Coordination, combination and extension of balanced samples

By YVES TILLÉ
Groupe de Statistique, Université de Neuchâtel, Espace de l'Europe 4, Case postale 805, 2002 Neuchâtel, Switzerland yves.tille@unine.ch and ANNE-CATHERINE FAVRE
Département de hydrologie statistique, Institut national de la recherche scientifique, 2800 rue Einstein, C.P. 7500 Sainte-Foy (Québec), Canada G1V 4C7
anne-catherine_favre@inrs-ete.uquebec.ca

Summary

The cube method allows the selection of balanced samples on several auxiliary variables with equal or unequal inclusion probabilities. Practical implementation of the cube method has raised questions concerning the selection of a multi-phase balanced sampling design, the rebalancing of an unbalanced sampling design by completing it with another sample, the selection of a balanced sample from an unbalanced sample and the coordination of balanced samples. This paper provides a complete solution of all these problems.

Some key words: Cube method; Multi-phase sampling; Rotation; Sample coordination; Unequal probability sampling.

1. Introduction

Balanced sampling is a method of sample selection that preserves a given set of sample inclusion probabilities and satisfies that the Horvitz-Thompson estimators of known auxiliary variables are the same or nearly the same as the corresponding true totals. Interest in balanced sampling was already pointed out more than 50 years ago by Yates (1946). Several partial solutions of the balanced sampling problem have been proposed by Yates (1946), Thionet (1953), Deville et al. (1988), Ardilly (1991), Deville (1992), Hedayat \& Majumdar (1995) and Valliant et al. (2000). A general solution, the cube method, that allows the selection of balanced samples on several auxiliary variables, with equal or unequal inclusion probabilities, has been proposed by Deville \& Tillé (2004a); see also Tillé (2001, Ch. 8). This method is based on a geometric representation of a sampling design, and preserves exactly a set of given inclusion probabilities.

Since the implementation of the technique by A. Bousabaa, J. Lieber, R. Sirolli and F. Tardieu, it has been applied many times. An SAS macro allows the selection of balanced samples with up to several tens of auxiliary variables and several tens of thousands of population units. Applications have raised a lot of questions which are discussed in this paper.

A first problem is the selection of several nonoverlapping balanced samples from the same population. In some cases, the samples can be selected together, and in some other
cases not. A simple examination of the problem reveals unexpected difficulties. We show that, with unequal inclusion probabilities, the complement of a balanced sample is in general not balanced. Nevertheless, we propose a way of balancing simultaneously the sample and its complement. We also show that multi-phase balanced sampling is possible if we modify the auxiliary variables.

Balancing an unbalanced sample using a supplementary sample is the second problem addressed in this paper. The supplementary sample can come from the same population, from another population, such as births, or from a changing population. Along the lines of Kish \& Scott (1971), a modification to the auxiliary variables, a suitable choice of the balancing variables and the use of inclusion probability conditional on the first draw provide solutions to this problem. Finally, we show how to select a balanced sample from another sample that is not balanced.

2. Notation

The units in the study population are designated by a label $k=1, \ldots, N$. For a population that changes in time the set of labels of the units is denoted by U_{t} during a finite set of time points $t=1, \ldots, T$. The size of U_{t} is denoted by N_{t}. As time passes, new units can appear and others disappear. The set of birth labels at time t is given by $U_{t} \backslash U_{t-1}$, while the set of death labels is $U_{t-1} \backslash U_{t}$. For simplicity, we assume that each unit has a label k which does not change with time, so that at any time we can identify without ambiguity the units of U_{t} and pair them with the corresponding units of U_{t+1}. The unit identified by k is not necessarily present in each population $U_{t}(t=1, \ldots, T)$.

We also have auxiliary variables $x_{t}^{j}(j=1, \ldots, p)$ which are known for every unit at any time t. As units are born and die, the values of the j th auxiliary variable at time t on unit k are denoted by $x_{k t}^{j}(j=1, \ldots, p, k \in U)$; in general, they change with time. The values taken by the variable of interest $y_{k t}$ also evolve. Since the auxiliary variables are assumed to be known for all the population units, the vector of totals,

$$
X_{t}=\sum_{k \in U_{t}} x_{k t},
$$

is known, where $x_{k t}=\left(x_{k t}^{1}, \ldots, x_{k t}^{j}, \ldots, x_{k t}^{p}\right)^{\prime}$. The elements of the vector $x_{k t}$ can be the values of any variables known for the whole population. For instance, if the aim is to select a sample of municipalities, the x-variables might be the area of the municipality, the number of inhabitants, the proportion of foreigners or the number of accommodations. The x-variables can also depend on the inclusion probabilities, or can be a constant, for example $x_{k t}^{j}=1\left(k \in U_{t}\right)$, or an indicator variable of a stratum.

The objective is to estimate the total of the variable of interest given by

$$
Y_{t}=\sum_{k \in U_{t}} y_{k t} .
$$

In the paper, we consider for simplicity that $y_{k t}$ is scalar, although the multivariate generalisation follows directly.

A sample s_{t} is a subset of U_{t}. Let $p_{t}\left(s_{t}\right)$ denote the probability of selecting the sample s_{t} at time t. We denote by S_{t} the random sample, such that

$$
p_{t}\left(s_{t}\right)=\operatorname{pr}\left(S_{t}=s_{t}\right),
$$

and by $n\left(S_{t}\right)$ the size of sample S_{t}. The random samples have a joint distribution given by

$$
\operatorname{pr}\left(S_{1}=s_{1}, \ldots, S_{t}=s_{t}, \ldots, S_{T}=s_{T}\right)=p\left(s_{1}, \ldots, s_{t}, \ldots, s_{T}\right) .
$$

Further notation is $\pi_{k t}=\operatorname{pr}\left(k \in S_{t}\right)$, the inclusion probability of unit k at time t, for all $k \in U_{t}$, and $\pi_{k(t-1) t}=\operatorname{pr}\left(k \in S_{t-1} \cap S_{t}\right)$, the inclusion probability of unit k at both instants $t-1$ and t, for all $k \in U_{t-1} \cap U_{t}$.

At each time t, we consider the Horvitz-Thompson estimators given by

$$
\hat{Y}_{t}=\sum_{k \in S_{t}} \frac{y_{k t}}{\pi_{k t}}, \quad \hat{X}_{t}=\sum_{k \in S_{t}} \frac{x_{k t}}{\pi_{k t}}
$$

Theoretically the joint inclusion probabilities are $\pi_{k \ell t}=\operatorname{pr}\left(k\right.$ and $\left.\ell \in S_{t}\right)$, and $\pi_{k \ell(t-1) t}=$ $\operatorname{pr}\left(k \in S_{t-1}\right.$ and $\left.\ell \in S_{t}\right)$. Note that the quantity $\pi_{k \ell(t-1) t}$ is not symmetrical in k and ℓ. Indeed, we have

$$
\pi_{\ell k(t-1) t}=\operatorname{pr}\left(\ell \in S_{t-1} \text { and } k \in S_{t}\right)
$$

The variances of the Horvitz-Thompson estimator are

$$
\begin{equation*}
\operatorname{var}\left(\hat{Y}_{t}\right)=\sum_{k \in U_{t}} \sum_{\ell \in U} \frac{y_{k t}}{\pi_{k t}} \Delta_{k \ell t} \frac{y_{\ell t}}{\pi_{\ell t}}, \quad \operatorname{var}\left(\hat{X}_{t}\right)=\sum_{k \in U_{t}} \sum_{\ell \in U_{t}} \frac{x_{k t}}{\pi_{k}} \Delta_{k \ell t} \frac{x_{\ell t}^{\prime}}{\pi_{\ell t}} \tag{1}
\end{equation*}
$$

where

$$
\Delta_{k \ell t}=\pi_{k \ell t}-\pi_{k t} \pi_{\ell t} \quad\left(k, \ell \in U_{t}\right)
$$

However, unless these inclusion probabilities can be expressed analytically, for simple random sampling, the second-order inclusion probabilities are of limited interest. We will outline in $\S 3$ that estimation of the variances of the totals is possible in balanced sampling using only the first-order inclusion probabilities $\pi_{k t}$. In most of the cases, we will consider only two waves, that is $t=1,2$.

3. Balanced Sampling

At a given time, the objective is to select a sample with given selection probabilities that is assumed to be of one stage and balanced on the available auxiliary variables $x_{k t}^{j}$. A family of algorithms is available (Deville \& Tillé, 2004a) for selecting a balanced random sample. It is thus possible to select a sample at time t, so that the identities

$$
\begin{equation*}
\hat{X}_{t}=\sum_{k \in S_{t}} \frac{x_{k t}^{j}}{\pi_{k t}}=\sum_{k \in U_{t}} x_{k t}^{j} \quad(j=1, \ldots, p) \tag{2}
\end{equation*}
$$

hold exactly or nearly exactly; since sample sizes are integers one cannot always satisfy (2) exactly (Deville \& Tillé, 2004a).

If a sample is balanced then \hat{X}_{t} is not random. Thus, a necessary and sufficient condition for a sampling design to be balanced is that

$$
\begin{equation*}
\operatorname{var}\left(\hat{X}_{t}\right)=\sum_{k \in U_{t}} \sum_{\ell \in U_{t}} \frac{x_{k t}}{\pi_{k t}} \Delta_{k \ell t} \frac{x_{\ell t}^{\prime}}{\pi_{\ell t}}=0 \tag{3}
\end{equation*}
$$

An approximation of the variance of \widehat{Y}_{t} in (1) of the Horvitz-Thompson estimator has been proposed for a balanced sampling design by Deville \& Tillé (2004b). The ideas developed in this paper are the following. Let

$$
\hat{Y}_{t, \text { Poiss }}=\sum_{k \in S_{t, \text { Poiss }}} \frac{y_{k}}{\pi_{k}}, \quad \hat{X}_{t, \text { Poiss }}=\sum_{k \in S_{t, \text { Poiss }}} \frac{x_{k}}{\pi_{k}},
$$

where $S_{t, \text { Poiss }}$ is a sample selected by a Poisson sampling design of inclusion probabilities $\check{\pi}_{k t}$. If we assume that the balanced sampling design maximises or nearly maximises entropy, the variance can be approximated by the variance of a conditional Poisson sampling design, which can be written

$$
\operatorname{var}\left(\hat{Y}_{t}\right)=\operatorname{var}\left(\hat{Y}_{t, \text { Poiss }} \mid \hat{X}_{t, \text { Poiss }}=X_{t}\right)
$$

If we suppose that, under Poisson sampling, $\left(\hat{Y}_{t, \text { Poiss }} \hat{X}_{t, \text { Poiss }}^{\prime}\right)^{\prime}$ approximately has a multinormal distribution, which is asymptotically true, we obtain

$$
\begin{aligned}
\operatorname{var}\left(\hat{Y}_{t, \text { Poiss }} \mid \hat{X}_{t}=X_{t}\right) & =\operatorname{var}\left[\hat{Y}_{t, \text { Poiss }}+\left(X_{t}-\hat{X}_{t, \text { Poiss }}\right)\left\{\operatorname{var}\left(\hat{X}_{t, \text { Poiss }}\right)\right\}^{-1} \operatorname{cov}\left(\hat{X}_{t, \text { Poiss }}, \hat{Y}_{t, \text { Poiss }}\right)\right] \\
& =\operatorname{var}\left(\hat{Y}_{t, \text { Poiss }}-\hat{X}_{t, \text { Poiss }}^{\prime} B_{t, \text { Poiss }}\right) \\
& =\sum_{k \in U_{t}} \frac{\left(y_{k t}-x_{k t}^{\prime} B_{t, \text { Poiss }}\right)^{2}}{\pi_{k t}^{2}} \check{\pi}_{k t}\left(1-\check{\pi}_{k t}\right),
\end{aligned}
$$

where

$$
B_{t, \mathrm{Poiss}}=\left\{\sum_{k \in U_{t}} \frac{x_{k t} x_{k t}^{\prime}}{\pi_{k t}^{2}} \check{\pi}_{k t}\left(1-\check{\pi}_{k t}\right)\right\}^{-1} \sum_{k \in U_{t}} \frac{x_{k t} y_{k t}}{\pi_{k t}^{2}} \check{\pi}_{k t}\left(1-\check{\pi}_{k t}\right) .
$$

The $\check{\pi}_{k t}$'s are the inclusion probabilities of the Poisson sampling design, and are not equal to the $\pi_{k t}$'s. The $\check{\pi}_{k t}$'s cannot be computed exactly, but Deville \& Tillé (2004b) have proposed using

$$
\check{\pi}_{k t}\left(1-\check{\pi}_{k t}\right)=\frac{N}{N-p} \pi_{k t}\left(1-\pi_{k t}\right),
$$

which allows us to construct the approximation

$$
\begin{equation*}
\frac{N}{N-p} \sum_{k \in U_{t}} \frac{E_{k t}^{2}}{\pi_{k t}^{2}} \pi_{k t}\left(1-\pi_{k t}\right) \tag{4}
\end{equation*}
$$

where $E_{k t}=y_{k t}-x_{k t}^{\prime} B_{t, \text { Poiss }}$. Deville \& Tillé (2004b) used a substantial simulation study to validate this approximation. They also proposed three slightly different approximations for the variance, but approximation (4) has the advantage of depending only on the $\pi_{k t}$'s.

4. Selection of several nonoverlapping samples

$4 \cdot 1$. Nonoverlapping samples with unequal probabilities

Before showing how to coordinate balanced samples, we consider the problem of selecting several nonoverlapping samples with fixed unequal probabilities, first when the samples are selected together and secondly when the samples are selected sequentially at two different times. The difficulties that are already present for the case of unequal probability sampling will become even more complicated for balanced samples.

When the samples must be selected together, Deville \& Tillé (2000, p. 219), used Cox's controlled rounding method (Cox, 1987) to show that it is possible to split a population
randomly into I parts, with inclusion probabilities $\pi_{k, i}(k \in U, i=1, \ldots, I)$, where

$$
\sum_{i=1}^{I} \pi_{k, i}=1, \quad \sum_{k \in U} \pi_{k, i}=n_{i}, \quad \sum_{i=1}^{I} n_{i}=N
$$

Using this method one can select nonoverlapping samples with unequal probabilities. However, the samples must be selected together, not sequentially.

If the samples must be selected sequentially from a population U that does not change with time, the problem becomes more intricate. We first select a sample S_{1} with unequal probabilities $\pi_{k 1}$ in U. Suppose that a second sample S_{2} with no unit in common with S_{1} is needed and must have unconditional inclusion probabilities $\pi_{k 2}$, where $\pi_{k 1}+\pi_{k 2} \leqslant 1$, for all $k \in U$. The second sample S_{2} must be drawn with conditional probabilities $\pi_{k b}$ from the complement of S_{1}, that is $\bar{S}_{1}=U \backslash S_{1}$. Note that, if unit k is selected from the random sample \bar{S}_{1}, we must assume that $\pi_{k b}$ can be a function of S_{1} and thus random. In order to ensure that the global inclusion probabilities $\pi_{k 2}$ are fixed for the second sample, the selection probabilities $\pi_{k b}$ have to satisfy

$$
\pi_{k 2}=\left(1-\pi_{k 1}\right) E\left(\pi_{k b}\right) \quad(k \in U) .
$$

Two alternative strategies can be explored. In the first strategy we select the sample S_{1} according to $\pi_{k 1}$ and then compute

$$
\pi_{k b}= \begin{cases}\pi_{k 2} /\left(1-\pi_{k 1}\right) & \left(k \notin S_{1}\right) \\ 0 & \left(k \in S_{1}\right)\end{cases}
$$

A sample S_{2} is selected from $U \backslash S_{1}$ with inclusion probabilities $\pi_{k b}$. A remaining problem is that $\sum_{k \in U \backslash S_{1}} \pi_{k b}=n_{2}\left(S_{1}\right)$ is a random variable which depends on the sample selected at the first stage. The size of the sample of the second wave is then necessarily random. In the second strategy we select the sample S_{1} according to $\pi_{k 1}$; then we compute

$$
\tilde{\pi}_{k b \mid S_{1}}= \begin{cases}\frac{n_{2}\left\{\pi_{k 2} /\left(1-\pi_{k 1}\right)\right\}}{\sum_{\ell \in U \backslash S_{1}}\left\{\pi_{\ell 2} /\left(1-\pi_{\ell 1}\right)\right\}} & \left(k \notin S_{1}\right), \tag{5}\\ 0 & \left(k \in S_{1}\right)\end{cases}
$$

where $n_{2}=\sum_{k \in U} \pi_{k 2}$ is the fixed size of the sample. In this case $\tilde{\pi}_{k b \mid S_{1}}$ is a random variable depending on S_{1}, but the sample has a fixed size. The inclusion probabilities of the second sample are not exactly $\pi_{k 2}$ but can be expressed as

$$
\begin{aligned}
E\left\{\left(1-\pi_{k 1}\right) \tilde{\pi}_{k b \mid S_{1}}\right\} & =E\left[\left(1-\pi_{k 1}\right) \frac{n_{2}\left\{\pi_{k 2} /\left(1-\pi_{k 1}\right)\right\}}{\sum_{\ell \in U \backslash S_{1}}\left\{\pi_{\ell 2} /\left(1-\pi_{\ell 1}\right)\right\}}\right] \\
& =n_{2} \pi_{k 2} E\left[\frac{1}{\sum_{\ell \in U \backslash S_{1}}\left\{\pi_{\ell 2} /\left(1-\pi_{\ell 1}\right)\right\}}\right]
\end{aligned}
$$

Each method has a disadvantage which we can easily circumvent by selecting the sample of the first wave S_{1} so that $\sum_{U \backslash S_{1}} \pi_{k b}$ is fixed; that is

$$
\begin{equation*}
\sum_{k \in U \backslash S_{1}} \pi_{k b}=E\left(\sum_{k \in U \backslash S_{1}} \pi_{k b}\right)=\sum_{k \in U}\left(1-\pi_{k 1}\right) \pi_{k b}, \tag{6}
\end{equation*}
$$

which can be expressed as

$$
\sum_{k \in U} \pi_{k b}-\sum_{k \in S_{1}} \pi_{k b}=\sum_{k \in U}\left(1-\pi_{k 1}\right) \pi_{k b}
$$

or

$$
\sum_{k \in S_{1}} \pi_{k b}=\sum_{k \in U} \pi_{k b} \pi_{k 1}
$$

or

$$
\sum_{k \in S_{1}} \frac{\pi_{k 1} \pi_{k b}}{\pi_{k 1}}=\sum_{k \in U} \pi_{k b} \pi_{k 1}
$$

The last expression amounts to selecting a first-wave sample S_{1} balanced on the variable $x_{k}=\pi_{k 1} \pi_{k b}$. The inclusion probabilities are thus unchanged.

If the balancing condition (6) is verified, then we combine the advantages of both methods. Indeed the size of the second sample is fixed and the probabilities of the second wave are not random. However this result is limited because, if the inclusion probabilities of the second sample are known during the first sample as is assumed in (6), then we can simply select both samples by means of the method described in Deville \& Tillé (2000). This simple application shows that using fixed-size multi-phase sampling techniques in the case of unequal probabilities is much more complex than for simple random sampling.

$4 \cdot 2$. Nonoverlapping balanced samples

The selection of several balanced samples with unequal probabilities is even more difficult. First, it is easy to show that, if a sample S is balanced on the variables $x_{1} \ldots, x_{p}$, then its complement $U \backslash S$ is not necessarily balanced.

Proposition 1. The complement of S is balanced on x_{1}, \ldots, x_{p} if and only if S is balanced on $\pi_{k} x_{k} /\left(1-\pi_{k}\right)$.

Proof. The random sample S and its complement $U \backslash S$ have the same variancecovariance operators, namely $\Delta=\left(\Delta_{k \ell}\right)$, where $\Delta_{k \ell}=\pi_{k \ell}-\pi_{k} \pi_{\ell}$. As we have seen in (3), a sample S is balanced if

$$
\sum_{k \in U} \sum_{\ell \in U} \frac{x_{k}}{\pi_{k}} \Delta_{k \ell} \frac{x_{\ell}^{\prime}}{\pi_{\ell}}=0
$$

As $\operatorname{pr}(k \in U \backslash S)=1-\pi_{k}$, the sample $U \backslash S$ is balanced if

$$
\sum_{k \in U} \sum_{\ell \in U} \frac{x_{k}}{1-\pi_{k}} \Delta_{k \ell} \frac{x_{\ell}^{\prime}}{1-\pi_{\ell}}=0
$$

The proof follows directly from these two expressions of variances.
The following corollary is obvious.
Corollary 1. If S is selected with equal probabilities, then $U \backslash S$ is balanced on the same variables as S.

Proposition 1 illustrates the limits of the notion of balanced samples. However the method works well in the case of sampling with equal probabilities and has been successfully implemented for the redeveloped census of the INSEE.

The problem becomes even more awkward when we want to split a population into q samples S_{1}, \ldots, S_{q}, which do not overlap, with unequal probabilities $\pi_{k, i}$, for $i=1, \ldots, q$ and $k=1, \ldots, N$.

Proposition 2. If two nonoverlapping samples S_{i} and S_{j} are selected with inclusion probabilities $\pi_{k, i}$ and $\pi_{k, j}$, respectively, and are both balanced on x_{k}, then their union is not necessarily balanced on x_{k}.

Proposition 2 follows from the nonlinearity of the Horvitz-Thompson estimator. Indeed, if

$$
\hat{Y}_{i}=\sum_{k \in S_{i}} \frac{y_{k}}{\pi_{k, i}}, \quad \hat{Y}_{j}=\sum_{k \in S_{j}} \frac{y_{k}}{\pi_{k, j}}, \quad \hat{Y}_{i j}=\sum_{k \in S_{i} \cup S_{j}} \frac{y_{k}}{\pi_{k, i}+\pi_{k, j}}
$$

then $\hat{Y}_{i j}$ is not a linear combination of \hat{Y}_{i} and \hat{Y}_{j}. Thus, the balancing property is lost by the reunion of the samples. Nevertheless, the balancing properties remain unchanged when the designs have equal inclusion probabilities. Moreover, it is easy to show that, if $\pi_{k, i} \propto \pi_{k, j}$ for all $k \in U$, then the union of two balanced samples is balanced.

4•3. Multi-phase balanced sampling

It is possible to select a balanced sample S_{2} from a balanced sample S_{1} in such a way that the subsample remains balanced on the same variables. If S_{1} is a balanced sample on the variables x_{1}, \ldots, x_{p}, with probabilities $\pi_{k 1}$ then

$$
\sum_{k \in S_{1}} \frac{x_{k}}{\pi_{k 1}}=\sum_{k \in U} x_{k}
$$

If

$$
\begin{equation*}
z_{k}=x_{k} / \pi_{k 1} \tag{7}
\end{equation*}
$$

and if we select a sample S_{2} from S_{1} that is balanced on the variables z_{k} with inclusion probabilities $\pi_{k 2}$ then we have

$$
\sum_{k \in S_{2}} \frac{z_{k}}{\pi_{k 2}}=\sum_{k \in S_{1}} z_{k}=\sum_{k \in U} x_{k}
$$

Multi-phase sampling is thus possible while keeping the balancing property.

5. REbALANCING USING A SAMPLE FROM ANOTHER POPULATION

5.1. Conditional balanced design with conditional inclusion probabilities

Initially this problem arose in the French redeveloped census. In the larger municipalities five nonoverlapping samples of addresses must be selected. These samples are balanced on demographic variables, and each one of them will be used for a year. The French census therefore has five ongoing samples and all of them must remain balanced.

The question is how to incorporate the new constructions into the rotation groups with minimal distortion to equilibrium. The set of new constructions can be considered as a
new population, a population of births, in which five new samples must be selected to complete the existing samples. A first question is therefore how to select a sample in a new population in order that the union of the old and new samples remains balanced.

If only one sample must be selected in the old and new populations, the problem can be formalised in the following way. Consider two nonoverlapping populations U_{1} and U_{2} of sizes N_{1} and N_{2} respectively. A random sample S_{1} has been drawn from U_{1} with inclusion probabilities $\pi_{k 1}\left(k \in U_{1}\right)$. The sample S_{1} is in general not balanced because of the drift of the sample caused by the deaths and the evolution of the balancing variables. The Horvitz-Thompson estimator for the auxiliary variables,

$$
\hat{X}_{1}=\sum_{k \in S_{1}} \frac{x_{k}}{\pi_{k 1}},
$$

is therefore not equal to the population total $X_{1}=\sum_{k \in U_{1}} x_{k}$. The problem consists of selecting a random sample S_{2} from U_{2} with given inclusion probabilities $\pi_{k 2}$. In the French census, for instance, all the $\pi_{k 2}$ are equal to $\frac{1}{5}$, but in another problem $\pi_{k 2}$ can be computed so as to optimise the variance. Sample S_{2} must be selected in such a way that

$$
\begin{equation*}
\hat{X}_{1}+\hat{X}_{2}=X_{1}+X_{2}, \tag{8}
\end{equation*}
$$

where

$$
\hat{X}_{2}=\sum_{k \in S_{2}} \frac{x_{k}}{\pi_{k 2}}, \quad X_{2}=\sum_{k \in U_{2}} x_{k} .
$$

In other words, we want to choose S_{2} so as to rebalance S_{1}. In order for relationship (8) to be realised, sample S_{2} must satisfy the balancing equation

$$
\begin{equation*}
\hat{X}_{2}=T\left(S_{1}\right), \tag{9}
\end{equation*}
$$

where $T\left(S_{1}\right)=X_{1}+X_{2}-\hat{X}_{1}$. Note that S_{2} must be balanced on a random value $T\left(S_{1}\right)$ which depends on the S_{1} selected from U_{1}. In order to satisfy equality (9), S_{2} will be selected with conditional inclusion probabilities $\tilde{\pi}_{k 2 \mid S_{1}}$ that depend on S_{1} and not on S_{2}. In order to extract the probabilities $\tilde{\pi}_{k 2\left|S_{1}\right|}$ we note first that, if we compute the conditional expectation of equation (9) conditional on S_{1}, we obtain $E\left(\hat{X}_{2} \mid S_{1}\right)=T\left(S_{1}\right)$. Thus the $\tilde{\pi}_{k 2 \mid S_{1}}$'s must satisfy

$$
E\left(\hat{X}_{2} \mid S_{1}\right)=T\left(S_{1}\right), \quad E\left(\tilde{\pi}_{k 2 \mid S_{1}}\right)=\pi_{k 2},
$$

which can be written

$$
\begin{equation*}
\sum_{k \in U_{2}} \frac{x_{k}}{\pi_{k 2}} \tilde{\pi}_{k 2 \mid S_{1}}=T\left(S_{1}\right), \quad E\left(\tilde{\pi}_{k 2 \mid S_{1}}\right)=\pi_{k 2} . \tag{10}
\end{equation*}
$$

A solution can be found by looking for the $\tilde{\pi}_{k 2 \mid S_{1}}$'s that minimise the chi-squared distance

$$
\sum_{k \in U_{2}} \frac{\left(\tilde{\pi}_{k 2 \mid S_{1}}-\pi_{k 2}\right)^{2}}{\pi_{k 2} w_{k}}
$$

under the constraints

$$
\sum_{k \in U_{2}} \frac{x_{k} \tilde{\pi}_{k 2 \mid S_{1}}}{\pi_{k 2}}=T\left(S_{1}\right) .
$$

The w_{k} 's are weights that can be chosen arbitrarily. The solution of this optimisation problem is given by

$$
\begin{equation*}
\tilde{\pi}_{k 2 \mid S_{1}}=\pi_{k 2}+\left\{T\left(S_{1}\right)-X_{2}\right\}^{\prime}\left(\sum_{\ell \in U_{2}} \frac{x_{\ell} x_{\ell}^{\prime} w_{\ell}}{\pi_{\ell 2}^{2}}\right)^{-1} \frac{x_{k} w_{k}}{\pi_{k 2}} \tag{11}
\end{equation*}
$$

It is easy to see that equation (11) satisfies (10). Unfortunately, in some cases, equation (11) may yield probabilities $\tilde{\pi}_{k 2 \mid S_{1}}>1$ or $\tilde{\pi}_{k 2 \mid S_{1}}<0$. Nevertheless, this problem can be avoided with a good choice of the w_{k} 's. For instance, by taking $w_{k}=\pi_{k 2}\left(1-\pi_{k 2}\right)$, the difference between $\tilde{\pi}_{k 2 \mid S_{1}}$ and $\pi_{k 2}$ will be small when $\pi_{k 2}$ is close to 0 or 1 .

Example 1. An illustrative example is the case where the only auxiliary variable is $x_{k}=\pi_{k 1}$ if $k \in U_{1}$ and $x_{k}=\pi_{k 2}$ if $k \in U_{2}$, which corresponds to the fixed sample size problem. In this case, if $n\left(S_{1}\right)$ is the size of S_{1}, and $n\left(S_{2}\right)$ is the size of S_{2}, we obtain

$$
\begin{equation*}
\tilde{\pi}_{k 2 \mid S_{1}}=\pi_{k 2}+\left[E\left\{n\left(S_{1}\right)\right\}-n\left(S_{1}\right)\right] \frac{w_{k}}{\sum_{k \in U_{2}} w_{k}} . \tag{12}
\end{equation*}
$$

Thus, if $w_{k}=1$, we obtain

$$
\tilde{\pi}_{k 2 \mid S_{1}}=\pi_{k 2}+\frac{E\left\{n\left(S_{1}\right)\right\}-n\left(S_{1}\right)}{N_{2}}
$$

and, if $w_{k}=\pi_{k 2}\left(1-\pi_{k 2}\right)$,

$$
\tilde{\pi}_{k 2 \mid S_{1}}=\pi_{k 2} \times\left(1+\frac{1-\pi_{k 2}}{\sum_{k \in U_{2}} \pi_{k 2}\left(1-\pi_{k 2}\right)} \times\left[E\left\{n\left(S_{1}\right)\right\}-n\left(S_{1}\right)\right]\right)
$$

In either case, the $\pi_{k 2}$'s are adjusted so that

$$
\sum_{k \in U_{2}} \tilde{\pi}_{k 2 \mid S_{1}}=E\left\{n\left(S_{2}\right)\right\}+E\left\{n\left(S_{1}\right)\right\}-n\left(S_{1}\right)
$$

In practice, the problem can be solved using a single balanced sample selection program. The sample must be selected with inclusion probabilities $\tilde{\pi}_{k 2 \mid S_{1}}$ and the balancing variables must be redefined as

$$
z_{k}=x_{k} \tilde{\pi}_{k 2 \mid S_{1}} / \pi_{k 2}
$$

Indeed, the balancing equations,

$$
\sum_{k \in S_{2}} \frac{z_{k}}{\tilde{\pi}_{k 2 \mid S_{1}}}=\sum_{k \in U_{2}} z_{k}
$$

imply (9) and thus $S_{1} \cup S_{2}$ is a balanced sample from $U_{1} \cup U_{2}$.
Note that the problem of the French census is more complex, because five nonoverlapping samples must be selected together in the old and new populations. However this operation is not too difficult because the units are selected with equal inclusion probabilities. In this case, the complement of a balanced design is also balanced. The five new samples can thus be selected successively in such a way that the balancing conditions are satisfied.

5•2. Variance of a rebalanced sample

The variance of a rebalanced sample can be deduced by using the same methodology as for the variance of a two-phase sampling design (Särndal \& Swensson, 1987). The variance of the total estimator \hat{Y} is calculated by conditioning on S_{1} :

$$
\begin{align*}
\operatorname{var}(\hat{Y}) & =\operatorname{var}\left(\hat{Y}_{1}+\hat{Y}_{2}\right) \\
& =E\left\{\operatorname{var}\left(\hat{Y}_{1}+\hat{Y}_{2} \mid S_{1}\right)\right\}+\operatorname{var}\left\{E\left(\hat{Y}_{1}+\hat{Y}_{2} \mid S_{1}\right)\right\} \\
& =E\left\{\operatorname{var}\left(\hat{Y}_{2} \mid S_{1}\right)\right\}+\operatorname{var}\left\{\hat{Y}_{1}+E\left(\hat{Y}_{2} \mid S_{1}\right)\right\} . \tag{13}
\end{align*}
$$

The first term of (13) is an expectation of the variance under balanced sampling. We can thus use the same methodology as for expression (4). The variance is approximated by the variance of a conditional Poisson sampling design, which can be written

$$
\operatorname{var}\left(\hat{Y}_{2} \mid S_{1}\right)=\operatorname{var}\left\{\hat{Y}_{2, \text { Poiss }} \mid S_{1}, \hat{X}_{2, \text { Poiss }}=T\left(S_{1}\right)\right\},
$$

where $\hat{Y}_{2, \text { Poiss }}$ and $\hat{X}_{2, \text { Poiss }}$ are the estimators when the sample is selected by means of a Poisson sampling. Again, if we suppose that, under Poisson sampling, the vector $\left(\hat{Y}_{2, \text { Poiss }}, \hat{X}_{2, \text { Poiss }}^{\prime}\right)^{\prime}$ approximately has a multinormal distribution, we obtain

$$
\begin{aligned}
& E\left[\operatorname{var}\left\{\hat{Y}_{2, \text { Poiss }} \mid S_{1}, \hat{X}_{2, \text { Poiss }}=T\left(S_{1}\right)\right\}\right] \\
&=E\left(\operatorname{var}\left[\hat{Y}_{2, \text { Poiss }}+\left\{T\left(S_{1}\right)-\hat{X}_{2, \text { Poiss }}\right\}\left\{\operatorname{var}\left(\hat{X}_{2, \text { Poiss }}\right)\right\}^{-1} \operatorname{cov}\left(\hat{X}_{2, \text { Poiss }}, \hat{Y}_{2, \text { Poiss }}\right) \mid S_{1}\right]\right) \\
&=E\left[\operatorname{var}\left\{\hat{Y}_{2, \text { Poiss }}+\left(X_{1}+X_{2}-\hat{X}_{1}-\hat{X}_{2, \text { Poiss }}\right)^{\prime} B_{2, \text { Poiss }} \mid S_{1}\right\}\right] \\
& \quad= E\left\{\operatorname{var}\left(\hat{Y}_{2, \text { Poiss }}-\hat{X}_{2, \text { Poiss }}^{\prime} B_{2, \text { Poiss }} \mid S_{1}\right)\right\} \\
& \bumpeq \frac{N}{N-p} E\left\{\sum_{k \in U_{2}} \frac{\left(y_{k}-x_{k}^{\prime} B_{2, \text { Poiss }}\right)^{2}}{\pi_{k}^{2}} \tilde{\pi}_{k 2 \mid S_{1}}\left(1-\tilde{\pi}_{k 2 \mid S_{1}}\right)\right\},
\end{aligned}
$$

where

$$
B_{2, \text { Poiss }}=\left\{\sum_{k \in U_{2}} \frac{x_{k} x_{k}^{\prime}}{\pi_{k}^{2}} \tilde{\pi}_{k 2 \mid S_{1}}\left(1-\tilde{\pi}_{k 2 \mid S_{1}}\right)\right\}^{-1} \sum_{k \in U_{2}} \frac{x_{k} y_{k}}{\pi_{k}^{2}} \tilde{\pi}_{k 2 \mid S_{1}}\left(1-\tilde{\pi}_{k 2 \mid S_{1}}\right) .
$$

The expectation of the second term of (13) is

$$
\begin{aligned}
E\left(\hat{Y}_{2} \mid S_{1}\right) & =\sum_{k \in U_{2}} \frac{y_{k}}{\pi_{k 2}} E\left(I_{k} \mid S_{1}\right)=\sum_{k \in U_{2}} \frac{y_{k}}{\pi_{k 2}} \tilde{\pi}_{k 2 \mid S_{1}} \\
& =\sum_{k \in U_{2}} \frac{y_{k}}{\pi_{k 2}}\left[\pi_{k 2}+\left\{T\left(S_{1}\right)-X_{2}\right\}^{\prime}\left(\sum_{\ell \in U_{2}} \frac{x_{\ell} x_{\ell}^{\prime} w_{\ell}}{\pi_{\ell 2}^{2}}\right)^{-1} \frac{x_{k} w_{k}}{\pi_{k 2}}\right] \\
& =Y_{2}+\left(X_{1}-\hat{X}_{1}\right)^{\prime} B_{2},
\end{aligned}
$$

where

$$
B_{2}=\left(\sum_{\ell \in U_{2}} \frac{x_{\ell} x_{\ell}^{\prime} w_{\ell}}{\pi_{\ell 2}^{2}}\right)^{-1} \sum_{k \in U_{2}} \frac{x_{k} y_{k} w_{k}}{\pi_{k 2}^{2}} .
$$

We then obtain

$$
\begin{aligned}
\operatorname{var}\left\{\hat{Y}_{1}+E\left(\hat{Y}_{2} \mid S_{1}\right)\right\} & =\operatorname{var}\left\{\hat{Y}_{1}+Y_{2}+\left(X_{1}-\hat{X}_{1}\right)^{\prime} B_{2}\right\} \\
& =\operatorname{var}\left(\hat{Y}_{1}-\hat{X}_{1}^{\prime} B_{2}\right) \\
& =\operatorname{var}\left(\sum_{k \in S_{1}} \frac{y_{k}-x_{k}^{\prime} B_{2}}{\pi_{k 1}}\right) .
\end{aligned}
$$

Finally, the variance is

$$
\begin{equation*}
\operatorname{var}(\hat{Y})=\frac{N}{N-p} E\left\{\sum_{k \in U_{2}} \frac{\left(y_{k}-x_{k}^{\prime} B_{2, \text { Poiss }}\right)^{2}}{\pi_{k}^{2}} \tilde{\pi}_{k 2 \mid S_{1}}\left(1-\tilde{\pi}_{k 2 \mid S_{1}}\right)\right\}+\operatorname{var}\left(\sum_{k \in S_{1}} \frac{y_{k}-x_{k}^{\prime} B_{2}}{\pi_{k 1}}\right) . \tag{14}
\end{equation*}
$$

The second term of (14) depends on S_{1} for which the sampling design was not specified. The expression of variance works with any sampling design for the selection of S_{1}. Equation (14) shows that the variance of $\operatorname{var}(\hat{Y})$ can be expressed as a variance of residuals. The regression coefficients B_{2} and $B_{2, \text { Poiss }}$ are slightly different but are both computed from U_{2}.

Based on estimators for $B_{2, \text { Poiss }}$ and B_{2}, the estimator of the variance is

$$
\operatorname{vâr}(\hat{Y})=\frac{n}{n-p} \sum_{k \in S_{2}} \frac{\left(y_{k}-x_{k}^{\prime} \hat{B}_{2, \text { Poiss }}\right)^{2}}{\pi_{k}^{2}}\left(1-\tilde{\pi}_{k 2 \mid S_{1}}\right)+\operatorname{vâr}\left(\sum_{k \in S_{1}} \frac{y_{k}-x_{k}^{\prime} \hat{B}_{2}}{\pi_{k 1}}\right),
$$

where the second term is constructed by means of an estimator of the variance under the sampling scheme yielding S_{1}.

6. Rebalancing using a sample from the same population

This problem has been posed with respect to the INSEE master sample. In each region, the primary units, i.e. sets of municipalities, are selected with unequal inclusion probabilities proportional to the size by using a sampling design balanced on demographic and economic variables. Some regions have requested a supplementary sample in order to make survey extensions. The problem is thus that of finding out if it is possible to supplement the sample by a new nonoverlapping sample in such a way that the union of the two samples remains balanced.

Formally, the problem consists of selecting a nonoverlapping sample in a population in which a sample has already been selected. Suppose that a sample S_{1}, not necessarily balanced, has been selected in U, with inclusion probabilities $\pi_{k 1}$. Note that, by Proposition 1, even if S_{1} is balanced, in general $U \backslash S_{1}$ is not. The aim is thus to supplement S_{1} with a nonoverlapping sample S_{2} in such a way that

$$
\operatorname{pr}\left\{k \in\left(S_{1} \cup S_{2}\right)\right\}=\pi_{k},
$$

for all $k \in U$, and the completed sample is balanced, that is

$$
\begin{equation*}
\sum_{k \in\left(S_{1} \cup S_{2}\right)} \frac{x_{k}}{\pi_{k}}=\sum_{k \in U} x_{k} . \tag{15}
\end{equation*}
$$

The probabilities π_{k} are given either by implementation of an optimisation criterion or from practical considerations. For instance, the sampling design used to select the master sample of the INSEE is a self-weighting multi-stage design that determines the values of the π_{k} 's.

Since $\left(S_{1} \cap S_{2}\right)=\varnothing, \pi_{k 2}=\operatorname{pr}\left(k \in S_{2}\right)=\pi_{k}-\pi_{k 1}$, for $k \in U$. To obtain (15), we must have

$$
\begin{equation*}
\sum_{k \in S_{2}} \frac{x_{k}}{\pi_{k}}=T\left(S_{1}\right), \tag{16}
\end{equation*}
$$

where

$$
T\left(S_{1}\right)=\sum_{k \in U} x_{k}-\sum_{k \in S_{1}} \frac{x_{k}}{\pi_{k}} .
$$

In order to satisfy (16), we can select a balanced sample S_{2} from $U \backslash S_{1}$ with conditional inclusion probabilities $\tilde{\pi}_{k b \mid S_{1}}$ and balancing variables $z_{k}=x_{k} \tilde{\pi}_{k b \mid S_{1}} / \pi_{k}$. The probabilities $\tilde{\pi}_{k b \mid S_{1}}$ are defined as

$$
\tilde{\pi}_{k b \mid S_{1}}= \begin{cases}\pi_{k b}+\left\{T\left(S_{1}\right)-V\left(S_{1}\right)\right\}^{\prime}\left(\sum_{\ell \in U \backslash S_{1}} \frac{x_{\ell} x_{\ell}^{\prime} w_{\ell}}{\pi_{\ell}^{2}}\right)^{-1} \frac{x_{k} w_{k}}{\pi_{k}} & \left(k \notin S_{1}\right), \tag{17}\\ 0 & \left(k \in S_{1}\right),\end{cases}
$$

where

$$
\begin{gathered}
\pi_{k b}= \begin{cases}\pi_{k 2} /\left(1-\pi_{k 1}\right), & \text { if } k \notin S_{1}, \\
0, & \text { if } k \in S_{1},\end{cases} \\
V\left(S_{1}\right)=\sum_{k \in U \backslash S_{1}} \frac{x_{k} \pi_{k b}}{\pi_{k}},
\end{gathered}
$$

and the w_{k} 's are weights that can be chosen arbitrarily. Again we recommend the use of $w_{k}=\pi_{k b}\left(1-\pi_{k b}\right)$, which should allow us to avoid $\tilde{\pi}_{k b \mid S_{1}}<0$ and $\tilde{\pi}_{k b \mid S_{1}}>1$. Indeed, when π_{k} is close to 0 or 1 , the weights w_{k} will be very small and, from equation (17), we can see that $\pi_{k b}$ will be close to $\tilde{\pi}_{k b}$.

With the conditional inclusion probabilities given in (17), we obtain

$$
E\left(\left.\sum_{k \in S_{2}} \frac{x_{k}}{\pi_{k}} \right\rvert\, S_{1}\right)=\sum_{k \in U \backslash S_{1}} \frac{x_{k}}{\pi_{k}} \tilde{\pi}_{k b \mid S_{1}}=\sum_{k \in U \backslash S_{1}} \frac{x_{k}}{\pi_{k}} \pi_{k b}+\left\{T\left(S_{1}\right)-V\left(S_{1}\right)\right\}=T\left(S_{1}\right) .
$$

Now, let us compute the expectation of $\tilde{\pi}_{k b}$. First compute

$$
Q\left(S_{1}\right)=T\left(S_{1}\right)-V\left(S_{1}\right)=\sum_{k \in S_{1}} x_{k} \frac{1-\pi_{k}}{\left(1-\pi_{k 1}\right) \pi_{k}}-\sum_{k \in U} x_{k} \frac{\pi_{k 1}\left(1-\pi_{k}\right)}{\left(1-\pi_{k 1}\right) \pi_{k}} .
$$

Note that $E\left\{Q\left(S_{1}\right)\right\}=0$, and that $Q\left(S_{1}\right)$ is a single-stage Horvitz-Thompson estimator centred in S_{1}. A reasonable assumption for one-stage sampling designs is that

$$
\frac{Q\left(S_{1}\right)}{N}=O_{p}\left[\sqrt{ }\left\{\frac{N-n\left(S_{1}\right)}{N n\left(S_{1}\right)}\right\}\right],
$$

where $O_{p}(1 / a)$ is a quantity that remains bounded in probability when multiplied by a. Moreover, if

$$
\begin{equation*}
W=\left(\sum_{\ell \in U \backslash s_{1}} \frac{x_{\ell} x_{\ell}^{\prime} w_{\ell}}{\pi_{\ell}^{2}}\right)^{-1} \tag{18}
\end{equation*}
$$

another reasonable assumption is that

$$
N W-E(N W)=O_{p}\left[\sqrt{ }\left[\bar{w} \frac{N-n\left(U \backslash S_{1}\right)}{N n\left(U \backslash S_{1}\right)}\right\}\right]=O_{p}\left(\bar{w} /\left[\frac{n\left(S_{1}\right)}{N\left\{N-n\left(S_{1}\right)\right\}}\right]\right)
$$

where $\bar{w}=N^{-1} \sum_{k \in U} w_{k}$. Since $E\left\{Q\left(S_{1}\right)\right\}=0$, we have $E\left\{Q\left(S_{1}\right) W\right\}=E\left[Q\left(S_{1}\right)\{W-E(W)\}\right]$. Now, by (17) and (18), we have, by assuming that $n w_{k} /\left(\bar{w} \pi_{k} N\right)$ is close to 1 ,

$$
\begin{align*}
E\left(\tilde{\pi}_{k b \mid S_{1}}\right) & =\pi_{k 2}+E\left\{Q\left(S_{1}\right) W \frac{x_{k} w_{k}}{\pi_{k} \bar{w}}\right\}=\pi_{k 2}+\frac{N x_{k}}{n} E\left[Q\left(S_{1}\right)\{W-E(W)\} \frac{n w_{k}}{N \pi_{k} \bar{w}}\right] \\
& =\pi_{k 2}+\frac{N x_{k}}{n} O_{p}\left(\frac{1}{N}\right)=\pi_{k 2}+E\left\{O_{p}\left(\frac{x_{k}}{n}\right)\right\} . \tag{19}
\end{align*}
$$

Thus, under very mild regularity conditions, we have that $E\left(\tilde{\pi}_{k b \mid S_{1}}\right) \bumpeq \sim \pi_{k 2}$. In practice, the problem can be solved by redefining the auxiliary variables. A balanced sample S_{2} is thus selected from $U \backslash S_{1}$ with inclusion probabilities $\tilde{\pi}_{k b \mid S_{1}}$. The balancing variables are

$$
z_{k}=\frac{x_{k}}{\pi_{k}} \tilde{\pi}_{k b \mid S_{1}}
$$

Indeed, $\sum_{k \in S_{2}}\left(z_{k} / \tilde{\pi}_{k b \mid S_{1}}\right)=\sum_{k \in U} z_{k}$, implying (16).

7. SAMPLE COORDINATION

Another important problem is that of sample coordination, and especially of coordinating balanced samples. The aim is to select a balanced sample that does not overlap with a sample, or a set of samples, already selected. Formally, the problem is the following. A sample S_{1} has already been selected from a population U with inclusion probabilities $\pi_{k 1}$. The aim is to select a balanced nonoverlapping sample S_{2} from $U \backslash S_{1}$ with inclusion probabilities $\pi_{k 2}$. The balancing equations are thus

$$
\sum_{k \in S_{2}} \frac{x_{k}}{\pi_{k 2}}=X
$$

First suppose that $\pi_{k 1}+\pi_{k 2} \leqslant 1$, for all $k \in U$. The problem is that S_{2} must be selected from $U \backslash S_{1}$, and that, even if S_{1} is balanced, $U \backslash S_{1}$ is not necessarily balanced. Sample S_{2}
will be selected from $U \backslash S_{1}$ by the use of conditional inclusion probabilities $\pi_{k b \mid S_{1}}$ defined as

$$
\tilde{\pi}_{k b \mid S_{1}}= \begin{cases}\pi_{k b}+\left\{X-V\left(S_{1}\right)\right\}^{\prime}\left(\sum_{\ell \in U \backslash S_{1}} \frac{x_{\ell} x_{\ell^{\prime}} w_{\ell}}{\pi_{t 2}^{2}}\right)^{-1} \frac{x_{k} w_{k}}{\pi_{k 2}} & \left(k \notin S_{1}\right), \tag{20}\\ 0 & \left(k \in S_{1}\right),\end{cases}
$$

where

$$
\begin{gathered}
\pi_{k b}= \begin{cases}\pi_{k 2} /\left(1-\pi_{k 1}\right), & \text { if } k \notin S_{1}, \\
0, & \text { if } k \in S_{1},\end{cases} \\
V\left(S_{1}\right)=\sum_{k \in U \backslash S_{1}} \frac{x_{k} \pi_{k b}}{\pi_{k 2}},
\end{gathered}
$$

and the w_{k} 's are weights that can be chosen arbitrarily. We always recommend $w_{k}=\pi_{k b}\left(1-\pi_{k b}\right)$. In practice, the problem can be solved by selecting the sample S_{2} from $U \backslash S_{1}$ with the inclusion probabilities $\tilde{\pi}_{k b \mid S_{1}}$, and the balancing variables

$$
z_{k}=\frac{x_{k}}{\pi_{k 2}} \tilde{\pi}_{k \mid S_{1}} .
$$

Example 2. An already treated application is the case where $x_{k}=\pi_{k 2}$ and $w_{k}=\pi_{k b}$. We obtain

$$
z_{k}=\tilde{\pi}_{k b \mid S_{1}}=\frac{\pi_{k b} \sum_{\ell \in U} \pi_{\ell 2}}{\sum_{\ell \in U \backslash S_{1}} \pi_{\ell b}},
$$

which is the solution proposed in equation (5) for sampling with unequal probabilities.
In a real coordination problem, we can have $\pi_{k 1}+\pi_{k 2}>1$, for some $k \in U$. The aim is then to select a sample S_{2} as disconnected as possible from S_{1}. The following solution can be applied. Define the conditional inclusion probabilities as follows:

$$
\tilde{\pi}_{k b \mid S_{1}}= \begin{cases}1 & \left(k \notin S_{1} \text { and such that } \pi_{k 1}+\pi_{k 2} \geqslant 1\right) \\ \pi_{k b}+\left\{X-V\left(S_{1}\right)\right\}^{\prime}\left(\sum_{\ell \in A} \frac{x_{\ell} x_{\ell}^{\prime} w_{\ell}}{\pi_{\ell 2}^{2}}\right)^{-1} \frac{x_{k} w_{k}}{\pi_{k 2}} & (k \in A), \\ 0 & \left(k \in S_{1} \text { and such that } \pi_{k 1}+\pi_{k 2}<1\right)\end{cases}
$$

where

$$
\begin{gathered}
A=\left\{\left[k \mid\left(\pi_{k 1}+\pi_{k 2}\right) \geqslant 1 \text { and } k \in S_{1}\right] \cup\left[k \mid\left(\pi_{k 1}+\pi_{k 2}\right)<1 \text { and } k \notin S_{1}\right]\right\}, \\
\pi_{k b}= \begin{cases}1, & \text { if } \pi_{k 1}+\pi_{k 2} \geqslant 1 \text { and } k \notin S_{1}, \\
\left(\pi_{k 1}+\pi_{k 2}-1\right) / \pi_{k 1}, & \text { if } \pi_{k 1}+\pi_{k 2} \geqslant 1 \text { and } k \in S_{1}, \\
\pi_{k 2} /\left(1-\pi_{k 1}\right), & \text { if } \pi_{k 1}+\pi_{k 2}<1 \text { and } k \notin S_{1}, \\
0 & \text { if } \pi_{k 1}+\pi_{k 2}<1 \text { and } k \in S_{1},\end{cases} \\
V\left(S_{1}\right)=\sum_{k \in U} \frac{x_{k} \pi_{k b}}{\pi_{k 2}} .
\end{gathered}
$$

Next define new variables $z_{k}=x_{k} \tilde{\pi}_{k b \mid S_{1}} / \pi_{k 2}$. The sample S_{2} is selected with inclusion probabilities $\tilde{\pi}_{k b \mid S_{1}}$ balanced on z_{k}.

Acknowledgement

The authors thank Jean Dumais and Jean-Claude Deville for their helpful comments and Ines Pasini for her help in typing the paper. The authors are also grateful to an associate editor and two anonymous referees for their constructive suggestions. This research was supported by a grant of the Swiss Federal Office of Statistics.

References

Ardilly, P. (1991). Echantillonnage représentatif optimum à probabilités inégales. Ann. Écon. Statist. 23, 91-113.
Cox, L. (1987). A constructive procedure for unbiased controlled rounding. J. Am. Statist. Assoc. 82, 520-4. Deville, J.-C. (1992). Constrained samples, conditional inference, weighting: three aspects of the utilisation of auxiliary information. In Proceedings of the Workshop Auxiliary Information in Surveys, pp. 21-40. Örebro, Sweden: Statistics Sweden.
Deville, J.-C. \& Tillé, Y. (2000). Selection of several unequal probability samples from the same population. J. Statist. Plan. Infer. 86, 215-27.

Deville, J.-C. \& Tillé, Y. (2004a). Efficient balanced sampling: The cube method. Biometrika 91, 893-912.
Deville, J.-C. \& Tillé, Y. (2004b). Variance approximation under balanced sampling. J. Statist. Plan. Infer. To appear.
Deville, J.-C., Grosbras, J.-M. \& Roth, N. (1988). Efficient sampling algorithms and balanced sample. In COMPSTAT, Proceedings in Computational Statistics, Ed. D. G. Edwards and N. E. Kaun, pp. 255-66. Heidelberg: Physica Verlag.
Hedayat, A. \& Majumdar, D. (1995). Generating desirable sampling plans by the technique of trade-off in experimental design. J. Statist. Plan. Infer. 44, 237-47.
Kish, L. \& Scott, A. (1971). Retaining units after changing strata and probabilities. J. Am. Statist. Assoc. 66, 461-70.
Särndal, C.-E. \& Swensson, B. (1987). A general view of estimation for two phases of selection with applications to two-phase sampling and non-response. Int. Statist. Rev. 55, 279-94.
Thionet, P. (1953). La Théorie des Sondages. Paris: INSEE, Imprimerie Nationale.
Tillé, Y. (2001). Théorie des Sondages: Échantillonnage et Estimation en Populations Finies. Paris: Dunod.
Valliant, R., Dorfman, A. \& Royall, R. (2000). Finite Population Sampling and Inference: A Prediction Approach. New York: Wiley.
Yates, F. (1946). A review of recent statistical developments in sampling and sampling surveys (with Discussion). J. R. Statist. Soc. A 109, 12-43.
[Received January 2002. Revised August 2003]

