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Tight linkage with the RET proto-oncogene (Zmax=3.41 at © =0.00), analysls of recombinants and detectlon
of a familial microdeletion in a large pedigree restrict the mapping of the Hirschsprung (HSCR) gene previously
localized on proximal 10q. The molecular characterization of the famillal microdeletion and of 3 additional
cytogenetically visible de novo deletions, isolated In somatlc cell hybrids, Identify a smallest region of overlap
of 250 Kb. This contains the RET proto-oncogene where missense mutations causing multiple endocrine neoplasla
type 2A (MEN 2A) phenotype were recently found. The pentagastrin test (which detects preclinical forms ot MEN
2A or B) Is negative in adult HSCR patients with deletlons of the RET gene. This represents a good candidate

for the search of mutations causing HSCR.

INTRODUCTION

Hirschsprung disease (HSCR, or congenital megacolon) is a
neural crest cell disorder (neurocristopathy) characterized by the
absence of intramural ganglion cells in the hindgut, often resulting
in partial to complete intestinal obstruction during the first years
of life. The disease has a complex genetic etiology and, among
others, an autosomal dominant model of inheritance with
incomplete penetrance was postulated(l —4).

Cytogenetically detectable deletions, del 10(q11.2—21.2), were
observed by us(5) and by Dr S.M.Huson (personal comm.) in
two patients with sporadic occurrence of HSCR. These findings
suggested the presence of a HSCR gene in the proximal long
arm of chromosome 10. Based on this hypothesis, we segregated
the deleted and normal chromosomes 10 from one of the
patients(5) into 2 distinct somatic cell hybrids(6) and mapped a
series of chromosome 10 markers with respect to the deletion.
Linkage analysis in 15 HSCR pedigrees showing autosomal
dominant inheritance indicated the interval between loci
D10S208/D10S199 and D10S196/D10S220/D10S225, spanning
9.9 cM, as the most likely location of the gene(7). This finding
was essentially confirmed by an accompanying paper (8). In order
to refine this genetic mapping, we studied 5 pedigrees using 12
microsatellites localized in the region of interest. A familial
microdeletion, revealed by this analysis, and 3 additional
cytogenetically visible deletions allow now to define a smallest
region of overlap for HSCR.

RESULTS
Linkage study and refined genetic miap of HSCR

A total of 21 affected and 23 unaffected individuals were analysed
in 5 HSCR pedigrees. The pattern of transmission of the discase
is consistent with an autosomal dominant model of inheritance
with incomplete penetrance(2,3,7). Fig. 1 shows the haplotype
reconstruction for 9 and 12 microsatellites respectively in 2
pedigrees. In the pedigree of fig.1A, ZNF22 showed a
recombination with HSCR, while in the pedigree of fig.1B,
double recombinants were observed between marker AFM282ya9
and locus RBP3. These recombinations restricted the genetic
mapping of the HSCR locus to a proximal 10q interval flanked
by probes AFM282ya9 proximally and ZNF22 distally. A
familial microdeletion involving the RET proto-oncogene and
D10S141 was identified because of constitutional loss of
heterozygosity in patients and asymptomatic obligate carriers of
HSCR in the pedigree of fig. 1B. Table 1 shows the pairwise
lod scores at different recombination fractions between the RET
proto-oncogene and HSCR in the 5 pedigrees. The deleted allele
was considered for this analysis as an additional null allele.
Significant linkage between HSCR and RET was found
(Zmax=3.41 at ©=0.00).

Detection of the familial microdeletion

A deletion involving locus D10S141 and the RET proto-oncogene
segregates with HSCR in all patients and asymptomatic carriers
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Figure 1. Haplotype reconstruction in 2 HSCR families.In the pedigrees, filled symbols (M, @) represent long segment HSCR, half-filled symbols (®) represent
short segment HSCR, hatched symbols (22, @) represent a disease status not studied by histological examination but clinically documented as previously described(7).
The markers are reported in their most likely order on chromosome 10: 10p-centromere-10q. A: deletion. Individuals numbered in each pedigree carry the haplotypes
described in the corresponding positions of the lower part of the figure. Haplotypes which are concordant in all patients and obligate carriers are boxed. In pedigree
A, the recombination drawn inside the haplotype of individual IV-6 (which maps HSCR proximal to ZNF22) might actually have occurred either in individual -5
or IV-6. The same can be said for the recombinations observed in pedigree B, which might have occurred cither in individual II-2 or II-3. Markers AFM183xgl
(D105208), AFM137xh4 (D10S199), AFM115xf2 (D10S196), AFM256y19 (D10S225), AFM234wh6 (Généthon, no D number available), AFM175xh1((D10S207)16),
RBP3(27) were previously mepped(7) with respect to the deletion of HSCR patient 1 (sec table 2). New markers corresponding to loci D10S141, ZNF22(10) and
microsatellite sSTCL2 (corresponding to RET, derived from YAC 273E3 as an end probe)(14), AFM362tb1 (Généthon, no D mumber available) map inside the deletion,
while AFM282ya9 (Généthon, no D number available) maps outside. This latter marker was physically mapped by us in the centrameric region using a panel of
somatic cell hybrids (unpublished data).

of the pedigree of fig. 1B. The presence of this microdeletion was
confirmed by fluorescent in situ hybridization (FISH), utilizing
as probes YACs 313F4, 273E3 and 344H4 (9). With each probe,
only one spot was observed in the metaphases of a lymphoblastoid
cell line from individual IV-1 in the pedigree of fig.1B, while
in a normal control two spots could be seen on the two
chromosomes 10 (Fig. 2). In addition (Table 2), the same deletion
was detected by cosmids c¢cMEN367, from which the
microsatellite D10S141 had been isolated (10), and cMEN284
(D10S137)(11,12), physically mapped in the same region,
proximal to D10S141(our unpublished result).

Deletion mapping of the HSCR gene

The segregation in a somatic cell hybrid of the deleted
chromosome 10 from our HSCR patient (corresponding to patient
1 of table 2) was previously described(6). Using the same
approach, two additional hybrids retaining the deleted
chromosome 10 respectively from patients 2 and 3 of table 2 were
isolated. A cytogenetically visible deletion, del 10q(11.2—-22.1),
not associated with HSCR, had been previously isolated in a
similar hybrid (corresponding to patient 4 of table 2)(13). Table
2 summarizes the characterization of the 4 somatic cell hybrids



Tabde 1. Pairwise lod scores between HSCR and RET

Recombinaton Fractions (0)
Pedigree 000 0.01 0.05 010 020 0.30 0.40

0.708 0.693 0.63t 0552 0385 0.212 0.063

1

2 1.603 1.571 1442 1279 0950 0623 0.306

3 0373 0364 0329 0285 0.198 0.115 0.046

4 0429 0418 0374 0318 0206 0.104 0.028

5 0301 0292 0258 0215 0134 0064 0.017
Total 3414 3338 3034 2649 1872 1119 0461

Pedigree 1, see Fig. 1A; Pedigree 2, see Fig. 1B; Pedigree 3, No. 8 of ref. 7;
Pedigree 4 and 5, nuclear families previously unreported;

for the presence of 17 different markers mapped in the proximal
10q region using PCR and FISH. The proximal boundary of the
deletion present in patient 2 lies distal to D10S141, while the
distal boundary of the familial microdeletion observed in the
pedigree of fig.1B (patient 3) lies proximal to yCMEI1-L, an STS
previously reported(14). The smallest region of overlap thus
defined by the latter 2 deletions spans approximately 250 Kb as
deduced from a physical map of the region obtained from YAC
clones(9,14). The proximal breakpoint from the patient not
affected with HSCR (patient 4) is distal to RBP3 and is therefore
located outside the smallest region of overlap. Additional evidence
was obtained by FISH using YACs 273E3 and 344H4 and
different cosmids as probes (Table 2). The deletion of YAC
344H4 in Hy8018.27A was confirmed by FISH performed on
lymphoblasts from the same patient(patient 2). On the other hand,
YAC 273E3 hybridized with both the deleted and the normal
chromosomes 10 carried by lymphoblasts from patient 2 (Fig. 2).
This is in agreement with the distal localization of the proximal
breakpoint present in this patient who retains most of the human
DNA material contained in the YAC 273E3.

Pentagastrin tests in individuals with deletions of the 10q11.2
region

Since the RET proto-oncogene which corresponds to the MEN
2A gene(15) lies within the 250 Kb region containing the HSCR
gene, we tested whether individuals showing the familial
microdeletions (Fig.1B) had any signs of MEN 2A. The family
history was negative for MEN 2 and a pentagastrin test was
performed in individuals II-2 (58 years old) and III-1 (29 years
old). The plasma calcitonin concentrations were within normal
limits both under baseline conditions and after pentagastrin
stimulation (data not shown).

DISCUSSION

The new linkage data from the present work narrow the previous
genetic mapping from an interval of 9.9 ¢cM (7) to not more than
2.7 ¢cM(10,16), flanked by marker AFM282ya9 and locus
ZNF22. Tight linkage (Zmax=3.41 at ©=0.00) of HSCR with
marker sTCL2, which maps about 60 Kb distal to the 3’ end
of the RET proto-oncogene(14), is now identified. This gene is
flanked by microsatellitess sTCL2 distally and D10S141
proximally(9,14). Hemizygosity for sTCL2 and D10S141,
confirmed by FISH, indicates that the RET proto-oncogene is
deleted in affected members as well as in the asymptomatic
obligate carriers of the gene in the pedigree of fig.1B. In addition,
physical characterization of the three deletions associated with
HSCR, isolated in 3 different hybrids (Table 2), allowed us to
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Table 2. Retention (+)and loss (—) of DNA markers in 4 somatic cell hybrids
carrying deletons of proximal 10q

v
a
E g DELETED CHROMOSOMES 10 FROM PATIENTS.
DNA 2NE
Kb MARKERS | | % 1 2 3 4
cen
214H10T a |p + + - +
10
yWME31-R {a |P + + - +
24{0105137 e 3 - + - nd
D10S141 celf.P - + - +
o 150
S RET b |p - - -
t +
<] 60
i sTCL-2 ¢ |r - - - nd
'((} 45
> yCME1-L a |p - - + nd
— 5
yWME31-L |a [P nd nd + nd
- 160
yWME28-R |[a (P - - + nd
20
cM D10S94 d |p - - + +
22
INF22 b |P - - nd +
1.5
RBP3 b |pP - - nd +
3.3
D10S196 c |p - - + -
34 AFM263yd5 | c |p - - nd -
AFM205tgll| c [P - - nd -
66
AFM234wh6[ c |P - - + -
8.0 )
D10S210 c |p + + + -

qter

Probes a: STSs derived from the ends of YAC clones belonging to two recently
described contigs(9,14); b: expressed sequences(28—31); c: micro-
satellites(10,14,16); d: amplifiable sequence containing a Pvu II polymorphic
restriction site(32); ¢: cosmid clones already described(11,12); nd: not determined.
Patients 1: reported in ref.5,6; 2: observed by Dr. S. M. Huson (unpublished
data); 3: individual IV-1 of fig.1B; 4: reported in ref.13 (not affected with HSCR).
The deleted chromosomes observed in these 4 patients are retained respectively
in Hy185.0, Hy8018.27A, Hy8016.38 and CZxCHOKI1. All markers are listed
in their most likely order from centromere to gter as already reported(9—12,14,16),
with the exception of the microsatellites distal to RBP3, whose reciprocal order
is tentatively defined. The physical (Kb) and genetic (cM) distances between
markers deduced from the literature (9,10,14,16) are indicated respectively in
the upper and lower part of the table. F: studied by FISH in lymphoblastoid cell
lines; P: tested by PCR amplification of DNA from somatic cell hybrids. In
addition, YAC 273E3 showed no signal by FISH (Fig. 2) on the deleted
chromosomes 10 from lymphoblasts of patient 1 and of patient 3 (parental cell
lines of Hy185.0 and Hy8016.38 respectively). The absence of signal with YAC
273E3 in patient 3 is in apparent contrast with the observation that Hy8016.38
is positive for yYCME1-L, located inside this YAC. This is explained by the
localization of the former STS in a small terminal portion of the YAC. A clear
fluorescent signal (Fig. 2)was present instead in both the normal and the deleted
chromosome 10 from tymphoblasts of patient 2 (parental cell line of Hy8018.27A).

define a smallest region of overlap between D10S141 and
yCMEI-L. This result restricts the HSCR gene to a region of
approximately 250Kb. The RET proto-oncogene(17,18), whose
genomic length is at least 35 Kb (B.Pasini et al., in preparation),
is the only gene already mapped in this region and represents
therefore a potential candidate for HSCR. Recently, the same
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Figure 2. Fluorescent in situ hybridization of lymphoblastoid cell lines from 2 HSCR patients showing deletion mutations. A: Patient 2 of table 2. Both chromosome
10 (identifed on the same slide by DAPI Q banding) show a clear fluorescent signal using YAC 273E3 as probe (see arrows); B: Patient 3 of table 2 (IV-1 of the
pedigree of fig.1B). Only 1 chromosome 10 (identified again by DAPI Q banding) hybridizes YAC 273E3 (see arrow).

gene has been shown to carry missense mutations affecting
different cysteine residues at the boundary of the extracellular
and transmembrane domains in patients with multiple endocrine
neoplasia type 2A (MEN 2A)(15,19).

The RET proto-oncogene may play an important role in the
development of the enteric nervous system(20,21). A recent study
of a transgenic mouse strain in which both alleles of the RET
proto-oncogene were ‘knocked out’, demonstrates severe kidney
malformations and complete aganglionosis of the whole intestine
(Dr V.Pachnis, personal comm.). In the present work, a deletion
involving the RET proto-oncogene is inherited as a dominant

mutation which causes HSCR in the pedigree of fig. 1B. This
deletion, as well as 2 de nowo deletions in sporadic HSCR
patients, must cause a quantitative decrease of the RET gene
product, which might result in the HSCR phenotype. In the few
large pedigrees(22,23) where MEN 2A or B are found associated
with HSCR, the latter disorder is less frequent than MEN 2,
indicating that only in a minority of patients the same mutation
gives origin to HSCR, in addition to MEN 2, possibly because
of the interaction with a second, modifier gene. However the
negative results obtained in carriers of the familial microdeletion
(patient ITI-1 and her unaffected father in the pedigree of fig.1B)



after pentagastrin stimulation (which is a reliable test for the
detection of preclinical forms of MEN 2A or B) exclude the
presence in them of any form of medullary thyroid hyperplasia.
We conclude therefore that deletion mutations of the RET proto-
oncogene do not represent a sufficient condition for the
development of MEN 2A, whose reported point mutations might
represent instead the first example of a dominantly acting
oncogenic mechanism as the initiating event in human hereditary
neoplasia(15). This observation is consistent with the absence of
allele loss reported for 10q in medullary thyroid carcinoma and
pheochromocytoma(24,25). On the other hand, it is somewhat
surprising that the 3 deletions causing HSCR characterized in
the present work are not associated with other congenital
anomalies, in spite of their extent (see table 2).

Allelic mutations causing different disease phenotypes have
been documented for Duchenne and Becker Muscular Dystrophy
(MIM No. 310200), for Cystic Fibrosis (MIM No. 219700) and
Congenital Bilateral Absence of Vas Deferens(26), for Spinal
Bulbar Muscular Atrophy (Kennedy disease, MIM No. 313200)
and Testicular Feminization (MIM No. 313700), and for a few
other disorders. Our hypothesis of phenotypic diversity between
HSCR and MEN2A due to multiple alleles (e.g.: gene deletions
or specific missense mutations, respectively) is therefore
supported by well established examples.

MATERIALS AND METHODS

Subregional assignment of markers and deletion mapping

The sequences of all microsatellites have been published previously(10,14,16,27).
Their order and genetic distances were already established in CEPH families.
Somatic cell hybrids retaining the deleted chromosome 10 were obtained as
previousty described(6). The subregional localization of the markers used in linkage
analyses was carried out by PCR amplification of the DNAs from the two somatic
hybrids retaining the deleted (Hy185.0) and the normal chromosomes 10
(Hy179.Q) from one of the deleted patients(6,7). Other probes used to test the
presence of DNA markers in the 4 hybrids retaining the deleted chromosome
10 are defined elsewhere(9—12,14,16,27—32). Standard PCR reactions were
performed for all microsatellites, expressed sequences and STSs using DNA or
cell lysate of the human-rodent cell hybrids.

Genotyping

Genomic DNA was purified cither from blood samples or from established
lymphoblastoid cell lines by conventional methods. For each pair of primers,
the one having higher melting temperature was labelled with y32P-dATP by T4
polynucleotide kinase. Standard PCR reactions were carried out with 0.4 xM
unlabeled primer and 0.1 pM of end-lebelled primer in a total volume of 15 ul
or 25 pl with 1~1.5 units of Taq potymerase. 100—200 gg of template DNAs
were initially denatured at 95°C for 5 min, 30 cycles of amplification were
performed by denaturing at 94°C for 40 sec, annealing at 55°C (AFM183xgl
and RBP3 at 57°C) for 40 sec, clongating at 72°C for 1 min, followed by a
final step of 72°C for 7 min. 2—3 ul of PCR products were loaded on 6%
polyacrylamide sequencing gel containing 7 M urea.

Linkage study

Members of the 5 pedigrees were classified as affected with long segment or
short segment HSCR according to the criteria previously reported(7). Pairwise
linkage analysis was performed using the MLINK option(33) of the computer
program Linkage package (version 5.1), under the assumption of a sex-modified,
incompletely penetrant, autosomal dominant model. Estimates for gene frequency
and for differential penetrance in males and females were those already reported(7).
The frequencies for different alleles of STCL2 (RET) were assumed to be equivalent
for 6 alleles (0.167 each).

Fluorescent in situ hybridization

Cosmid and YAC probes were labeled by nick translation (Boehringer) using
biotin-16-dUTP. Metaphase chromosomes of the lymphoblastoid cell lines were
prepared by routine methods. Hybridization and washing conditions were as
described(34,35). The signals were amplified once and the slides were stained
with propidium iodide and DAPI. At least 50 metaphases were scored for each

Human Molecular Genetics, 1993, Vol. 2, No. 11 1807

experiment and all were concordant with the result reported. A normal
lymphoblastoid cell line was included in each hybridization as control.
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ABBREVIATIONS

HSCR Hirschsprung disease

MEN2A multiple endocrine neoplasia type 2A
MEN2B multiple endocrine neoplasia type 2B
MEN2 multiple endocrine neoolasia type 2
STS sequence tagged site

FISH fluorescent in situ hybridization
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