average of $30 per hectare). This effect is
due to the fact that crops benefit from the irrigation when rainfall shortage occur
and also because they are generally located in cool areas. Similarly, the marginal
effect of precipitations varies among the activities. One millimetre/month
increase in rainfall generates an aggregate enhancement on net revenues of
$67 per farm.

Also, the elasticities confirm that the sensitivity of crop and livestock to tem-
perature is greater than the effect of precipitation. The figures support this inter-
pretation. The temperature elasticity is 21.9, 0.5 and 25.4 compared with the

3 Mendelsohn et al. (1994, p. 754).
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elasticity of precipitation which are equal to 0.1, 0.4 and 0.8 for dryland,
irrigated crops and livestock respectively (Kurukulasuriya et al., 2006).

Deressa and Hassan (2010) provided an application of this method in Ethi-
opia.4 In their paper net crop revenue per hectare was regressed on climate,
household and soil variables. The results showed that these variables have a sig-
nificant impact on the net crop revenue per hectare. The seasonal marginal
impact analysis indicated that marginally increasing temperature during
summer and winter would significantly reduce crop net revenue per hectare
whereas marginally increasing precipitation during spring would considerably
increase net crop revenue per hectare.

Another example of the application of the Ricardian is offered by Kabubo-
Mariara and Karanja (2007) to measure the impact of climate on net crop reven-
ues. Using a sample of 816 households, they underlined the negative influence of
climate change on productivity.

A slightly different approach was offered by Benhin (2008) who utilised the
revised Ricardian approach to assess the impact of climate change on crop pro-
duction in South Africa. Including hydrological variables (river flow and water
resources) which are particularly affected by climate change, he extended the
earlier study proposed by Deressa and Hassan (2010). The mean annual esti-
mates indicated that if the temperature rises by 1 per cent the net crop
revenue will increase about $80.00 whereas rainfall decreases of 1 mm/month
revenue produces a revenues fall $2.00. However, the impacts are different
according to the season. The study also predicts a 90 per cent decrease of crop
net revenue by 2100 (Benhin, 2008).

The Ricardian model has been criticised from different point view.5 It does
not take into account transaction costs, for instance the costs generated by the
decision of changing production abruptly. Secondly, it can suffer from an
omitted variable problem – as it does not take into account time-independent
location-specific factors such as unobservable skills of farmers and soil
quality (Barnwal and Kotani, 2010). Another drawback is the fact that does
not consider variables invariant respect to the space, for example, carbon
fertilisation effect (Cline, 1996). This is a weak point in climate change
studies conducted at small level, especially in low-income countries where
each meteorological station controls a large portion of the territory
(Di Falco, Veronesi and Yesuf, 2011). Yet, assuming constant prices leads
to error measurements of loss and benefits (Cline, 1996; Kurukulasuriya
and Mendelsohn, 2006).

4 The first economic studies on the impact of climate change in developing countries, using this ap-

proach came from India and Brazil (Mendelsohn and Dinar, 1999; Kumar and Parikh, 2001). These

studies confirm earlier predictions that even a modest level of warming would affect agricultural

productivity in these countries, although the impact may not be uniform in all areas, some regions

benefiting while the vast majority being affected adversely.

5 Schlenker and Roberts (2009) dealtwith the omitted variables issue in a production function set up.

They combine historical crop production and weather data in SSA into a panel analysis. This ap-

proach can take care of the omitted variable problem by using fixed effects capturing all time-

invariant effects for which data are not available (e.g. soil texture). Similar approach to deal with

unobservables is presented by Fisher et al. (2012).
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Further, despite its successful application over 27 countries (Mendelsohn and
Dinar, 2009), apart from a few exceptions, it normally refers to a single year.
Deschenes and Greenstone (2007) argued that in order to obtain stable results
over time on climate change impacts we should refer to intertemporal variations
of the weather instead of cross sections. Nevertheless, Massetti and Mendelshon
(2011) claimed that weather changes are not useful to explain climate change
effects because farmers do not have a chance to adapt in the short run. Using
weather data may provide a biased evaluation of the long-term effect of climate
change (Massetti and Mendelsohn, 2011).

3.2. Estimating drivers of adaptation

SSA is the most vulnerable area to climate change due to the fact that warming
will be greater than the predicted average and agriculture, mainly rain-fed and
managed in small scale, represents the main source of subsistence for African
rural communities. Hence, climate change is a threat and adaptation has
primary importance in reducing vulnerability and, thus, ensuring livelihood,
achieving food and water security and biodiversity (Bryan et al., 2009).

In order to design specific and effective adaptation policies, it is crucial to
identify what factors influence farmers’ adaptation to climate variations and
how to measure them (Bryan et al., 2009; Below et al., 2012).

In this sub-section, we will provide a review of the evidence on the barriers
and drivers of adaptation capacity. Most of the literature has focused on the
micro level of the issue where the process of adaptation is independently imple-
mented by farmers or private firms in the field. This is what is it called autono-
mous adaptation distinguished from the planned adaptation decided by the
government. During the last few decades, the Ricardian method has been the
main tool in forecasting autonomous adaptation to climate change providing,
therefore, useful information to policymakers in order to develop and
promote well-targeted policies (Stage, 2010). A number of micro-econometric
studies are focused on adaptation and agriculture productivity (Kurukulasuriya
et al., 2006; Seo and Mendelsohn, 2008; Di Falco et al., 2011, 2012; Bryan et al.,
2013) and others on the determinants of using adaptation methods (Maddison,
2007; Hassan and Nhemachena, 2008; Bryan et al., 2009; Deressa et al., 2009;
Gbetibouo, 2009). It is crucial to understand how the social, economic, institu-
tional and ecological context mediates the climate impacts and influences the
adaptation response (Bryan et al., 2009).

According to Maddison (2007), there are two important components of adap-
tation: perception and adoption of strategies. Adaptation can, thus, be thought as
a two-step process. The first step requires that the farmers perceive a change in
the climatic conditions. In the second step, farmers implement a set of strategies
to deal with the different conditions (Maddison, 2007).

Based on Heckman’s probit model, the analysis conducted by Maddison
(2007) on a sample of selected households in 11 Africa countries reveals that ex-
perience increases the likelihood of perception of climate change but education
seems to be the main determinant in using at least one adaptation strategy.
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In addition, agriculturists who have easier access to the market where they sell
their products and have access to free extension advise show higher willingness
to adapt. Changing in crop variety (particularly when temperature varies) and
changing dates of planting (following rainfall variations) are, overall, the
most common ways to adaptation (Maddison, 2007).

Bryan et al. (2009) studied the adaptation strategies adopted by farmers in
Ethiopia and South Africa and the drivers that contributed to choice adaptation.
Based on a sample of 1,800 farm households, it emerges that farmers generally
use the following methods of adaptation: use of different crops or crop varieties,
planting trees, soil conservation, changing planting dates and irrigation (Bryan
et al., 2009). Nevertheless, in spite of the awareness of climate variability, it is
not easy to implement them. Access to credit, extension services and wealth are
obstacles to adaptation for the farmers of both countries. Farmers in Ethiopia
also indicated that lack of access to land and information about climate
change was a barrier to adaptation. Policymakers should pay attention on
small-scale subsistence farmer and enhance adaptation providing access to
information, credit and markets (Bryan et al., 2009).

Deressa et al. (2009) undertook a micro-analysis using data from cross-
sectional household survey data collected from 1,000 households during
2004/2005 production season in the Nile basin of Ethiopia. This survey was
the first one to explicitly address climate change. One section of this survey
did indeed ask farmers about their perception on climate change and their adap-
tation strategies. More specifically, farm households were asked questions
about their observations in the patterns of temperature and rainfall over the
past 20 years. The results indicate that 50.6 per cent of the surveyed farmers
have observed increasing temperature over the past 20 years whereas 53 per
cent of them have observed decreasing rainfall over the past 20 years. The per-
ception of the farmers in this part of Africa is matched with the climatic obser-
vation of temperature. Less unequivocal is the evidence on rainfall. In micro-
economic studies undertaken by Bryan et al. in 2009 and 2013, first in Ethiopia
and South Africa and then on Kenya, by, farmers perceive changes in precipita-
tion and temperature but just a small portion of them made management adjust-
ments to tackle climate change. For instance, in Ethiopia 83 per cent of farmers
perceive variation in temperature but 56 per cent of them do not use adaptation
strategies. Among those who chose adaptation, the most frequent method is
using different crops or different varieties, planting trees, irrigation, changes
in planting period. Less frequent is the use of new technologies or migration
to urban areas.

Similar conclusions describe South Africa’s situation. Because the percent-
age of farmers who decide to undertake adaptation strategy is low, this means
that not only long-term changes in climate influence farmers decisions-making:
extreme weather events; timing, duration and frequency of precipitation, socio
economic status, household characteristics and distance from the market deter-
mine the outcome. The study reveals that, in South Africa, farmers are more edu-
cated than in Ethiopia, on average of 7 years against 2; in both the countries
family are quite large, on average six members; farmers in South Africa are
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better off than in Ethiopia and income are higher, receive farm support input
such as seeds, tools, machinery, subsidies instead of food aid. In term of farm
characteristics Ethiopia has more access to formal and informal credit even
though farmers in South Africa borrow more money; farmers are more closer
to markets and are less affected by extreme events (Bryan et al., 2009).

The study on Kenya is an extension of the previous study conducted in 2009
that underlines the differences in adaptation choices across agro-ecological
zones. Farmers’ perceptions of climate change and climate risk is a decisive
variable in adaptation decision-making. Varying by district, farmers confirmed
that they perceived an average increase in temperature and decrease in rainfall
and also a variation in variability during the last 20 years. Generally, farmers
from the humid zone are more sensitive to a decrease of precipitation than
those who live in arid zone. Generally, farmer with more experience and with
more access to extension services are more likely to perceive climate changes
(Bryan et al., 2013).

Deressa et al. (2009) defined adaptation as crop switching, late planting, soil
and tree planting. They showed that the level of education, gender, age and
wealth of the head of household; access to extension and credit; information
on climate, social capital, agro-ecological settings, and temperature all influ-
ence farmers’ choices. The main barriers include lack of information on adap-
tation methods and financial constraints.

Changing crop mix has been found as key strategy in a number of studies on
adaptation to climate in Africa. Studies were undertaken across different scales.
For instance, Maddison (2007), Kurukulasuriya and Mendelsohn (2008a), Seo
and Mendelsohn (2008) and Hassan and Nhemachena (2008) provide evidence
at the aggregate level that changing crops is the most likely adaptation strategy.
Aggregate studies, however, can mask spatial heterogeneity. Changing the crop
mix, or crop switching, is a strategy that farmers have implemented for long
time. Farmers, in fact, match crops to soils and environmental conditions –
including climate. Moreover, greater use of different crop could be associated
with lower expense and ease of access by farmers (Deressa et al., 2009). Imple-
menting more structural adaptation measures (i.e. irrigation) requires more
resources and public investment.

Di Falco and Chavas (2009) documented that growing a combination of dif-
ferent barley landraces (e.g. crop genetic diversity) was associated with less pro-
duction risk exposure in the highlands of Ethiopia. These results showed that
maintaining a higher biodiversity regime can be an important asset for sub-
Saharan agriculture. In this case, a study of the highlands of Ethiopia conserving
landraces in the field delivered important productive services and allowed
farmers to mitigate some of the negative effects of harsh weather and
agro-ecological conditions. Therefore, in situ conservation of crop biological
diversity is one of the strategies that can help improve Ethiopia’s poor agricul-
tural performance and alleviate food insecurity. The analysis also showed that
the beneficial effects of this diversity become of greater value in degraded
land. When the land is less fertile, the contribution of crop biodiversity
towards reducing crop failure becomes stronger. This underlines the potential
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role that crop genetic diversification can play as adaptation strategy. It can also be
considered to be one of the cheapest adaptation strategies, when compared with
more labour intensive activities such as building soil conservation measures or
water harvesting methods. It also highlights the importance of the genetic traits
of African crops. This can be extremely valuable to provide raw material for
future genetic improvement of existing crops. Crop mix or crop switching
implies taking advantage of the fact that different crop species have different
genetic traits. Genetic variability within and between speciesconfers the potential
to resist biotic and abiotic stresses, both in the short and the long term (Giller et al.,
1997). Growing more crop species enhances the possibility of producing in years
where rainfall regimes or environmental conditions are more challenging. Thus,
having functionally similar plants that respond differently to weather and tem-
perature randomness contributes to resilience (Holling, 1973) and ensures that
‘whatever the environmental conditions there will be plants of given functional
types that thrive under those conditions’ (Heal, 2000). In the African context,
for instance, it has been found that more diverse cropping systems provide a
wider range of productive responses to weather and climatic shocks.

Besides diversification of crop, farm activities and household income diver-
sification are relevant. In principle, obtaining income from non-farm (less
climate sensitive) sources is seen as crucial. Screening the literature, the evi-
dence supporting this as an adaptation strategy is very thin. Moreover,
Deressa et al. (2009) found that non-farm income also significantly increases
the likelihood of planting trees, changing planting dates and using irrigation
as adaptation options. In other words, the extra amount of resources is actually
reinvested in the farm.

Moving into a mixed crop livestock system is also related to diversification
and adaptation (e.g. Hassan and Nhemachena, 2008; Kurukulasuriya and
Mendelsohn, 2008a; Seo and Mendelsohn, 2008). Livestock choice is also
climate sensitive. Farmers are more likely to raise sheep and goats as tempera-
tures rise and less likely to raise dairy and beef cattle (Seo and Mendelsohn,
2008). Whether they increase or decrease their reliance on chickens depends
on their current climate.

4. Modelling adaptation and its implications:
a structural approach

From a policy perspective understanding adaptation to climate change is of
paramount importance. Besides determining the impact of climatic variables
on welfare, it is necessary to understand how the set of strategies implemented
in the field by farmers (e.g. changing crops, adopting new technologies or soil
conservation measures) in response to long-term changes in environmental con-
ditions are chosen and how they affect productivity or revenues (Di Falco et al.,
2011).6 The standard Ricardian approach assumes optimal adaptation to climate

6 It should be noted that the original Ricardian approach assumes that markets function properly.

Access to inputs, credit or technology may however be ‘imperfect’.
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by the farmers in the past; the regression coefficients estimate the marginal
impact on outputs of future temperature or rainfall changes incorporating
farmers’ adaptive response. It thus does not provide any insight into how
farmers adapt (Seo and Mendelsohn, 2008b). To overcome this issue, Seo and
Mendelsohn (2008a, 2008b), Kurukulasuriya and Mendelsohn (2008b) and
Di Falco and Veronesi (2013) developed the so-called structural Ricardian
model, which explicitly models the underlying endogenous decisions by
farmers.

The climate change adaptation decision and its implications in terms of an
outcome of interest (e.g. productivity, food security, revenue) can be modelled
in the setting of a two-stages framework. In the first stage, I use a selection model
for climate change adaptation where a representative risk averse farm household
chooses to implement climate change adaptation strategies if it generates net
benefits.7 Let A* be the latent variable that captures the expected benefits
from the adaptation choice with respect to not adapting. We specify the latent
variable as

A∗
i = Zia+ hi with Ai =

1 if A∗
i . 0

0 otherwise

{
, (1)

that is farm household i will choose to adapt (Ai ¼ 1), through the implementa-
tion of some strategies in response to long-term changes in mean temperature
and rainfall, if A* . 0, and 0 otherwise.

The vector Z represents variable that affects the expected benefits of adapta-
tion. These factors can be classified into different groups. First, we consider
characteristics of the operating farm (e.g. soil fertility and erosion). For instance,
farms characterised by more fertile soil might be less affected by climate change
and therefore relatively less likely to implement adaptation strategies. Then, cli-
matic factors (e.g. rainfall and temperature) as well as the experience of previous
extreme events such as droughts and flood can also play a role in determining the
probability of adaptation.To account for selection biases, I adopt an endogenous
switching regression model where farmers face two regimes (1) to adapt, and
(2) not to adapt defined as follows:

Regime 1: y1i = X1ib1 + 11i if Ai = 1 (2a)

Regime 2: y2i = X2ib2 + 12i if Ai = 0 (2b)

where yi is the quantity produced or revenues per hectare in regimes 1 and 2, and
Xi represents, for instance, a vector of inputs (e.g. seeds, fertilisers, manure and
labour), farm household’s characteristics, soil characteristics, assets and the cli-
matic factors included in Z. Finally, the error terms in equations (1), (2a) and

7 A more comprehensive model of climate change adaptation is provided by Mendelsohn (2000).
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(2b) are assumed to have a trivariate normal distribution, with zero mean and
covariance matrix S, i.e. (h, e1, e2)′ � N(0, S)

withS =
s2
h sh1 sh2

s1h s2
1 .

s2h . s2
2

⎡
⎣

⎤
⎦,

wheres2
h is the variance of the error term in the selection equation (1), which can

be assumed to be equal to 1 since the coefficients are estimable only up to a scale

factor (Maddala, 1983, p. 223), s2
1 and s2

2 are the variances of the error terms in

the productivity functions (2a) and (2b), and s1h and s2h represent the covari-

ance ofhi and 11i and 12i.
8 Since y1i and y2i are not observed simultaneously, the

covariance between 11i and 12i is not defined (reported as dots in the covariance
matrix S, Maddala, 1983, p. 224). An important implication of the error struc-
ture is that because the error term of the selection equation (1) hi is correlated
with the error terms of the productivity functions (2a) and (2b) (11i and 12i),
the expected values of 11i and 12i conditional on the sample selection are
non-zero:

E[11i|Ai = 1] = s1h(f(Zia)/F(Zia)) = s1hl1i, and E[12i|Ai = 0] = −s2h

(f(Zia)/1 −F(Zia)) = s2hl2i, where f(.) is the standard normal probability

density function, F(.) the standard normal cumulative density function, and
l1i = f(Zia)/F(Zia), and l2i = −f(Zia)/(1 −F(Zia)). If the estimated
covariances ŝ1h and ŝ2h are statistically significant, then the decision to adapt

and the quantity produced per hectare are correlated, that is one finds evidence
of endogenous switching then we can reject the null hypothesis of the absence of
sample selectivity bias. This model is defined as a ‘switching regression model
with endogenous switching’ (Maddala and Nelson, 1975). An efficient method
to estimate endogenous switching regression models is full information
maximum likelihood estimation (Lee and Trost, 1978).9 The logarithmic like-
lihood function, given the previous assumptions regarding the distribution of
the error terms, is:

ln Li =
∑N

i=1

Ai lnf
11i

s1

( )
− lns1 + lnF(u1i)

[ ]

+ (1 − Ai) lnf
12i

s2

( )
− lns2 + ln(1 −F(u2i))

[ ]
, (3)

where u ji = (Zia+ rj1 ji/sj)/
��������
1 − rj

2
√

, j = 1, 2, with rj denoting the cor-

relation coefficient between the error term hi of the selection equation (1) and

8 For notational simplicity, the covariance matrix S does not reflect the clustering implemented in

the empirical analysis. In addition, constraining the variance term in a single equation to equal

one is not the same as deriving the proper form of the posterior or even the sampling distribution

of the cross-equation correlation matrix.

9 An alternative estimation method is the two-step procedure (see Maddala, 1983, p. 224 for details).
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the error term e ji of equations (2a) and (2b), respectively.10 The model can easily
be expanded in the context of multiple adaptation strategies and multiple out-
comes.

Stage I – Selection Model of Multiple Climate Change Adaptation Strategies

In the first stage, let A* be the latent variable that captures the expected net rev-
enues from implementing strategy j (j ¼ 1 . . . M) with respect to implementing
any other strategy k. We specify the latent variable as

A∗
ij = �Vij + hij = Ziaj + hij

with Ai =

1 iff A∗
i1 . max

k=1
(A∗

ik) or 1i1, 0

..

. ..
. ..

.

M iff A∗
iM . max

k=M
(A∗

ik) or 1iM, 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

, (4)

that is farm household i will choose strategy j in response to long-term changes
in mean temperature and rainfall if strategy j provides expected net revenues
greater than any other strategy k = j, i.e. if 1ij = max

k=j
(A∗

ik − A∗
ij) , 0. Equation

(4) includes a deterministic component (�Vij = Ziaj), and an idiosyncratic unob-
served stochastic component hij. Equation (1) includes a deterministic compo-
nent (�Vij = Ziaj), and an idiosyncratic unobserved stochastic component hij.
The latter captures all the variables that are relevant to the farm household’s
decisionmaker but are unknown to the researcher such as skills or motivation.
It can be interpreted as the unobserved individual propensity to adapt.

The deterministic component �Vij depends on factors Zi, as defined above, that
affect the likelihoodof choosingstrategy j. It is assumed that the covariate vector
Zi is uncorrelated with the idiosyncratic unobserved stochastic component hij,

i.e. E(hij|Zi) = 0. Under the assumption thathij are independent and identically

Gumbel distributed, that is under the Independence of Irrelevant Alternatives
(IIA) hypothesis, selection model (1) leads to a multinomial logit model
(McFadden, 1973) where the probability of choosing strategy j (Pij) is

Pij = P(1ij , 0|Zi) =
exp(Ziaj)∑M

k=1 exp(Ziak)
(5)

Stage II – Multinomial Endogenous Switching Regression Model

In the second stage a multinomial endogenous switching regression model to
investigate the impact of each strategy on net revenues can be estimated by ap-
plying Bourguignon, Fournier and Gurgand (2007) selection bias correction
model. The model implies that farm households face a total of M regimes
(one regime per strategy, where j ¼ 1 is the reference category ‘non-adapting’).

10 Assuming a normal distribution.
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A net revenue equation corresponding to each possible j strategy is defined as m
regime:

(3a) Regime 1: yi1 = Xib1 + ui1 if Ai = 1

..

. ..
. ..

.

(3m) Regime M: yiM = XibM + uiM if Ai = M

where yji is the net revenue per hectare of farm household i in regime j,
(j ¼ 1 . . . M), and Xi represents a vector of inputs (e.g. seeds, fertilisers,
manure and labour), farmer head’s and farm household’s characteristics,
soil’s characteristics and the past climatic factors included in Zi; uij represents
the unobserved stochastic component, which verifies E(uij|Xi,Zi) = 0 and
V(uij|Xi,Zi) = s2

j . For each sample observation, only one among the M
dependent variables net revenues is observed.11 To correct for the potential
inconsistency one can take into account the correlation between the error
terms hij from the multinomial logit model estimated in the first stage and the
error terms from each net revenue equation uij. I refer to this model as a ‘multi-
nomial endogenous switching regression model’.

Bourguignon et al. (2007, p. 179) show that consistent estimates of bj in
the outcome equations (3a)–(3m) can be obtained by estimating the following
selection bias-corrected net revenues equations,

(4a) Regime1: yi1=Xib1+s1 r1m(Pi1)+
∑

j

rjm(Pij)
Pij

(Pij−1)

[ ]
+ni1 if Ai=1

..

. ..
. ..

.

(4m) RegimeM: yiM =XibM+sM rMm(PiM)+
∑

j

rjm(Pij)
Pij

(Pij−1)

[ ]

+niM if Ai=M

where Pij represents the probability that farm household i chooses strategy j
as defined in (2), rj is the correlation between uij and hij and m(Pij)=�

J(n− logPj)g(n)dn with J(.) being the inverse transformation for the normal

distribution function, g(.) the unconditional density for the Gumbel distribution
and nij=hij+ logPj. This implies that the number of bias correction terms in

each equation is equal to the number of multinomial logit choices M.12

11 When estimating an OLS model, the net revenues equations (3a)–(3m) are estimated separately.

However, if the error terms of the selection model (1)hij are correlated with the error terms uij of the

net revenues functions (3a)–(3m), the expected values of uij conditional on the sample selection

are nonzero, and the OLS estimates will be inconsistent.

12 A crucial assumption of the Bourguignon et al. (2007)’s model is that IIA holds. However, Bourgui-

gnon et al. (2007) show that ‘selection bias correction based on the multinomial logit model can

provide fairly good correction for the outcome equation, even when the IIA hypothesis is violated’

(p. 199).
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If panel data are at hand, one can specify a fixed effect version of the above
models. Di Falco and Veronesi (2013) exploit plot-level information to deal
with the issue of farmers’ unobservable characteristics such as their skills.
Plot-level information can be used to construct panel data and control for
farm specific effects (Udry, 1996). I follow Mundlak (1978) and Wooldridge
(2002) to control for unobservable characteristics. We exploit the plot-level
information, and insert in the net revenues equations (4a)–(4m) the average

of plot-variant variables S̄i, for instance the inputs used (seeds, manure, fertiliser
and labour). This approach relies on the assumption that the unobservable char-
acteristics niare a linear function of the averages of the plot-variant explanatory

variables Si that is ni = Sip+ ci with ciĨIN(0,s2
c) and E(ci/Si) = 0,

where p is the corresponding vector of coefficients, and ci is a normal error

term uncorrelated with Si.

4.1. Building up a counterfactual analysis

Switching regression models allows estimating counterfactuals. One can es-
timate the treatment effects (Heckman, Tobias and Vytlacil, 2001) thus
the effect of the treatment ‘adoption of strategy j’ on the net revenues of
the farm households that adopted strategy j. In the absence of a self-selection
problem, it would be appropriate to assign to farm households that adapted
a counterfactual net revenue equal to the average net revenue of non-
adapters with the same observable characteristics. Unobserved heterogen-
eity in the propensity to choose an adaptation strategy also affects net rev-
enues and creates a selection bias in the net revenue equation that cannot
be ignored. The multinomial endogenous switching regression model can
be applied to produce selection-corrected predictions of counterfactual net
revenues.

In particular, one can follow Bourguignon et al. (2007, p. 179 and pp. 201–
203), and derive the expected net revenues or land values of farm households
who adapted, that in our study means j ¼ 2 . . .M (j ¼ 1 is the reference category
‘non-adapting’), as

(5a) E(yi2|Ai = 2) = Xib2 +s2 r2m(Pi2)+
∑M

k=2

rkm(Pik)
Pik

(Pik − 1)

[ ]

..

.

(5m) E(yiM|Ai = M) = XibM +sM rMm(PiM)+
∑

k=1...M−1

rkm(Pik)
Pik

(Pik − 1)

[ ]

Then, one can obtain the expected net revenues or land values of farm house-
holds that adopted strategy j in the counterfactual hypothetical case that they
did not adapt (j ¼ 1) as
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(6a) E(yi1|Ai = 2)=Xib1 +s1

r1m(Pi2)+r2m(Pi1)
Pi1

(Pi1 −1)+
∑

k=3...M

rkm(Pik)
Pik

(Pik −1)

[ ]

..

.

(6m) E(yi1|Ai =M)=Xib1 +s1 r1m(PiM)+
∑

k=2...M

rkm(Pi,k−1)
Pi,k−1

(Pi,k−1 −1)

[ ]

This allows us calculating the treatment effects (TT), for example, as the differ-
ence between equations (5a) and (6a) or (5m) and (6m).

4.2. What have we learned from the structural approach?

Di Falco and Veronesi (2013) used the above multinomial framework to answer
thefollowingquestions.Whatare the factorsaffecting theadoptionof strategies in
isolation or in combination? What are the ‘best’ strategies that can be implemen-
ted to deal with climatic change in the field? In particular, what are the economic
implications of different strategies? They used plot-level farm data and found that
the choice of what adaptation strategy to adopt is crucial to support farmrevenues.
Theyfound that strategiesadopted incombinationwithotherstrategies rather than
in isolation are more effective. Adaptation is, therefore, more effective when it is
composed by a portfolio of actions rather than one single action. More specifical-
ly, it is found that the positive impact of changing crop is significant when is
coupled with water and soil conservation strategies. This highlights the import-
ance of not implementing water or soil conservation programs in isolation.

With regard to the drivers of adaptation, the first-stage analysis highlighted the
role of tenure security. The estimated coefficient is positively correlated with all
the strategies. The dissemination of information on changing crops and imple-
menting soil conservation strategies are also found to be important. Extension ser-
vicesare, for instance, significant in determining the implementation of adaptation
strategies, which could result in more food security for all farmers irrespective of
their unobservable characteristics. Moreover, the availability of information on
climate change may raise farmers’ awareness of the threats posed by the changing
climatic conditions. This is consistent with the finding of Deressa et al. (2009).

5. The behavioural dimension of adaptation to climate
change: risk aversion

From the results reported above, a set of different institutional drivers (e.g.
tenure security, extension services), market drivers (e.g. missing credit
markets) have been identified in connection with the issue of lack of adaptation.
Lately, attention on climatic effects on different outcomes has been increasing.
A large body of literature has used the exogenous variation in climatic factors to
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identify the causal effect of climate on different outcome. For instance, some
researchers focused on economic outcomes such as land values, income and
growth (e.g., Mendelsohn et al., 1994; Deschenes and Greenstone, 2007,
2011; Dell et al., 2009, 2012; Schlenker and Roberts, 2009; Graff-Zivin and
Neidell, 2010; Hsiang, 2010; Fischer et al., 2012; Graff-Zivin, Hsiang and
Neidell, 2013). Others have paid attention on other crucial impacts of climatic
variables such as conflicts (Hsiang, Meng and Cane, 2011), education, health,
migration (Barrios et al., 2006) and social norms (Miguel, 2005).

In this section I examine the causal effect of climatic conditions on behaviour-
al parameters that can have a crucial implication for the choice of adaptation
strategies: specifically farmers risk aversion. If farmers are averse to risk,
they may also be more reluctant of undertaking potentially profitable invest-
ments if these entails some more risk. In this case, a higher variability leads to
higher risk premium and lower investment. This finding is well established in
the risk literature (e.g. Just and Pope, 1978; Binswanger and Rosenzweig,
1993; Chavas, 2004; Dercon and Christiansen, 2011). We address this issue dir-
ectly and analyse how the first and the second moment of the long-run distribu-
tion of rainfall affects risk preferences. More specifically, I ask the following
research question: are people that are exposed to more variable rainfall more
likely to display higher risk aversion? To my knowledge, the estimation of
the role of climatic factors on behavioural parameters is a novel.

I use a series of economic experiments where payoffs vary both in terms of
riskiness. The experiments were carried out in the highland of Ethiopia in
2007. In order to elicit each participant’s risk preference, the respondents
were presented with a hypothetical farming scenario involving alternative
levels of output depending on the weather. The hypothetical agricultural scen-
ario consisted of two plots the productivity of which differs depending on if the
rains are good or bad each at 50 per cent probability. As can be seen in Table A1
in the appendix, a series of six choices were presented to the respondents with
each choice consisting of a payment with higher spread and higher payoff
versus a choice with lower spread and lower payoff (see Yesuf and Bluffstone,
2009, for a full description of the experiment). I consider if farmers choose scen-
arios that qualify them as risk averse. We therefore assign a dummy that takes
the value of 1 if yes and 0 otherwise. We regress this against the first two
moments of the long-run distribution of rainfall. These are calculated over a
30 years period. Table 2 reports the results. We find that the probability of
being classified as risk averse is determined by these climatic factors. More spe-
cifically, higher rainfall is negatively correlated with the probability of being a
risk averse. The second moment of the distribution of rainfall (captured by the
coefficient of variation) is instead positively correlated with the probability of
being a risk averter. We extend the analysis with different controls. Results
(reported in table 2) are consistent both from a qualitative and quantitative
point of view. Table 1 provides the summary statistics.

Increasing long-term rainfall variability is therefore associated with higher
risk aversion. The result underscores the potential importance of behavioural
parameters in climate change adaptation. These parameters are crucially
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Table 1. Summary statistics

Variable Description Mean Std. Dev. Min Max

Risk averter HH head classified as risk averter (see Table A1) 33% 0 1

Rainfall Rainfall average (1970–2004) in mm/year 1173.6 89.4 269.76 1550.2

Rainfall CV Rainfall coefficient of variation (1970–2004) 0.27 0.052 0.22 1.039

Distance to plots Average walking distance from the homestead to the plots in minutes 6.25 12.5 0 150

Distance to town Average walking distance to the nearest market town in minutes 63.39 42.3 0 240

Tenure insecurity Expect no changes in land holdings (1 ¼ yes; 0 ¼ otherwise) 41% 0 1

Household size Number of members of the households 6.495 2.38 1 19

Livestock Livestock units 4.367 3.207 0 18.6

Gender Gender of HH head (1 ¼ female; 0 ¼ male) 17% 0 1

Age Age of the HH head 52.31 15.06 18 105

Illiterate Household head unable to write or read (1 ¼ yes; 0 ¼ otherwise) 60% 0.489 0 1

Temperature Lon run temperature average in degrees celsius 10.38 4.734 2.78 19.64
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Table 2. Risk aversion and Climate change

Dependent variable: Risk averter

(1) (2) (3) (4)

Rainfall 20.000815*** (0.000119) 20.000652*** (0.000110) 20.000550*** (0.000106) 20.000564*** (0.000105)

Rainfall CV 0.940*** (0.355) 1.007*** (0.366) 1.114*** (0.313) 1.115*** (0.312)

Distance to the plots 20.00312*** (0.000338) 20.00326*** (0.000251) 20.00310*** (0.000281)

Distance to town 20.0000175 (0.000306) 20.000171 (0.000324) 20.000171 (0.000319)

Tenure insecurity 0.202*** (0.0237) 0.209*** (0.0188) 0.208*** (0.0183)

HH size 0.0357*** (0.00955) 0.0356*** (0.00968)

Livestock 0.00780** (0.00341) 0.00865** (0.00348)

Gender 0.161*** (0.0319) 0.165*** (0.0323)

Age 0.000706* (0.000405) 0.000633 (0.000422)

Illiterate 20.0368 (0.0390) 20.0341 (0.0386)

Temperature 0.00427*** (0.000900)

N 763 626 626 626

Probit marginal effects.
Standard errors are in parentheses. *p , 0.10, **p , 0.05, ***p , 0.01; constant not reported.
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affected by climate. This may uncover a mechanism through which climate may
also affect investment decisions that are central in the adaptation process.

6. Concluding remarks

In this paper, I reviewed some of the existing evidence on the impact and adap-
tation to climate change with a focus on the SSA. Research published to date
highlights that adaptation based on a portfolio of strategies significantly
increases farm net revenues. Changing crop varieties has a positive and signifi-
cant impact on net revenues when coupled with water conservation strategies or
soil conservation strategies but not when implemented in isolation. It is also
found that tenure security and access to extension services are key determinants
of the decision to adapt. Finally, I combined climatic data and experimentally
elicited risk preferences to analyse the impact of climatic factors on behaviour.
More rainfall variability is associated with less risk aversion. This may uncover
an important behavioural dimension of the impact of climate change in agricul-
ture. More variable rainfall may make farmers more risk averse. This could also
imply a lower propensity to undertake investment. Future research on the behav-
ioural dimension of climate change is necessary to uncover mechanisms and
psychological impacts.

At this stage of the paper other considerations are appropriate. Most of the
results published and reported in this paper rely on cross-sectional and plot-level
data. More and better data (e.g. panel data with long-time dimension) should be
made available to provide more robust evidence on both the role of adaptation
and its implications for agriculture. The dynamic of the problem should be also
explicated. Some adaptation strategies can be effective in the short run while
others may be delivering a pay-off in the long term.

Acknowledgements

I would like to thank my colleagues and coauthors Mintewab Bezabih, Martina
Bozzola, Fabian Capitanio, Jean-Paul Chavas, Gunnar Kohlin, Marcella Vero-
nesi, Mahmud Yesuf. I benefited enormously from working with them. I also
would like to thank Jean-Marie Baland, Peter Berck, Sam Fankhauser,
Menale Kassie, Robert Mendelsohn, Thomas Sterner and Tim Swanson for pro-
viding helpful comments and suggestions at different stages of my research
agenda. I also would like to thank Steve McCorriston and the anonymous
reviewers for comments and suggestions. The usual disclaimer applies.

References

Barnwal, P. and Kotani, K. (2010). Impact of Variation in Climatic Factors on Crop Yield:

A Case of Rice Crop in Andhra Pradesh, India. Working Paper EMS-2010-17, IUJ.

http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf.

Barrios, S., Ouattara, B. and Strobl, E. (2006). Climatic change and rural–urban migration:

the case of sub-Saharan Africa. Journal of Urban Economics 60(3): 357–371.

Adaptation to climate change in Sub-Saharan agriculture 425

http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf
http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf
http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf
http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf
http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf
http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf
http://www.iuj.ac.jp/research/workingpapers/EMS_2010_17.pdf


Barrios, S., Ouattara, B. and Strobl, E. (2008). The impact of climatic change on agricultural

production: is it different for Africa? Food Policy 33: 287–298.

Below, T. B., Mutabazi, K. D., Kirschke, D., Franke, C., Sieber, S., Siebert, R.

and Tscherning, K. (2012). Can farmers’ adaptation to climate change be explained by

socio economic household-level variables? Global Environmental Change 22: 223–235.

Benhin, J. K. A. (2008). South African crop farming and climate change: an economic assess-

ment of impacts. Global Environmental Change 18: 666–678.

Binswanger, H. and Rosenzweig, M. (1993). Wealth, weather risk and the composition and

profitability of agricultural investments. Economic Journal 103(416): 56–78.

Bourguignon, F., Fournier, M. and Gurgand, M. (2007). Selection bias corrections based on

the multinomial logit model: Monte Carlo comparisons. Journal of Economic Surveys

21(1): 174–205.

Bryan, E., Deressa, T. T., Gbetibouo, G. A. and Ringler, C. (2009). Adaptation to climate

change in Ethiopia and South Africa: options and constraints. Environmental Science

& Policy 12(4): 413–426.

Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S. and Herrero, M. (2013). Adapting

agriculture to climate change in Kenya: household strategies and determinants. Journal of

Environmental Management 114: 26–35.

Christiansen, L., Demery, L. and Kuhl, J. (2011). The (evolving) role of agriculture in poverty

reduction—an empirical perspective. Journal of Development Economics 96(2): 239–

254.

Chavas, J.-P. (2004). Risk analysis in theory and practice. Elsevier, London.

Cline, W. R. (1996). The impact of global warming on agriculture: comment. American

Economic Review 86: 1309–1312.

Cline, W. R. (2007). Global Warming and Agriculture. Impact Estimates by Country.

Washington D.C: Center for Global Development and Peter G. Peterson Institute for

International Economics.

Dell, M., Jones, B. and Olken, B. (2009). Temperature and income: reconcilling new

cross-sectional and panel estimates. American Economic Review: Paper and Proceedings

99(2): 198–204.

Dercon, S. and Christiansen, L. (2011). Consumption risk, technology adoption and poverty

traps: Evidence from Ethiopia. Journal of Development Economics, 96(2): 159–173.

Deressa, T., Hassan, R., Alemu, T., Yesuf, M. and Ringler, C. (2009). Analyzing the deter-

minants of farmers’ choice of adaptation measures and perceptions of climate change

in the Nile Basin of Ethiopia. International Food Policy Research Institute (IFPRI) Dis-

cussion Paper No. 00798, Washington, D.C.

Deressa, T. T. and Hassan, R. (2010). Economic impact of climate change on crop production

in Ethiopia: evidence from cross-section measures. Journal of African Economies 18(4):

529–554.

Deressa, T. T., Hassan, R. M. and Ringler, C. (2010). Perception of and adaptation to climate

change by farmers in the Nile Basin of Ethiopia. Journal of Agricultural Science 149(1):

23–31.

Deschenes, O. and Greenstone, M. (2007). The economic impacts of climate change: evi-

dence from agricultural output and random fluctuations in weather. American Economic

Review 97(1): 354–385.

426 S. Di Falco



Deschenes, O. and Greenstone, M. (2011). Climate change, mortality, and adaptation:

evidence from annual fluctuations in weather in the US. American Economic Journal:

Applied Economics 3(4): 152–85.

Diao, X., Hazell, P. and Thurlow, J. (2010). The role of agriculture in African development.

World Development 38(10): 1375–1383.

Diao, X. A. and Pratt, N. (2007). Growth options and poverty reduction in Ethiopia – an

economy-wide model analysis. Food Policy 32(2): 205–228.

Di Falco, S. and Chavas, J.-P. (2009). On crop biodiversity, risk exposure and food security in

the highlands of Ethiopia. American Journal of Agricultural Economics 91(3): 599–611.

Di Falco, S. and Veronesi, M. (2013). How African agriculture can adapt to climate change?

A counterfactual analysis from Ethiopia. Land Economics 89(4): 743–766.

Di Falco, S., Veronesi, M. and Yesuf, M. (2011). Does adaptation to climate change provide

food security? A micro-perspective from Ethiopia. American Journal of Agricultural

Economics 93(3): 825–842.

Di Falco, S., Yesuf, M., Kohlin, G. and Ringler, C. (2012). Estimating the impact of climate

change on agriculture in low-income countries: household level evidence from the Nile

basin, Ethiopia. Environmental and Resource Economics 52: 457–478.

Dinar, A., Hassan, R., Mendelsohn, R. and Benhin, J. (2008). Climate Change and Agricul-

ture in Africa: Impact Assessment and Adaptation Strategies. London: EarthScan.

Fisher, A. C., Hanemann, W. M., Roberts, M. J. and Schlenker, W. (2012). The economic

impacts of climate change: evidence from agricultural output and random fluctuations

in weather: comment. American Economic Review 102(7): 3749–3760.

Giller, K. E., Beare, M. H., Lavelle, P., Izac, A. M. N. and Swift, M. J. (1997). Agricultural

intensification, soil biodiversity and agro-ecosystem function. Applied Soil Ecology 6:

3–16.

Giorgis, K., Tadege, A. and Tibebe, D. (2006). Estimating crop water use and simulating yield

reductions for maize and sorghum in Adama and Miesso districts using the CROPWAT

model. CEEPA Discussion Paper, University of Pretoria, South Africa.

Graff-Zivin, J., Hsiang, S. and Neidell, M. (2013). Climate, human capital and adaptation.

Mimeo.

Graff-Zivin, J. and Neidell, M. (2010). Temperature and the allocation of time: implications

for climate change. NBER Working Paper No. 15717.

Hassan, R. and Nhemachena, C. (2008). Determinants of climate adaptation strategies of

African farmers: multinomial choice analysis. African Journal of Agricultural and

Resource Economics 2(1): 83–104.

Heal, G. (2000). Nature and the Marketplace: Capturing the Value of Ecosystem Services.

New York: Island Press.

Heckman, J. J., Tobias, J. L. and Vytlacil, E. J. (2001). Four Parameters of Interest in the

Evaluation of Social Programs. Southern Economic Journal 68(2): 210–233.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of

Ecology and Systematics 4: 1–23.

Hsiang, S. (2010). Temperatures and cyclones strongly associated with economic production

in the Caribbean and Central America. Proceedings of the National Academy of Sciences

107(35): 15367–15372.

Adaptation to climate change in Sub-Saharan agriculture 427



Hsiang, S., Meng, K. and Cane, M. (2011). Civil conflicts are associated with the global

climate. Nature 476: 438–441.

Hurni, H. (1998). Agroecological Belts of Ethiopia. Explanatory notes on three maps at a

scale of 1:1,000,000. Soil Conservation Research Programme, Research Report 43.

Addis Abeba and Bern: Centre for Development and Environment (CDE).

Intergovernmental Panel on Climate Change (IPCC). (2007). Summary for policymakers.

Climate change 2007: the physical science basis. Working Group I Contribution to

IPCC Fourth Assessment Report: Climate Change 2007, Geneva.

International Assessment of Agricultural Knowledge, Science and Technology for Develop-

ment (IAASTD) (2009). Agriculture at a Crossroad - Global Report. Island Press, Wash-

ington, D.C. http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%

20at%20a%20Crossroads_Global%20Report%20(English).pdf.

Just, R. E. and Pope, R. D. (1979). Production function estimation and related risk considera-

tions. American Journal of Agricultural Economics 61: 276–284.

Kabubo-Mariara, J. and Karanja, F. K. (2007). The economic impact of climate change on

Kenyan crop agriculture: a Ricardian approach. Global and Planetary Change 57:

319–330.

Kurukulasuriya, P. and Mendelsohn, R. (2008a). Crop switching as an adaptation strategy to

climate change. African Journal Agriculture and Resource Economics 2: 105–125.

Kurukulasuriya, P. and Mendelsohn, R. (2008b). A Ricardian analysis of the impact of

climate change on African cropland. African Journal of Agricultural and Resource

Economics 2: 1–23.

Kurukulasuriya, P., Mendelsohn, R., Hassan, R., Benhin, J, Diop, M., Eid, H. M., Fosu, K. Y.,

Gbetibouo, G., Jain, S., Mahamadou, A., El-Marsafawy, S., Ouda, S., Ouedraogo, M.,

Sène, I., Seo, N., Maddison, D. and Dinar, A. (2006). Will African agriculture survive

climate change? World Bank Economics Review 20(3): 367–388.

Lautze, S., Aklilu, Y., Raven-Roberts, A., Young, H., Kebede, G. and Learning, J. (2003).

Risk and vulnerability in Ethiopia: learning from the past, responding to the present, pre-

paring for the future. Report for the U.S. Agency for International Development. Addis

Ababa, Ethiopia.

Lee, L. F. and Trost, R. P. (1978). Estimation of some limited dependent variable models with

application to housing demand. Journal of Econometrics 8: 357–382.

Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. M., Falcon, W. P. and Naylor, R. L.

(2008). Prioritizing climate change adaptation needs for food security in 2030. Science

319: 607–610.

Maddala, G. S. (1983). Limited Dependent and Qualitative Variables in Econometrics.

Cambridge, U.K: Cambridge University Press.

Maddala, G. S. and Nelson, F. D. (1975). Switching regression models with exogenous and

endogenous switching. Proceeding of the American Statistical Association (Business and

Economics Section), pp. 423–426.

Maddison, D. (2007). The perception of and adaptation to climate change in Africa. Policy

Research Working Paper 4308, The World Bank, Development Research Group, Sustain-

able Rural and Urban Development Team.

Mary, L. and Majule, A. E. (2009). Impacts of climate change, variability and adaptation

strategies on agriculture in semi arid areas of Tanzania: the case of Manyoni District in

428 S. Di Falco

http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.
http://www.unep.org/dewa/agassessment/reports/IAASTD/EN/Agriculture%20at%20a%20Crossroads_Global%20Report%20(English).pdf.


Singida Region, Tanzania. African Journal of Environmental Science and Technology

3(8): 206–218.

Massetti, E. and Mendelsohn, R. (2011). Estimating Ricardian Functions with Panel Data.

Climate Change Economics 2: 301–319.

McFadden, Daniel, L. (1973). Conditional logit analysis of qualitative choice behavior. In:

Paul Zarembka (ed.), Frontiers in Econometrics. New York: Academic Press, 105–142.

McIntyre, B. D., Herren, H. R., Wakhungu, J. and Watson, R. T. (2009). Agriculture at a cross

road, International Assessment of Agricultural Knowledge, Science and Technology for

Development (IAASTD). Sub-Saharan Africa (SSA) Report.

Mendelsohn, R. and Dinar, A. (2003). Climate, water, and agriculture. Land Economics 79:

328–341.

Mendelsohn, R. and Dinar, A. (2009). Climate Change and Agriculture: An Economic

Analysis of Global Impacts, Adaptation, and Distributional Effects. UK: Edward Elgar

Publishing, 2009.

Mendelsohn, R., Nordhaus, W. and Shaw, D. (1994). The impact of global warming on agri-

culture: a Ricardian analysis. American Economic Review 84: 753–771.

Miguel, E. (2005). Poverty and witch killing. Review of Economic Studies 72: 1153–1172.

Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica

46(1): 69–85.

Parry, M., Rosenzweig, C. and Livermore, M. (2005). Climate change, global food supply

and risk of hunger. Philosophical Transactions of the Royal Society B 360: 2125–2138.

Rosenzweig, C. and Parry, M. L. (1994). Potential impact of climate change on world food

supply. Nature 367: 133–138.

Schlenker, W. and Lobell, D. B. (2010). Robust negative impacts of climate change on

African agriculture. Environmental Research Letters 5: 1–8.

Schlenker, W. and Roberts, M. J. (2009). Non linear temperature effects indicate severe

damages to U.S. crop yields under climate change. Proceeding of National Academic

Sciences of USA 106(37): 15594–15598.

Seo, S. N. and Mendelsohn, R. (2008). Measuring impacts and adaptations to climate change:

a structural Ricardian model of African livestock management. Agricultural Economics

38(2): 151–165.

Stage, J. (2010). Economic valuation of climate change adaptation in developing countries.

Ann N Y Acad Sci 1185: 150–163

Udry, C. (1996). Gender, agricultural production, and the theory of the household. Journal of

Political Economy 104(5): 1010–1046.

Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. Cambridge,

MA: MIT Press.

World Bank (2010). The Economic of adaptation to climate change. The World Bank Group

1818 H Street, NW Washington, DC 20433. http://climatechange.worldbank.org/sites/

default/files/documents/EACC_Ethiopia.pdf.

Yesuf, M. and Bluffstone, R. (2009). Poverty, risk aversion, and path dependence in low-

income countries: experimental evidence from Ethiopia. American Journal of Agricultur-

al Economics 91(4): 1022–1037.

Adaptation to climate change in Sub-Saharan agriculture 429

http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf
http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf
http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf
http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf
http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf
http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf
http://climatechange.worldbank.org/sites/default/files/documents/EACC_Ethiopia.pdf


Appendix

Table A1. Choice sets for the risk preference experiment

Bad

harvest

Good

harvest

Expected

mean

Spread CPRA*

coefficient

Risk

classification

Choice set 1 100 100 100 0 1–7.5 Extreme

Choice set 2 90 180 105 90 7.5–2.0 Severe

Choice set 3 80 240 160 160 2.0–0.812 Intermediate

Choice set 4 60 300 180 240 0.812–0.316 Moderate

Choice set 5 20 360 190 360 0.316–0.0 Slight

Choice set 6 0 400 200 400 0.0–1 Neutral

*Constant partial risk aversion.
Note: Numbers represent kilogram output.
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