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Abstract

Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular

organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax

group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of

key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous

to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in
Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and

loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the

tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true

loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants

that is required for early embryogenesis.
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Introduction

Embryo development in higher plants is a highly orches-

trated process of cell division, differentiation, growth, and

pattern formation (Bai et al., 2000; Willemsen and Scheres,

2004; Jenick et al., 2007). During this stage, a large number
of genes must be expressed to ensure that the single-celled

zygote develops into an organized multicellular structure

capable of producing a viable seedling (Meinke, 1995). In

Arabidopsis thaliana, the isolation of embryo-defective

mutants has been a valuable approach for the identification

of genes that are essential for development (Tzafrir et al.,

2004; Meinke et al., 2008). A minimal set of ;750 non-

redundant Arabidopsis genes is thought to co-ordinate these
developmental events in the embryo (McElver et al., 2001;

Tzafrir et al., 2003). Therefore, it is of fundamental

importance to understand the molecular mechanisms regu-

lating such a wealth of genes (Jurgens, 2001; Willemsen and

Scheres, 2004).

A precisely co-ordinated developmental programme is

a prerequisite for the successful life cycle of multicellular
organisms. Genetic studies have implicated factors that are

involved in chromatin-mediated regulation in the control of

a plethora of developmental processes (Reyes et al., 2002;

Guyomarc’h et al., 2005; Kohler and Makarevich, 2006).

Genes belonging to the Polycomb group (PcG) and

trithorax group (trxG) protein complexes feature perhaps

the best known evolutionarily ancient molecular machinery

that prevents changes in development by maintaining
transcription patterns (Ringrose and Paro, 2004). PcG and

trxG genes, respectively, repress and activate transcriptional

states of several loci including homeotic and cell cycle genes.
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Both these functional groups encode components of multi-

meric protein complexes that control chromatin accessibility

by means of histone modifications such as methylation and

acetylation (Ringrose and Paro, 2004).

Although both the PcG and trxG genes were initially

described in Drosophila melanogaster and metazoans, they

are found evolutionarily conserved in plants (Grossniklaus

et al., 1998; Springer et al., 2002; Thakur et al., 2003). Plant
PcG proteins have been found to control aspects of seed

development, floral induction, and floral organogenesis

(Köhler and Grossniklaus, 2002; Pien and Grossniklaus,

2007). In Arabidopsis, MEDEA (MEA) and FERTILIZA-

TION INDEPENDENT SEED 2 (FIS2) encode one of the

Polycomb group (PcG) protein homologues of Enhancer

of zeste (E(Z)) and Suppressor of zeste 12 (SU(Z)12) in

Drosophila, respectively (Grossniklaus et al., 1998; Luo
et al., 1999). MEA and FIS2 proteins interact with

FERTILIZATION INDEPENDENT ENDOSPERM (FIE),

the Arabidopsis homologue of Extra Sex Combs (ESC; Spillane

et al., 2000). These three proteins and a P55 homologue,

MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) are com-

ponents of the 600 kDa Polycomb Repressive Complex 2

(PRC2; Pien and Grossniklaus, 2007). These plant PRC2

genes belong to the FERTILIZATION INDEPENDENT

SEED (FIS) class, where mutations cause autonomous

endosperm development in the absence of fertilization (Pien

and Grossniklaus, 2007). Abnormal cell proliferation during

seed development, and embryogenesis in particular, is a

consistent phenotype observed in fis class mutants, suggest-

ing an essential role for several PRC2 components. By

contrast, little is known about the functions of trxG genes

in Arabidopsis and other plant model systems. Mutations in
an Arabidopsis homologue of a trxG gene, ATX1, cause

pleiotropic developmental defects in the formation, place-

ment, and identity of flower organs, but do not appear to

play a role in plant embryogenesis (Alvarez-Venegas et al.,

2003). Biochemical and genetic evidence defined ATX1 as

a functional homologue of the animal TRITHORAX and the

remaining plant protein complexes have yet to be identified.

In a cDNA-AFLP screen for genes specifically expressed
during early embryogenesis in a conifer (Pinus radiata),

a transcript-derived fragment homologous to the Drosophila

ASH2 gene (Aquea and Arce-Johnson, 2008) was identified.

ASH2 (absent, small, or homeotic discs 2) is a member of

the trxG, discovered in a screen for late larval/early pupal

lethal mutants that had imaginal disc abnormalities in

Drosophila (Adamson and Shearn, 1996). Mutations in

ASH2 cause homeotic transformations typical for muta-
tions in trxG, in addition to a variety of pattern formation

defects. The ASH2 genes are highly conserved among

different species, including humans and yeast. ASH2L is

implicated in hematopoiesis, leukemia, and has been de-

scribed as a novel oncoprotein in humans (Wang et al.,

2001; Lüscher-Firzlaff et al., 2008). In yeast, BRE2P is the

homologue of ASH2 which belongs to a seven-member com-

plex (Nagy et al., 2002). BRE2P is required for methyla-
tion of histone H3 at lysine residue 4, which is normally

associated with transcriptional activation.

Recently, the molecular characterization of an ASH2

homologue gene from Pinus radiata (Aquea et al., 2009) was

reported, but functional characterization of ASH2 is yet to

be described in plant model systems. In this work, the

functional analysis is reported of a trxG homologue in

Arabidopsis thaliana during embryogenesis and sporophytic

development. The Arabidopsis ASH2 homologue was

named TRAUCO (TRO) in honour of the fertility mythol-
ogy from the Chiloe island in southern Chile (Perez, 2003).

TRO is a nuclear protein in agreement with the proposed

role for TRO homologues in chromatin remodelling in

other systems. Mutation in TRO perturbs embryo develop-

ment, causing seed abortion. To our knowledge, this is the

first report of a trxG gene homologue to be involved in

plant embryo development in plants.

Materials and methods

Plant materials and growth conditions

Both the wild type and T-DNA insertion lines were in the
Arabidopsis thaliana Col-0 background. Plants were grown on soil
(ED73 soil; Einheitserde, Schopfheim, Germany) in a growth room
with 70% relative humidity and a day–night cycle of 16/8 h light/
dark at 21/18 �C.

Yeast complementation and formamide assay

The strain of yeast (Saccharomyces cerevisiae) used in this study
was Y01570. This strain was constructed from BY4741 (genotype
MATa; his3D1; leu2D0; met15D0; ura3D0) by insertional muta-
genesis of the gene BRE2P (YLR015w). The yeast competent cells
Y01570 (a Bre2pD strain) were transformed with a cDNA of TRO
cloned in an expression plasmid pYES-DEST52 (Invitrogen�).
The empty vector was used as a control. To test for the formamide
sensitivy assay, yeast complemented cells were grown to the
stationary phase in liquid synthetic minimummedium (SD; Sherman,
1991) supplemented with 2% raffinose, and with 20 mg l�1 Hist,
30 mg l�1 Leu, and 20 mg l�1 Met. Then the cell density was
adjusted to OD600 nm¼1.0 and these density-adjusted cultures
were diluted to 1/10, 1/100, 1/1000, and 1/10 000 with SD liquid
medium. 5 ll of each dilution was spotted on SD solid medium
with 2% galactose instead of raffinose (for the induction of the
GAL1 promoter), and with or without formamide (2.5%). The
plates were then incubated at 30 �C for 10 d.

Expression analyses in vivo

For in planta TRO expression analysis, a 1684 bp fragment
upstream of the translation initiation codon was PCR-amplified
using primers ProgwF (5#-CTGTTTAAACCTAGGTCTCTGT-
CATGTATAAGCTATGA-3#; PmeI/AvrII is underlined) and
ProgwR (5#-GTACTAGTATGCAGCCAGTTTGTGGCACT-3#;
SpecI is underlined). The PCR product was subcloned into
pDONR207, and then cloned into pMDC163 (Curtis and
Grossniklaus, 2003), by GATEWAY recombination cloning,
according to the manufacturer’s instructions (Invitrogen). The
destination construct was used to generate pTRO:GUS-expressing
plants by the floral dip method (Clough and Bent, 1998).
Histochemical glucuronidase (GUS) activity staining was performed
using 1 mg ml�1 5 bromo-4-chloro-3-indolyl-b-D-glucuronic acid in
100 mM sodium phosphate buffer (pH 7.2, 0.1% Triton X-100, and
2 mM potassium ferricyanide, and 2 mM potassium ferrocyanide)
at 37 �C for 1–12 h and cleared in 70% ethanol. To visualize
embryos, seeds were cleared in chloral hydrate:H2O:glycerol (8:2:1
by vol.) overnight.
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mRNA in situ hybridization

Fixation, tissue embedding, and sectioning of Arabidopsis siliques,
and mRNA in situ hybridization experiments were performed as
described by Vielle-Calzada et al. (1999). To synthesize the TRO
probe, primers 5#-ATGGAGTCTCTTCAATCAAATTC-3# and
5#-CTGCAGTAAGTCTATCTTC-3# spanning the region from 12
to 891 (879 bp) of the TRO sequence were used to PCR-amplify
the appropriate fragment from Arabidopsis genomic DNA. PCR
conditions were as follows: denaturation at 94 �C for 5 min, then
30 cycles of 30 s at 94 �C, 30 s at 55 �C, and 40 s at 72 �C, followed
by 5 min at 72 �C. The PCR fragment was inserted into the pDrive
Cloning Vector (Qiagen) in both sense and antisense orientations.
Digoxygenin-UTP labelled riboprobes were generated by run-off
transcription using T7 RNA polymerases according to the
manufacturer’s protocol (Roche Diagnostics). Hybridization was
performed on 10 lm Paraplast Plus (Sigma-Aldrich) sections.

Protein subcellular localization

Full-length TRO (1818 bp) genomic DNA was PCR-amplified
using primers TRO5# (5#-ATGGAGTCTCTTCAATCAAATTC-
3#) and TRO3# (5#-ACTCTTCATATCCTCAGAACCAT-3#).
PCR conditions were as follows: denaturation at 94 �C for 5 min,
then 35 cycles of 30 s at 94 �C, 30 s at 51 �C, and 120 s at 72 �C,
followed by 10 min at 72 �C. The PCR product was subcloned into
pDONR207 using the BP cloning technique (Invitrogen) and then
cloned into pMDC84 to generate 35S::TRO-GFP (Curtis and
Grossniklaus, 2003). This construct was transfected into onion
cells by particle bombardment and GFP fluorescence analysis was
performed.

Genotyping tro-1 plants by PCR

DNA of the Arabidopsis T-DNA lines (SAIL_851_H01) was
extracted and screened for the T-DNA insertions at the TRO locus
by PCR. TRO forward and reverse primers (TRO-L1: 5#-CCA-
TTGGAATCGTCCGGTATA-3# and TRO-R1: 5#-CCCTGACA-
TACACCATTTTTGAAG-3#), which flank the T-DNA insertion,
were designed for PCR screening in combination with the T-DNA
left border-specific primer (5#-TCATAACCAATCTCGATACAC-
3#). PCR fragments were confirmed by sequencing. PCR con-
ditions were as follows: denaturation at 94 �C for 5 min, then 30
cycles of 30 s at 94 �C, 30 s at 55 �C, and 90 s at 72 �C, followed by
5 min at 72 �C.

Segregation analysis

Seeds of tro-1 plants were surface-sterilized and plated onto
Murashige and Skoog medium (MS salts, 1% sucrose, and 0.9%
agar, pH 5.7) supplemented with BASTA (10 mg l�1) (AccuStan-
dar�). After 2 d at 4 �C, the seeds were grown under 16/8 h light/
dark cycles at 22 �C. The BASTA phenotype (resistant or
sensitive) was scored on plates after 2 weeks.

Histological analysis

For phenotypic characterization, seeds were cleared with chloral
hydrate following the protocol described by Yadegari et al. (1994).
Specimens were observed using a Leica DMR microscope (Leica
Microsystems) under DIC optics.

Complementation of Arabidopsis tro-1

For complementation, a construct was designed that expressed
TRO under the control of its native promoter. Using 35S::TRO-
GFP, the double 35S promoter was exchanged for the TRO
promoter (1684 bp) using PmeI and SpecI restriction sites. The
tro-1/+ heterozygous plants were transformed by the floral dip
method (Clough and Bent, 1998) using Agrobacterium tumefaciens
strain GV3101. Transformed plants were evaluated for their seed
abortion phenotype.

Results

The Arabidopsis thaliana TRAUCO gene is a member of
the conserved trithorax gene family

Arabidopsis thaliana TRO (At1g51450) is a single copy gene

with two exons encoding a 55 kDa protein with 509 amino

acids (Fig. 1a). The protein has a putative nuclear localiza-

tion signal and a SPla/RYanodine receptor (SPRY) domain,

involved in protein–protein interactions (Wang et al., 2002;
Zhai et al., 2004). An evolutionary tree was calculated on the

basis of the alignment of the complete protein sequences of

ASH2 homologues, using other Arabidopsis SPRY-domain

proteins as an outgroup (Fig. 1b). TRO is grouped with the

other ASH2 homologous proteins and not with Arabidopsis

SPRY domain-containing proteins. Figure 1c illustrates the

predicted domain structure of TRO and homologous pro-

teins in yeast, Drosophila, and human. The C-terminal
portion of all four proteins harbours the SPRY domain

characteristic of ASH2 homologous proteins. In this region,

the predicted protein sequence of TRO is 39% identical and

55% similar to Drosophila ASH2, 42% identical and 59%

similar to Human ASH2-L, and 27% identical and 41%

similar to yeast BRE2P. In general, the N-termini of these

proteins are poorly conserved and Drosophila ASH2 is the

only protein possessing a PHD finger domain in this region.
These analyses indicated that TRO is homologous to the

trithorax-group proteins.

To examine the activity of TRO, the gene was expressed

in the yeast strain Bre2pD (Nagy et al., 2002). Bre2pD cells

lack the functional homologue of ASH2 and showed

formamide-sensitive phenotypes (Nagy et al., 2002). Cells

in the stationary phase cultured in liquid medium were

exposed to 2.5% formamide in plates and the cell viability
was determined. Based on the colony growth, it was

confirmed that Bre2pD cells showed a clear reduction in

viability in the presence of formamide (Fig. 2) confirming

the published data of Nagy et al. (2002). By contrast, when

the Arabidopsis TRO cDNA was expressed in Bre2pD yeast

cells, it was observed that the transformed cells were able to

grow more efficiently in formamide-containing medium

(Fig. 2). These results indicated that TRO is a functional
Arabidopsis homologue of the trithorax-group member

BRE2P of yeast. Therefore, it is possible that, similar to

BRE2P, TRO is a member of a protein complex involved in

histone methylation.

TRO is expressed in vegetative and reproductive organs

Existing data deposited in large expression databases

suggested that TRO is expressed ubiquitously at different

levels in all plant tissues; however, the relative transcript

levels are most abundant in pollen and seeds (Fig. 3). To
investigate the spatial expression pattern of TRO further,

a 1684 bp portion of the TRO promoter was fused with the

b-glucuronidase (GUS) reporter gene, and endogenous

expression of the TRO reporter was monitored in transgenic

Arabidopsis plants (pTRO:GUS). Fourteen independent

transgenic lines expressing the GUS gene under the control
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of the TRO promoter were analysed. GUS activity was

detected during embryo development (data not shown). To

validate the GUS expression pattern during early embryo-

genesis, mRNA in situ hybridization was performed.

Specific mRNA signals were detected at two stages during

embryo development. Figure 4 shows that a prominent

hybridization signal was observed in the embryo proper and

in suspensor cells at the globular stage (Fig. 4a). Strong
signals were also detected at the heart stage (Fig. 4c). No

signal above background was observed in the control

experiments in which the sense RNA probes were used

(Fig. 4b, d). In 5-d-old seedlings, the TRO promoter was

active in cotyledons and roots (Fig. 4e). In vegetative tissues

of adult plants, GUS expressed under the control of the

TRO promoter is associated exclusively with leaf hydath-

odes, structures involved in the active secretion of solutes
(Fig. 4f). In reproductive tissues, GUS activity is detected

only in sepals, anthers, and pollen grains (Fig. 4g).

Together, these data indicate that TRO is primarily

expressed in embryos, and in several tissues throughout

plant development. In summary, it is confirmed that TRO is

expressed in several stages of plant development, and

specifically during early embryogenesis in Arabidopsis.

TRO is a nuclear protein

The presence of a putative N-terminal nuclear localization

signal suggests that TRO is a nuclear protein. To determine
the subcellular localization of TRO, we examined reporter

expression of a C-terminal translational fusion of TRO with

the GREEN FLUORESCENT PROTEIN (GFP), driven by

the constitutive 35S promoter of Cauliflower Mosaic Virus

(p35S::TRO-GFP), in onion cells by the transient trans-

formation assay. The construct p35S::GFP served as

a control. In onion cells expressing p35S::GFP, the GFP

protein was localized throughout the cell, visualized as
florescent signals within the cytoplasm, nucleus, and nucle-

olus (Fig. 5a, b). By contrast, the fluorescence of TRO-GFP

colocalized exclusively within the nucleus (Fig. 5c, d). This

result indicated that TRO is indeed a nuclear protein.

TRO is required for early embryogenesis

In order to determine the function of TRO in Arabidopsis

development, a T-DNA insertion mutant was obtained
from the Arabidopsis Biological Resource Center (ABRC)

designated tro-1 for phenotypic analysis. This allele carried

an insertion at the 3#-end of exon 1 (Fig. 1a). This insertion

potentially interferes with the nucleotide sequence coding

for the SPRY domain. The location of the T-DNA insertion

was confirmed by PCR genotyping and, subsequently, by

sequencing. The sequences of the PCR products demon-

strated that the T-DNA left border was present at both
ends of the insertion, suggesting the presence of at least two

tandem full or partial T-DNA insertions. More impor-

tantly, sequence analysis established that no major deletions

or chromosomal rearrangements took place during the

insertional event in the TRO locus. Only a minor 24 bp

Fig. 1. The Arabidopsis thaliana TRO is a Trithorax group

homologous gene. (a) A schematic representation of the exon–

intron structure of the genomic TRO gene with the location of the

T-DNA insertion. (b) Phylogenetic tree analysis of TRO with TrxG

genes from other organisms and with Arabidopsis SPRY-domain

containing proteins. The tree was constructed by the Neighbor–

Joining method with MEGA program 3.0. Branch numbers

represent the percentage of bootstrap values in 1000 sampling

replicates. The protein accession numbers are: TRO (NP175556),

SEPR11 (ACE95183), ASH2 (AAC47328), ASH2-L (Q9UBL3),

D. rerio ASH2-L (NP001103575), X. laevis ASH2-L (AAI55932),

BRE2P (NP013115), At4G09200 (NP192659), At4G09310

(NP192669), and At4G09340 (NP192672). Sequences of the

grape (CAO21886) and rice (Os11g0146500 and Os12g0143200)

homologous genes were obtained from NCBI GeneBank. (c)

Organization and comparison of TRO with homologous proteins.

Locations of conserved domains with significant homologies are

indicated by boxes: SPRY (light gray) and PHD (black). The

percentages indicate the degree of amino acid similarity with

respect to TRO for each conserved domain. Numbers below each

protein indicate the initial and final amino acid of the corresponding

domains.
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deletion occurred in TRO at the insertion site (see Supple-

mentary Fig. 1 at JXB online). Genotyping by PCR of T3

plants led to the identification of several heterozygous tro-1/+

mutant plants. However, attempts to identify homozygous

tro-1 mutant plants were unsuccessful. Moreover, no

homozygous mutant seedlings were obtained in the progeny
of selfed heterozygous tro-1/+ plants, suggesting that

embryo and/or gametophyte development are altered, and

that TRO is an essential gene. The T-DNA insertion in tro-1

harbours a gene conferring resistance to BASTA. This

feature facilitated segregation analysis of the mutant allele,

which revealed that BASTA-resistant and BASTA-sensitive

progeny segregated in a 1.7:1 ratio in selfed heterozygous

plants (Table 1). This segregation ratio is significantly

different from the expected 3:1 Mendelian segregation for

a dominant resistant phenotype and from the expected 1:1

ratio for a fully penetrant mutation in either the male or

female gametophyte. The value obtained is indicative of
zygotic lethality with a possible weak gametophytic defect

affecting one or both male and female gametes. To de-

termine whether the T-DNA insertion was transmitted

abnormally through the male and/or female gametophytes,

reciprocal crosses with wild-type plants were performed.

Transmission efficiency of the BASTA resistance marker

was found to be normal through the female gametophyte,

but was slightly reduced when pollen was provided from
heterozygous tro-1/+ plants (Table 1). Taken together,

these data suggest that the TRO is necessary for embryo

development, and that TRO might also function pater-

nally during male gametophytic or post-gametophytic

development.

Pollen of wild-type and tro-1/+ plants was analysed for

viability by the staining method described by Alexander

(1969). In this assay, the cytoplasm of mature viable pollen
grains stains a deep purple and is surrounded by a thin

green stain of the external exine layer (see Supplementary

Fig. 2 at JXB online). No differences were observed in the

staining pattern of pollen produced by heterozygous tro-1/+

plants, which produce both wild-type and tro-1 pollen

grains. These results suggest that a mutation in TRO does

Fig. 2. Expression of TRO provides formamide tolerance to a bre2p yeast strain. Yeast cells were grown to an OD600 nm value of 1.0,

and then 5 ll of 10-fold serial dilutions (left to right in each panel) were spotted onto an solid media containing 0 (control) or 2.5%

formamide according to Nagy et al. (2002). Growth was recorded after 10 d of culture. Yeast cells transformed with empty vector used

as control (Bre2pD).

Fig. 3. Gene expression of TRO in various plant tissues. Data

used for the analysis were retrieved from GENEVESTIGATOR

(Zimmermann et al., 2004). The values shown are means +SD.
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not impair pollen development, rather, a tro-mediated

paternal defect may occur later, possibly during pollen
germination, pollen tube growth or fertilization.

Examination of the siliques revealed that tro-1/+ mutant

plants contained not only the green seeds found in wild-type

siliques, but also some white and brown aborted seeds (Fig.

6a, b), a feature that indicates embryo lethality. The aborted

seeds have a random distribution inside the silique (data not

shown). Indeed, 22.8% of the embryos aborted in tro-1/+,

suggesting that homozygous tro-1 mutants are lethal (Table
2). The aborted seeds always co-segregated with the T-DNA

insertion, as observed by genotyping of plants with aborted

seed (data not shown). The development of wild-type and

mutant embryos was analysed using Nomarski microscopy

to characterize the terminal phenotype of tro-1 embryos. To

determine when embryo development was disrupted in the
mutant, siliques at 7 d after self-pollination from heterozy-

gous tro-1/+ plants were dissected and cleared by whole-

mount clearing. Embryo development was arrested at the

early globular stage in approximately 25% of the seeds,

whereas the remaining 75% had already reached the heart

stage (Fig. 6c). To follow the progression of the tro-1

mutant phenotype, normal and aborted seeds at different

stages of development were isolated from tro-1/+ siliques
and analysed to determine the stage at which the tro-1

homozygous embryos were arrested during embryogenesis.

The development of wild-type Arabidopsis embryos pro-

gressed as described previously (Fig. 6d–h). No dramatic

differences were observed in wild-type and tro-1 mutant

seeds from the zygote up to the octant stage (8 cells; Fig. 6d,

e, i, j). The first clear difference in development was

observed at the beginning of the heart stage (Fig. 6f), when
;25% of the seeds arrested with the embryo at the globular

stage (Fig. 6k). These seeds showed alterations in the

morphology of the arrested globular embryos, which de-

veloped into an amorphous agglomeration of cells (Fig. 6l).

The tro-1 seeds remained at the globular stage in siliques

containing wild-type seeds at the torpedo and cotyledon

stages, and tro-1 embryos did not show any indication of

Fig. 4. Temporal and spatial patterns of TRO gene expression. (a–d) RNA in situ hybridization confirmed the expression of TRO during

early embryogenesis. (a) Nomarski micrographs showing a strong signal in the embryo proper (EP) and suspensor (S) at the eight-cell

stage. (b) Hybridization with a sense probe at the eight-cell stage. (c) Nomarski micrographs showing a strong signal at the heart stage.

(d) Hybridization with a sense probe at the heart stage. (e–g) Histochemical assays of the expression pattern of GUS under the control of

the TRO promoter in PTRO–GUS transgenic Arabidopsis. (e) GUS staining of a 7-d-old seedling showing TRO expression in the

cotyledons, shoot base and root. (f) GUS staining of a 14-d-old seedling showing TRO expression in cotyledons and hydathodes in

a rosette leaf. (g) GUS staining in adult flowers showing TRO expression in pollen grains (inset), anthers, and sepals. Scale bar: a–d,

20 lm; e–f, 1 mm; g, 0.5 mm.

Fig. 5. Subcellular localization of TRO. (a) Epifluorescence micro-

graph of an onion cell transiently expressing GFP (35S::GFP). (b)

Nomarski micrographs showing the same cell in (a). (c) Epifluor-

escence micrograph of an onion cell transiently expressing GFP

fused to TRO (35S::TRO-GFP). (d) Nomarski micrographs showing

the same cell as (c). The white arrow highlights the nucleus. (Scale

bar: 20 lm.
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cotyledon formation compared to sibling wild-type em-

bryos, and eventually they aborted. No differences in early

endosperm development were observed. These results pro-

vide strong evidence that TRO is an essential gene and that

tro-1 mutation disrupts embryo development.

Complementation of the tro-1 mutant phenotype

To demonstrate further that seed lethality was caused by

the interruption of the TRO gene, it was investigated

whether a full-length TRO locus could rescue the seed-

lethal phenotype. For this purpose, the promoter of the

p35S:TRO-GFP construct was replaced with the native

TRO promoter. Heterozygous BASTA-resistant tro-1/+

plants were transformed with the resulting pTRO:TRO-

GFP. Five T1 plants resistant to both BASTA (marker for

the tro-1) and hygromycin (marker for the TRO comple-
mentation construct) were obtained. In addition, the

presence of pTRO:TRO-GFP and of the T-DNA insertion

in TRO was confirmed by genotyping (data not shown). In

Fig. 6. Mutant tro-1 embryos were arrested before the globular stage. (a) Wild-type silique showing a full seed set and a (b)

heterozygous tro-1 silique with approximately 25% of the embryos aborted (black arrows). (c) Whole-mounted, cleared seeds from

siliques of heterozygous tro-1 plants. The same silique contains a mutant embryo arrested at the early globular stage (left) compared with

a normal embryo developed at the heart stage (right). (d–h) Nomarski images of wild-type embryos at the four-cell stage (d), eight-cell

stage (e), early heart stage (f), heart stage (g), and torpedo (h). (i–m) Nomarski images of homozygous tro-1 embryos arrested within the

same siliques as the wild-type embryos showed in (d–h). Mutant embryo with normal appearance at four-cell stage (i) and eight-cell

stage (j). (k–m) Embryos with abnormal morphology compared with sibling embryos shown in (f–h), respectively. Scale bar: d–f and i–m,

20 lm; g, 25 lm; h, 40 lm.

Table 1. Segregation ratio and transmission efficiency of the gene conferring BASTA resistance in tro-1

Cross (female3male) BASTAr a BASTAs a Total Rate R:Sb P-valuec TE (%)d

tro-1/+ selfed 671 393 1064 1.70:1 <0.05* NAe

tro-1/+3wt 48 46 94 1.04:1 0.6 104

wt3tro-1/+ 70 96 166 0.72:1 <0.05* 72

a BASTAr, BASTA-resistant seedlings; BASTAs, BASTA-sensitive seedlings.
b v2 tests were performed to compare the BASTA-resistant and BASTA-sensitive phenotype between wt , tro-1, and reciprocal crosses.
c P-value, based on an expected 2:1 or 1:1 BASTAr/BASTAs segregation ratio, respectively. * Indicate significant differences.
d Transmission efficiencies (TE) ¼ (BASTAr/BASTAs)3100%.
e NA, not applicable.
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these plants, the subcelullar localization of translated fusion

protein was further evaluated by confocal microscopy (see

Supplementary Fig. 3 at JXB online). As expected, the TRO

protein is localized in the nucleus in vivo, suggesting that

fusion protein is functional. The construct p35S::GFP-Lti6b

served as a localization control and the fusion protein is

localized at the cell periphery (see Supplementary Fig. 3 at

JXB online, Yamada et al., 2005). The molecular comple-
mentation of a plant heterozygous for a recessive embryo-

lethal mutation should result in a rescued heterozygote that

exhibits 6.25% (1/16) defective seeds if a single copy of the

wild-type transgene is genetically unlinked to the original

locus (Stacey et al., 2002). In our results, all five lines

showed a reduction in the number of defectives seeds, giving

a percentage of aborted seeds that was not significantly

different from 6.25% (Table 3). This value is consistent with
the percentage expected described above. All the seeds

aborted have the expected embryo phenotype (data not

shown). These results confirm that TRO is fully responsible

for the phenotypes that were recovered in the tro-1 allele,

and that TRO is required for plant embryogenesis.

Discussion

Arabidopsis embryo development is partly controlled by

PRC2 complexes which are formed by FIS-class genes,

plant proteins with homology to animal PcG (Pien and

Grossniklaus, 2007). PcG, together with trxG proteins, are

members of a cellular memory system that maintains the

balance between proliferation and differentiation in eukary-

otic cells. In contrast to plant PcG, the role of trxG during

plant embryogenesis is unknown. In this work, the identifi-

cation and characterization are reported of a novel plant

gene named TRAUCO that is required for embryo de-

velopment in Arabidopsis thaliana. Sequence analysis of the

TRO protein revealed a SPRY domain in the carboxyl

terminus that is characteristic of trxG members described in

Drosophila ASH2 (Adamson and Shearn, 1996), human
ASH2L (Wang et al., 2001), and yeast BRE2P (Nagy et al.,

2002). BRE2P is member of a seven-protein complex that is

required for the methylation of histone H3 and yeast

lacking BRE2P (Bre2pD) were sensitive to formamide

(Nagy et al., 2002). Heterologous expression of TRO in

Bre2pD yeast shows that it partially restores the growth in

formamide (Fig. 2). Subcellular localization analysis of

TRO using onion epidermal cells and transgenic plants
showed localization to the nucleus (Fig. 5; see Supplemen-

tary Fig. 3 at JXB online). Taken together, the localization

and functional data suggest that TRO is a member of

a nuclear protein complex in plant cells, in agreement with

putative trxG function.

Molecular and genetic characterization of heterozygous

tro-1/+ mutant plants allowed us to conclude that tro-1 is

an embryo lethal mutation. Through genetic studies, it has
been shown that the loss of TRO function caused an early

arrest of embryo development before the dermatogen stage,

a stage critical for pattern formation, and that tro-1 mutant

embryos displayed an aberrant cell division pattern.

The transcriptional states of several loci of the genome

including developmentally and cell-cycle regulated genes are

repressed and activated by PcG and trxG proteins, re-

spectively. In this way, both protein groups have an
antagonistic effect during development. The Arabidopsis fis

mutants are characterized by autonomous seed formation in

the absence of fertilization (Luo et al., 1999; Köhler et al.,

2003; Guitton et al., 2004). Development of fis seeds is

delayed and seeds abort with embryos arrested at the late

heart stage and possess a non-cellularized endosperm with

strongly overproliferated chalazal endosperm domains

(Grossniklaus et al., 1998; Köhler et al., 2003; Guitton
et al., 2004). In contrast to this, tro-1 mutant embryos

arrested earlier at the globular stage, and the endosperm

was not affected (data not shown). In addition, mutations

in FIS genes cause parent-of-origin-dependent seed abor-

tion (Grossniklaus et al., 2004). All seeds that inherit

a mutant FIS allele from the mother abort, regardless of

the presence of a wild-type paternal allele. As opposed to

this phenomenon, the tro-1 mutation is transmitted by both
gametes, suggesting a general zygotic function.

PcG and trxG proteins form higher order complexes that

contain SET domain proteins responsible for various types

of lysine methylation at the N-terminal tails of the core

histone proteins. Molecular analysis indicates that TRO

encodes a protein containing a SPRY domain and a putative

nuclear localization signal motif, suggesting that TRO is

a member of a nuclear protein complex. Other than these
motifs, TRO does not have extensive homology to any

other sequences in the protein databases. In contrast, the

Table 3. Genetic complementation of the tro-1 mutation

v2 tests were performed to evaluate the genetic complementation of
the tro-1 mutation.

Plant
number

Normal Aborted Percentage Expected
percentage

P-valuea

1 159 7 4.19 6.25 0.3

2 107 4 3.66 6.25 0.3

3 114 4 3.44 6.25 0.3

4 100 6 5.60 6.25 0.7

5 172 7 3.86 6.25 0.3

a P-value of >0.05 was considered consistent with the hypothesis
that 6.25% of the seeds abort as expected for single copy transgene
complementation of heterozygous mutant (Stacey et al., 2002).

Table 2. Seed abortion frequency in mutant tro-1

Percentage values are in parentheses. v2 tests were performed to
compare the abortion seeds between wt and tro-1.

Allele Normal Aborted Total P-valuea

wt 1085 (99.4) 6 (0.06) 1091 ND

tro-1/+ 859 (77.2) 253 (22.8) 1112 0.1

a P-value of >0.05 was considered consistent with the hypothesis
that 25% of the seeds abort as expected for a zygotic embryonic lethal
mutation.
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Drosophila ASH2 protein possesses a SPRY domain and

a putative double zinc-finger domain in the N-terminus

extreme, sequences which are found in nuclear proteins that

play a role in regulating chromatin (Adamson and Shearn,

1996). On the other hand, BRE2P is the homologue of

ASH2 in yeast, and lacks a highly conserved PHD finger

(Nagy et al., 2002). Interestingly, another component of the

yeast complex contains a PHD finger (protein SAF41p),
suggesting that, together, these two proteins constitute

a bipartite functional homologue of ASH2 in the complex

termed SET1P (Nagy et al., 2002). To date in plants, only

a PRC2 complex containing MEA, FIE, and MSI1 has been

biochemically characterized (Köhler et al., 2003) and no

trxG complexes have been isolated. Further experiments

should identify other components of the Arabidopsis trxG

protein complex.
Genetic analysis in Arabidopsis indicates that, in addition

to controlling seed initiation, PcG proteins control flower

organ development, switch from vegetative to floral develop-

ment, and vernalization (Gendall et al., 2001; Kinoshita et al.,

2001; Yoshida et al., 2001). Our results show that TRO

transcripts were present in specific tissues and showed higher

levels of expression in sepals and anthers, suggesting that it

could play a role during flower development. In our experi-
ments, such defects were not observed, as homozygous tro-1

embryos abort and do not give rise to mature plants.

Therefore, a potential role of TRO in flower development

remains to be addressed. Arabidopsis Trithorax1 (ATX1) is

a close homologue of trxG and is the only other member of

this family that has been described previously in plants

(Alvarez-Venegas et al., 2003). It contains a SET domain

and additional domains characteristic of trxG proteins. In
atx1 mutants, the floral homeotic genes AGAMOUS,

PISTILLATA, and APETALA 3 are expressed at a lower

level during flower development (Alvarez-Venegas et al.,

2003). This is reflected by homeotic changes of floral organs

in atx1 mutants. Additional experiments could address

whether TRO and ATX1 participate in the same protein

complex.

In conclusion, the nuclear protein TRO represents a novel
trxG protein that is required for early embryo development

in Arabidopsis. These results reveal new biological functions

for trxG proteins in plant reproduction. The molecular

function of TRO as a trxG protein has not yet been

demonstrated and putative downstream gene targets are

not known. In addition to these investigations, discovery of

the genes regulated by TRO should provide further insights

into the genetic network that controls Arabidopsis embryo
development.
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and P Cañon. This work was primarily financed by the

Millennium Nucleus for Plant Functional Genomics (P06-

009-F) and the Chilean Fruit Consortium. UG acknowledges

funding from the EPIGENOME Network of Excellence. We

thank J Gheyselinck for technical assistance and Michael

Handford for their assistance in language support.

References

Adamson AL, Shearn A. 1996. Molecular genetic analysis of

Drosophila ash2, a member of the trithorax group required for imaginal

disc pattern formation. Genetics 2, 621–633.

Alexander MP. 1969. Differential staining of aborted and non-aborted

pollen. Stain Technology 44, 117–122.

Alvarez-Venegas R, Pien S, Sadder M, Witmer X,

Grossniklaus U, Avramova Z. 2003. ATX-1, an Arabidopsis

homolog of trithorax, activates flower homeotic genes. Current Biology

13, 627–637.

Aquea F, Arce-Johnson P. 2008. Identification of genes expressed

during early somatic embryogenesis in Pinus radiata. Plant Physiology

and Biochemistry 46, 559–568.

Aquea F, Matte JP, Gutiérrez F, Rico S, Lamprecht M,

Sánchez C, Arce-Johnson P. 2009. Molecular characterization of

a Trithorax-group homologue gene from Pinus radiata. Plant Cell

Reporter 28, 1531–1538.

Bai S, Chen L, Yund MA, Sung ZR. 2000. Mechanisms of plant

embryo development. Current Topics in Developmental Biology 50,

61–88.

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for

Agrobacterium-mediated transformation of Arabidopsis thaliana. The

Plant Journal 16, 735–743.

Curtis MD, Grossniklaus U. 2003. A Gateway cloning vector set for

high-throughput functional analysis of genes in planta. Plant

Physiology 133, 462–469.

Gendall AR, Levy YY, Wilson A, Dean C. 2001. The

VERNALIZATION 2 gene mediates the epigenetic regulation of

vernalization in Arabidopsis. Cell 107, 525–535.

Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB.

1998. Maternal control of embryogenesis by MEDEA, a polycomb

group gene in Arabidopsis. Science 280, 446–450.

Grossniklaus U, Spillane C, Page DR, Köhler C. 2004. Genomic
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