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Abstract

Using algebraic and topological K -theory together with complex C∗-algebras, we prove
that every abelian group may be realized as the centre of a strongly torsion generated group
whose integral homology is zero in dimension one and isomorphic to two arbitrarily pre-
scribed abelian groups in dimensions two and three.

1. Introduction and statement of the main results

The main theorem of this paper combines two genres of realization results. We briefly
describe these, as motivational background to the theorem, and also to introduce its termin-
ology.

(1) The first is the “inverse realization problem” for functors taking group-theoretic val-
ues. The oldest example, still open, asks which finite groups can occur as Galois groups
of rational polynomials [28]. Another example is the theorem that every abelian group can
be the ideal class group of a Dedekind domain [11, 25]. Eilenberg and Mac Lane solved
the problem for the homotopy group functors [12]. For homology (always integral in this
paper), Baumslag, Dyer and Miller showed that every sequence of abelian groups could be
realized as the reduced homology of a (discrete) group [3]. When one requires the group to
be rich in torsion, the matter becomes more delicate. For finite groups, for instance, there
are well-known constraints due to Maschke (cohomological version quoted in [19, p. 227]),
Evens [13], and Swan [39]. In the same vein is Milgram’s counterexample in [29] to the con-
jecture (attributed to Loday) that no nontrivial finite group can have its first three positive-
dimensional homology groups zero, see [16]. Since any group with a series of finite length
whose factors are either infinite cyclic or locally finite has the direct sum of all its reduced
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250 A. J. BERRICK AND M. MATTHEY

homology groups either infinite or zero [9], it is apparent that one needs to focus on a more
general class of groups with torsion.

Progress has been made with the class of torsion-generated groups, wherein every element
is a product of elements of finite order. In this case, there is a vestigial version of the previous
result: if the sequence of homology groups of a torsion-generated group is finite, then the
group itself is perfect (that is, the first homology vanishes), see [10]. After a partial result
in [7], exploiting the results on the ideal class group referred to above, the problem was
settled by [10], as follows:

Let A2, A3 , . . . be a sequence of abelian groups. Then there exists a strongly torsion
generated group G such that Hn(G)� An for all n � 2.

A strongly torsion generated group G is one with the property that, for each n � 2, there
is an element gn of order n that normally generates G, in other words, every element of G
is a product of conjugates of gn . The constraint n � 2 in the above statement occurs because
such groups are necessarily perfect [10, lemma 7]. Various properties of the class of strongly
torsion generated groups are discussed in [10]. It was introduced in [7] because its most
notable examples arise in connection with algebraic K -theory. They include the infinite
alternating group A∞ and the infinite special linear groups SL(Z) and SL(K ) for any field
K . The proof of the above theorem combines techniques of combinatorial group theory with
Miller’s affirmation, in [30], of the Sullivan Conjecture in homotopy theory.

(2) The second class of results that forms background to the present work consists of the
embedding theorems in combinatorial group theory. For half a century it has been known
that every group embeds in an algebraically closed group; these groups are strongly torsion
generated [32, 36]. When the embedded group is abelian, it is natural to attempt to embed it
as the centre of the larger group. An embedding as the centre of a strongly torsion generated
group was achieved in [7], again by means of an algebraic K -theory use of the result men-
tioned earlier on the ideal class group, and in [10] by means of combinatorial group theory
and homotopy theory. (See also [17, 33] for constructions when the abelian group is locally
finite.)

This quick review indicates that past displays of abelian groups as homology groups have
formed separate results from realizations as centres. Here we are able to combine these two
strands in a single realization theorem, as follows.

THEOREM 1·1. Let A, B and C be any three abelian groups. Then, there exists a group
S with the following properties:

(i) S is strongly torsion generated;
(ii) the centre of S is isomorphic to A, that is, Z(S)� A;

(iii) S is perfect, that is, H1(S) = 0;
(iv) the second homology of S is isomorphic to B, that is, H2(S)�B;
(v) the third homology of S is isomorphic to C, that is, H3(S)�C.

The construction of S is presented in Section 4, followed in Section 5 by the proof of the
theorem. In Section 6, we collect further information on S as a second theorem. The ap-
proach is prompted by a specific idea of [7] – related to the functors K alg

1 and K alg
2 for rings –

and on results concerning the topological and algebraic K -theory of complex C�-algebras;
this is all recalled in Sections 2 and 3, largely for the benefit of readers whose interests are
more group-theoretic. Section 7 poses some open questions on the subject, including two
that serve as the basis for further studies.
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Homological realization 251

2. Recollection on topological K -theory of C�-algebras

This section is devoted to some preparatory material on topological K -theory, needed for
the proofs of our main results.

In this paper, by a C�-algebra, we always mean a complex C�-algebra. Recall that the
topological K -theory of C�-algebras has the following properties : it is additive, that is,
K top

� (A1 ×A2)� K top
� (A1)⊕ K top

� (A2); it satisfies Bott periodicity, i.e. K top
� (A)� K top

�+2(A);
it is continuous, namely, it commutes with filtered colimits, i.e. direct (or inductive) lim-
its of C�-algebras with filtered posets as indexing sets, see [42, appendix L and propos-
itions 6·2·9, 7·1·7]; and it is Morita invariant in the sense that there is an isomorphism
K top

� (Mn(A)) � K top
� (A). Let K � colimn Mn(C) be the C�-algebra of compact operators

on a separable complex Hilbert space, and “ ⊗̂ ” the minimal (i.e. spatial) tensor product
of C�-algebras. Since Mn(A) � A⊗̂Mn(C), combining Morita invariance and continuity,
we deduce that topological K -theory is stable, in the sense that there is an isomorphism
K top

� (A⊗̂K) � K top
� (A). The additivity, Bott and stability isomorphisms are canonical and

natural. For n ∈ Z, we also recall that

K top
n (C)�

{
Z , if n is even

0 , if n is odd
so that K top

n (K)�

{
Z , if n is even

0 , if n is odd.

For more details on C�-algebras and their topological K -theory (in particular for the prop-
erties we have recalled), we refer, for instance, to the books [34] and [42].

We need the following result from the theory of C�-algebras and their topological K -
theory. For M countable, it is proven in [34]. A proof in the general case appears in [42,
exercise 9·H, pp. 173–174], although it requires modification in order to overcome issues
with multiplicativity of morphisms (and also to encompass the uncountable case systemat-
ically). A complete and detailed proof in the general case also appears as an example of the
authors’ general theory of coefficients for homological functors, currently in preparation.

PROPOSITION 2·1. For any abelian group M, there exists a C�-algebra EM , whose topo-
logical K -theory is given by

K top
2n (EM)� M and K top

2n+1(EM) = 0 (n ∈ Z) .

Remark 2·2. By construction, the C�-algebra EM of Proposition 2·1 is not unital.

Remark 2·3. The proof of Theorem 1·1, given in Section 5, is presented in such a way
that if there is a construction of the C�-algebra EM in Proposition 2·1 that is functorial in
M , then the group S in Theorem 1·1 is also functorial in the abelian groups A, B and C on
which it depends, and the homomorphisms occurring in its statement are all natural. Such a
construction of EM would certainly be of independent interest.

3. Recollection on algebraic K -theory

For the benefit of readers from other parts of mathematics, we now proceed with a recol-
lection of established – though sometimes highly nontrivial – results on algebraic K -theory
needed in the proof of Theorem 1·1. As general references for algebraic K -theory, we refer
to [4, 27, 35].

Let � be a unital ring. Denote by GL(�) = ⋃
n�1 GLn(�), E(�) = ⋃

n�1 En(�) and
St(�) = colimn�3 Stn(�) the group of infinite invertible matrices, the group of infinite ele-
mentary matrices, and the infinite Steinberg group respectively. By definition, we have
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252 A. J. BERRICK AND M. MATTHEY

K alg
1 (�)� GL(�)/E(�), and, by the Whitehead Lemma, the equalities [GL(�), GL(�)] =

[E(�), E(�)] = E(�) hold (see Milnor [31, lemma 3·1]); in particular, the group E(�) is
perfect and K alg

1 (�) = H1(GL(�)). By definition of K alg
2 (cf. [31, p. 40]), we have a func-

torial exact sequence

0 −→ K alg
2 (�) −→ St(�)

ϕ
�−→ GL(�) −→ K alg

1 (�) −→ 0

with Im(ϕ
�
) = E(�). There are isomorphisms K alg

2 (�) � Z(St(�)) � H2(E(�)), and
St(�) has vanishing H1 and H2, and is the universal central extension of E(�), see [31,
theorems 5·1 and 5·10]. For a perfect group P , one has Z(P/Z(P)) = 0 (see for instance
[8, end of section 2·2]). Therefore, E(�)�St(�)/Z(St(�)) is centreless.

It is well known that K alg
n (�) is isomorphic to πn(BGL(�)+) for n � 1 (this is even

the definition for n � 3), to πn(BE(�)+) for n � 2, and to πn(BSt(�)+) for n � 3 (see
[35, corollary 5·2·8]). Recall from [35, theorem 5·2·2] that H�(X) � H�(X+) holds for
any connected CW-complex X , as for example BGL(�), BE(�) and BSt(�). In particular,
knowing that BE(�)+ is 1-connected and that BSt(�)+ is 2-connected (cf. [35, theorem
5·2·2]), by the Hurewicz Theorem [40, theorem 10·25], the Hurewicz homomorphism in-
duces the following epimorphisms and isomorphism:

K alg
3 (�) −� H3(E(�)), K alg

3 (�)� H3(St(�)) and K alg
4 (�) −� H4(St(�))

(the isomorphism is Gersten’s Theorem [14]). All indicated isomorphisms and epimorph-
isms are canonical and natural. From [7, lemma 1 and proof of theorem A], we also quote
that:

For a unital ring �, the groups E(�) and St(�) are strongly torsion generated.
For the definition of negative K -theory of a unital ring �, K alg

−n(�) with n > 0, we refer
to [35, definition 3·3·1]. If I is a nonunital ring, following [35, definition 1·5·6], we define
the minimal unitalization Ĩ of I as the unital ring given, as a Z-module, by the direct sum
Ĩ � I ⊕ Z, and equipped with the multiplication given by

(x, λ) · (x ′, λ′)� (xx ′ + λx ′ + λ′x, λλ′) , for x, x ′ ∈ I and λ, λ′ ∈ Z .

As in [35, definition 1·5·7], there is a split short exact sequence of nonunital rings

0 −→ I −→ Ĩ
�−→ Z −→ 0,

and one defines K alg
� (I ) as to be the kernel of the map K alg

� ( Ĩ ) → K alg
� (Z) induced

by the unital ring homomorphism Ĩ → Z. This construction is functorial for nonunital
ring homomorphisms. For the definition of the relative K -groups K alg

n (�, J ), where J
is a two-sided ideal in the unital ring �, we refer, for n � 0, to [35, definitions 1·5·3
and 5·2·14]; for n > 0, one sets K alg

−n(�, J ) � K alg
−n(J ) (hiding the fact that K alg

−n satisfies
excision), see [35, definition 3·3·1]. The above split exact sequence induces a canonical
isomorphism

K alg
� ( Ĩ )� K alg

� ( Ĩ , I ) ⊕ K alg
� (Z),

as follows from the long exact sequence in algebraic K -theory, see [35, theorem 3·3·4].
Since K alg

0 satisfies excision too (see [35, theorem 1·5·9]), and since the ring Z is regular,
so that its negative algebraic K -groups all vanish (see [35, exercise 3·1·2 (4) and definition
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3·3·1]), we get

K alg
−n( Ĩ )�

{
K alg

−n(I ) , if n > 0

K alg
0 (I ) ⊕ Z , if n = 0 .

Recall that the cone of Z is the unital ring C(Z) consisting of the infinite matrices (ai j )i, j∈N

with only finitely many non-zero (integer-valued) entries in each row and in each column.
The suspension of Z is the quotient S(Z) � C(Z)/M(Z), where M(Z) is the two-sided
ideal of finite matrices, i.e. the union

⋃
n�1 Mn(Z) in C(Z). The main feature of C(Z) is

that it is unital with vanishing algebraic K -theory (including in negative degree). For k � 1,
the k-fold suspension of a unital ring � is the unital ring Sk(�) � � ⊗Z S(Z)⊗Z k (with the
obvious ring structure). The ring Sk(�) satisfies the following property:

K alg
n (Sk(�))� K alg

n−k(�) (n ∈ Z).

We also need the fact that algebraic K -theory is additive in the sense that there is a natural
isomorphism K alg

� (�1 × �2) � K alg
� (�1) ⊕ K alg

� (�2), for any two unital rings �1 and �2.
This property is clear in degree zero and then follows from the definition in negative degrees;
for positive degrees, see [26, proposition 1·2·3]. One further has a canonical decomposition
GL(�1 × �2)�GL(�1) × GL(�2), and similarly for E(−) and St(−), see [27, p. 326 and
proposition 12·8].

We have to discuss C�-algebras in connection with algebraic K -theory. A C�-algebra A
is called stable if it is �-isomorphic to A⊗̂K. Since K �K⊗̂K, for any C�-algebra A, the
C�-algebra A⊗̂K is stable. We now recall a deep result, namely the Karoubi Conjecture
(proved in Suslin–Wodzicki [37, 38] – see Remark 3·1 below):

The canonical “change-of-K -theory map” K alg
� (A) → K top

� (A) is an isomorphism, for
any stable C�-algebra A.

(Note that this includes the negative K -groups K alg
−n and K top

−n with n > 0.)

Remark 3·1. For the proof of our main results, we will not need the full power of the
Karoubi Conjecture that K alg

n (A⊗̂K)� K top
n (A⊗̂K) for any C�-algebra A and any n ∈ Z –

which has been proved, as we have just mentioned. Indeed, in the proofs, we will consider
a certain stable C�-algebra F and will only need the values of its algebraic K -theory for
n � 0, because of the occurrence of an iterated suspension (see below). In 1979, Karoubi
himself proved in [23] that his conjecture is true for n � 0 – in fact, this motivated the
conjecture. Later, this was shown for n = 1 in de la Harpe–Skandalis [15], and for n = 2
in Karoubi [24] and also in Higson [18]. In the latter it is also proved that the Karoubi
Conjecture holds for Karoubi–Villamajor’s algebraic K -theory. Finally, it was Suslin and
Wodzicki who established the conjecture for Quillen’s algebraic K -theory, in [37, 38]. For
related results, the reader may consult [20, 21, 22, 41].

4. Construction of the group S of Theorem 1·1
Here we provide the construction of the group S occurring in Theorem 1·1 and in its

complement, namely Theorem 6·1 below. This will justify the long recollections of Sections
2 and 3.

To begin with, for an abelian group M , consider the nonunital C�-algebra

FM � EM⊗̂K ,

where EM is as in Proposition 2·1. By the results quoted in Section 2, we have, for every
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254 A. J. BERRICK AND M. MATTHEY

n ∈ Z,

K alg
2n (FM)� K top

2n (EM)� M and K alg
2n+1(FM)� K top

2n+1(EM) = 0.

Now let A, B and C be three abelian groups, prescribed as in Theorem 1·1. We require
unital rings having the appropriate algebraic K -theory in low dimensions. For this purpose,
we let

RA � S4(F̃A), RB � S4(F̃B) and RC � S5(F̃C)

be the 4-fold (resp. 5-fold) algebraic suspension of the minimal unitalization of the nonunital
rings FA and FB (resp. FC ), see Section 3. Assembling most of the results recalled in Sec-
tions 2 and 3, we obtain, for n � 3,

K alg
n (RA)� K top

n (EA)�

{
A , if n � 2 is even

0 , if n � 3 is odd

and similarly for B, while, for n � 4,

K alg
n (RC)� K top

n−1(EC)�

{
0 , if n � 4 is even

C , if n � 3 is odd.

We also note that for each n ∈ Z, the abelian groups K alg
n (RA) and K alg

n (RB) (resp. K alg
n (RC))

contain a direct summand isomorphic to K alg
n−4(Z) (resp. K alg

n−5(Z)). Finally, for the group S
that we have to construct, we take

S � St(RA) × E(RB) × St(RC) .

Note that K alg
n (RC) being zero, we have S �St(RA) × E(RB) × E(RC).

5. Proof of Theorem 1·1
Before the proof, we introduce the following convenient terminology. We call a group G

n-perfect for some n � 1 if its reduced integral homology vanishes in dimension � n, i.e.
H̃ j (G) = 0 for all j � n; of course, 1-perfect is the same as perfect in the usual sense, while
2-perfect is often called superperfect. In the literature, the terms n-connected and n-acyclic
are also to be found.

We may now prove, in turn, the statements (i)–(v) of Theorem 1·1.
(i) The proof of lemma 11 presented in [10] actually establishes the following slightly

stronger statement than that asserted there.

LEMMA 5·1. Let H be a simple group that, for each n � 2, has a 2-perfect subgroup Ln

possessing an element of order n. Suppose that G is a group containing H in such a way
that the normal closure of H in G is G itself. Then every perfect central extension of G is
strongly torsion generated.

As in [10], this result may be applied to the case where G = E(�) for any unital ring �

(with H � A∞, see loc. cit.), to yield that every perfect central extension of E(�) is strongly
torsion generated. For the present circumstance, we take � = RA × RB × RC , and deduce
that the perfect central extension S is strongly torsion generated.

(ii) Since for any unital ring � the group E(�) has trivial centre, while the centre of St(�)

is precisely K alg
2 (�), we immediately have A as the centre of S.
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(iii) As quoted in Section 2, the groups E(�) and St(�) are perfect, for any unital ring
�; and a finite product of perfect groups is perfect. (Here, one can also recall from [10,
lemma 7] that every strongly torsion generated group is perfect.)

(iv) and (v). Lastly, for the claims about the homology groups of S, we observe from
Hurewicz isomorphisms that the first nonzero reduced homology groups of St(RA), of E(RB)

and of St(RC) occur in dimensions 4, 2 and 3 respectively. Moreover, combining with the
epimorphism in the next dimension, we have

(i) H2(E(RB))� K alg
2 (RB)� B and H3(E(RB)) = 0,

(ii) H3(St(RC))� K alg
3 (RC)�C and H4(St(RC)) = 0.

Hence, the desired results are immediate from the Künneth Theorem. This completes the
proof.

Remark 5·2. (i) Observe that for nA � 2 as large as we like, we can replace S4(F̃A) by
S2nA(F̃A). Note also that for nA � 3,

H4(St(RA))� K alg
4 (RA)� A

(however, for nA = 2 we get A ⊕ Z). We can play the same game with B; while for C we
can take S2nC +1(F̃C) with nC � 2. We need nA, nB � 3 in Theorem 6·1 (i) below.

(ii) For n � 2nA, K alg
n (RA) contains a direct summand K alg

n−2nA
(Z), and so, when n−2nA ≡

1 (mod 4) and n − 2nA � 5, a direct summand isomorphic to Z, see [35, theorems
5·3·12 and 5·3·13]; similarly with B and C .

(iii) When A = 0, the unital ring RA is isomorphic to the 2nA-fold suspension of the ring
of integers, S2nA(Z); and similarly for RB (resp. RC ) when B = 0 (resp. C = 0).

(iv) There are two drawbacks to our construction of the group S above : first, our con-
struction of S is not functorial in A, B and C (see however Remark 2·3); secondly,
for A, B and C countable (and even finite), the group S is not countable.

6. Further consequences of the construction

We now show that the group S of Theorem 1·1 can be constructed in such a way that
further properties hold, that are stated as Theorem 6·1 below.

In this section, assuming that we have taken nA, nB � 3 in the notation of Remark 5·2 (i),
we prove the next result, which complements Theorem 1·1.

THEOREM 6·1. The group S of Theorem 1·1 has the following further properties:

(i) when B = 0, one has H4(S)� A;
(ii) for infinitely many dimensions n, the homology group Hn(S) contains an infinite

cyclic direct summand;
(iii) every finite-dimensional complex representation of S is trivial;
(iv) S/A is strongly torsion generated, centreless, and has H2(S/A)� A × B.

Proof. As in Remark 5·2 (i), we choose integers nA, nB � 3 and nC � 2, and take

RA = S2nA(F̃A) , RB = S2nB (F̃B) and RC = S2nC +1(F̃C) .

(i) Since B = 0, by the Hurewicz isomorphism, the first nonzero reduced homology
group of E(RB) is in dimension 2nB � 6, so that H4(E(RB)) = 0. (Of course, one could
also modify S by omitting all usage of RB in this case.) As a consequence and since nA � 3,

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S030500410600973X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 21:19:14, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S030500410600973X
https:/www.cambridge.org/core


256 A. J. BERRICK AND M. MATTHEY

the isomorphism H4(St(RA)) � A of Remark 5·2 (i) combines with the Künneth Theorem
to give the result.

(ii) By [1, theorem 2·1], for n � 3, there are homomorphisms

K alg
n (�) −→ Hn(E(�)) −→ K alg

n (�) and K alg
n (�) −→ Hn(St(�)) −→ K alg

n (�),

such that in each case the composite is multiplication by a positive integer. This means that
elements of infinite order in K alg

n (�) are mapped to elements of infinite order by the compos-
ite, and so must have images of infinite order in Hn(E(�)) and in Hn(St(�)), respectively.
Hence, by Remark 5·2 (ii), no matter which of the possible values for nA, nB and nC we
choose in our construction, this yields an infinite cyclic direct summand (and possibly three
such summands) in Hn(E(�)), in Hn(St(�)), and therefore in Hn(S), for infinitely many
values of n.

(iii) Because a surjective unital ring homomorphism, such as that from the cone of a ring
to its suspension, induces a surjection of Steinberg groups, it follows from the construction
that the group S is a homomorphic image of the Steinberg group

St(C( S2nA−1(F̃A) × S2nB−1(F̃B) × S2nC (F̃C))).

This group is acyclic and torsion-generated; therefore, by the main result of [6], it has no
nontrivial finite-dimensional complex representation (cf. [7, p. 191]).

(iv) We have St(RA)/A � E(RA) whence it follows that the quotient S/A is isomorphic
to E(RA × RB × RC) and is strongly torsion generated, centreless, with second homology
group isomorphic to K alg

2 (RA × RB × RC)� A × B.

The interest of item (ii) is heightened by the following observation. In [10], to construct
a strongly torsion generated group S with prescribed centre A, one starts with a centreless
strongly generated group S′ with its reduced integral homology concentrated in dimension
2 and isomorphic to A, and then one takes for S the universal central extension of S′ (see
details in [10, proof of corollary 16]). In that sense, if A has very few nonvanishing (resp.
nontorsion) integral homology groups (for example, if A is free abelian of finite rank), then
by the Lyndon-Hochschild-Serre spectral sequence one can expect S to have very few non-
vanishing (resp. nontorsion) integral homology groups as well. The argument of [10] obliges
one to be in this situation in order to establish that S is strongly torsion generated. In contrast,
for the present construction of S, infinite higher homology groups are inescapable.

7. Some open questions

The following questions are prompted by Theorem 1·1. For each of them, the further
requirement of a functorial construction is also of interest.

QUESTION 7·1. Can one find a countable group S as in the statement of Theorem 1·1 for
A, B and C finite or countable ? What about if we replace, everywhere, the word “count-
able” by “finitely generated”, or “finitely presented” ?

As a matter of comparison, it is known that any group (resp. countable group, finitely
generated group, finitely presented group, geometrically finite group) embeds in an acyc-
lic group (resp. countable acyclic group, seven-generator acyclic group, finitely presented
acyclic group, geometrically finite acyclic group), see [2]. (A group G is called geomet-
rically finite if there exists a model for its classifying space that is a finite CW -complex;
in particular, G is then torsion-free.) Since a strongly torsion generated group, by its very
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definition, contains “a lot of torsion”, Question 7·1 for “geometrically finite” has a negative
answer.

QUESTION 7·2. Given n � 3, is it possible to define an n-perfect strongly torsion gener-
ated group S with centre and Hn+1(S) prescribed abelian groups ?

The cases n = 1 and n = 2 have been achieved above. In the case n = 2, the exten-
sion A � S −� S/A is the universal central extension of the perfect group S/A, and so,
H2(S/A)� A.

The case n = ∞ (so to speak) of the above question merits special attention.

QUESTION 7·3. Given an abelian group A, is it possible to construct an acyclic strongly
torsion generated group S with centre isomorphic to A ?

Again, we can compare this with the fact, proved in [5], that any abelian group is the
centre of some acyclic group, in a functorial and explicit way.

QUESTION 7·4. Given an abelian group M and n � 3, does there exist a group G with
G/[G, G] � M, and such that [G, G] is n-perfect strongly torsion generated with trivial
centre ? Can one further require [G, G] to be acyclic ?

Again, we have already dealt with the case n = 2, where, as group G, we take the infinite
general linear group GL(S3(F̃M)), which satisfies

G
/[G, G] = K alg

1

(
S3(F̃M)

)
� M and [G, G] = E

(
S3(F̃M)

) = St
(
S3(F̃M)

)
.

Finally, here are two questions that we plan to address in subsequent work.

QUESTION 7·5. Is it possible similarly to construct a strongly torsion generated group S
with given centre and having more prescribed homology than in Theorem 1·1 ?

QUESTION 7·6. What kind of information do the ring F̃M and its K -theory convey about
the abelian group M ?
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