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ABSTRACT

Motivation: The University of Minnesota Pathway Prediction
System (UM-PPS) is a rule-based expert system to predict plausible
biodegradation pathways for organic compounds. However,
iterative application of these rules to generate biodegradation
pathways leads to combinatorial explosion. We use data from
known biotransformation pathways to rationally determine
biotransformation priorities (relative reasoning rules) to limit
this explosion.
Results: A total of 112 relative reasoning rules were identified and
implemented. In one prediction step, i.e. as per one generation
predicted, the use of relative reasoning decreases the predicted
biotransformations by over 25% for 50 compounds used to generate
the rules and by about 15% for an external validation set of 47
xenobiotics, including pesticides, biocides and pharmaceuticals. The
percentage of correctly predicted, experimentally known products
remains at 75% when relative reasoning is used. The set of relative
reasoning rules identified, therefore, effectively reduces the number
of predicted transformation products without compromising the
quality of the predictions.
Availability: The UM-PPS server is freely available on the web
to all users at the time of submission of this manuscript and
will be available following publication at http://umbbd.msi.umn.edu/
predict/.
Contact: kathrin.fenner@eawag.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Persistence of man-made chemicals (xenobiotics) in the environ-
ment is largely predicated on their susceptibility to degradation by
microbial metabolism. Thus, a thorough understanding of microbial
degradative metabolism is a crucial component in environmental
risk assessment of chemicals. In this context, more data on
microbial degradation is now mandated by new legislation in Europe
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concerning industrial chemicals (REACH, 2006) and human and
veterinary medicines (EMEA, 2006; VICH, 2004).

Due to these increased data requirements, in silico methods to
predict biodegradation behavior at an early stage of environmental
risk assessment are increasingly sought. So far, these tools are mostly
geared towards predicting general biodegradability; for example,
whether or not a chemical passes a regulatory ready biodegradability
test (Jaworska et al., 2003). Most recently, more focus has been
directed toward predicting biodegradation pathways and products
that may accumulate in the environment. Regulatory requirements
to determine stable transformation products have been driven by
multiple reports on transformation products being found at higher
concentrations than the initial parent compounds (Battaglin et al.,
2005; Kolpin et al., 2004). Anticipating what products might be
formed with untested chemicals is important at several levels. It
can identify potentially toxic and stable transformation products at
the screening stage of environmental risk assessment. Moreover,
products predicted in silico can be used to guide chemical analysis
in degradation studies. Current tools that predict biodegradation
pathways include META (Klopman and Tu, 1997), CATABOL
(Jaworska et al., 2002) and the UM-PPS (Hou et al., 2004).
They all belong to the category of artificial intelligence systems,
in that they are based on a set of transformation rules that
recognize compound substructures and transform them into product
substructures according to these rules.

The most recently created, the University of Minnesota Pathway
Prediction System (UM-PPS) (Hou et al., 2004), uses substructure
searching and atom-to-atom mapping to transform a query substrate
into a product when a rule’s substrate substructure is present in the
query. The UM-PPS biotransformation rules (btrules) are primarily
based on the University of Minnesota Biodegradation/Biocatalysis
Database (UM-BBD) (Ellis et al., 2006), a manually curated
collection of almost 200 microbially mediated metabolic pathways,
consisting of over 1000 enzyme-catalyzed reactions. The set of about
200 UM-PPS rules covers over 90% of appropriate reactions in
the UM-BBD. However, simple application of all possible rules
typically yields many predicted transformation products, some
of which may not occur in nature and thus are false positives.
False positives lead to combinatorial explosion when the rules are
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Fig. 1. Combinatorial explosion over the first two generations of predicted
benzamide biotransformations with UM-PPS.

iteratively applied to predict consecutive steps of biodegradation
reactions. Even a structurally simple compound may trigger multiple
transformation rules and may thus yield many predicted products as
illustrated in Figure 1. An even greater number of products may
be observed for in silico predictions with environmentally relevant,
xenobiotic chemicals, which frequently contain multiple functional
groups. This problem is not exclusive to UM-PPS, but applies in
principle to all rule-based artificial intelligence systems for pathway
prediction. Note that this type of combinatorial explosion is different
from the one encountered in the construction and analysis of large
metabolic flux networks (e.g. Urbanczik and Wagner, 2005).

Others use various methods to limit biodegradation pathway
prediction: (i) restriction of the rules’ applicability domain through
further specifications in terms of molecular descriptors (Embrechts
and Ekins, 2007; Mu et al., 2006), molecular substructures (Gomez
et al., 2007) or chemical similarity (Oh et al., 2007), or (ii)
predefinition of rule probabilities modeled on biological oxygen
demand (BOD) data (Jaworska et al., 2002). These methods exhibit
different shortcomings that limit their applicability for this task,
including the need for defining negative prediction outcomes to
train statistical methods based on molecular descriptors, restriction
of the analysis to the chemical environment immediately adjacent
to the functional group being transformed (Mu et al., 2006),
the inappropriateness of chemical similarity measures to describe
biochemical similarity and the dichotomy between coverage and
prediction accuracy in the similarity approach (Oh et al., 2007).

In an initial effort to deal with combinatorial explosion in UM-
PPS, expert knowledge was provided to rank UM-PPS rules into five
aerobic likelihood groups (very likely, likely, neutral, unlikely and
very unlikely) (Ellis et al., 2006). This ‘absolute’ reasoning approach
can be used to reduce the number of aerobic predictions, e.g. by
removing unlikely and very unlikely biotransformations. However,
since only 20% of the UM-PPS btrules have an aerobic likelihood
of unlikely or very unlikely, this approach alone is insufficient.

In the present study, we explore the complementary approach
of using relative reasoning. Relative reasoning has previously
been used to limit combinatorial explosion in the prediction of
mammalian detoxification pathways (Button et al., 2003). Our
approach accounts for the fact that there are almost invariably

several functional groups in a molecule that might potentially react.
In this case, it gives priority to those of a set of applicable rules
that, based on existing knowledge of biotranformation pathways,
are deemed to encode preferred biotransformations. Knowledge
on which biotransformations for a specific molecular structure are
preferred is extracted from the UM-BBD database. While the goal
of this project is to restrict the number of predicted products, the
new system should not be overly restrictive since most xenobiotics
are degraded by multiple metabolic pathways in the environment.

2 METHODS

2.1 Extraction of rule priorities from UM-BBD
Information on rules priorities was extracted from the over 1000
reactions reported in the UM-BBD database and stored in a matrix. On
July 24, 2007 the UM-PPS contained 204 btrules and the UM-BBD
contained 1084 compounds. Of these, 366 compounds not associated
with any rule (terminal compounds of reported pathways, compounds
containing metals or other compounds whose biodegradation should not
be predicted, http://umbbd.msi.umn.edu/predict/notbepredicted.html) were
removed. Likewise 25 strictly anaerobic (unlikely or very unlikely) btrules
and btrules not triggered by any compound in the UM-BBD were removed.
The remaining 718 UM-BBD compounds were submitted to 179 UM-PPS
btrules. Three outcomes were distinguished and encoded into a 718 × 179
matrix D, with the columns representing all UM-PPS btrules and the
rows representing all UM-BBD compounds. The outcomes for the 64 261
(718 × 179/2) possible compound/rule combinations were distinguished as
follows.

• Compound ci does not trigger a given btrule rj (encoded as Dij =−1).

• Compound ci triggers a given btrule rj , but the known reaction(s) for
that compound reported in UM-BBD proceed(s) according to a different
btrule (encoded as Dij = 0).

• Compound ci does trigger a given btrule rj , and the transformation
encoded by that btrule represents a known reaction for that compound
in UM-BBD (encoded as Dij = 1).

The resulting matrix, which can be obtained from the authors on request,
contains all information on possible and known reactions of the 718
UM-BBD compounds.

This information was further analyzed to find relative priorities between
pairs of rules, which could then be used as relative reasoning rules in
UM-PPS.

2.2 Identification of relative reasoning rules
To identify valid relative reasoning rules, the matrix was searched for pairs
of rules with compounds in common (i.e. compounds that trigger both rules).
These rule pairs were further examined to find those for which the known
pathways for the compounds held in common (i.e. compounds that triggered
both rules) all proceed exclusively according to one of the two rules. Such
rule pairs are candidates for relative reasoning rules and are referred to as
one-directional rule pairs.

A one-directional relationship with five common compounds shared by
two rules has only a 3% probability to occur (0.55 = 0.03125). Therefore,
it could be regarded as sufficiently robust to be considered a valid relative
reasoning rule. However, in chemical terms, diversity of molecular structures
is another prerequisite to define broadly applicable relative reasoning rules.
Structural diversity is given if the functional groups that trigger the two rules
of a rule pair are present in several different stereo- and electrochemical
arrangements in the set of common compounds. This prerequisite is not
always fulfilled for the compounds within the UM-BBD. We therefore
defined two levels of relative reasoning rules.
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Table 1. Reaction groups and btrules assigned to each

Reaction group btrules

Alcohol oxidation bt0001, bt0002
Aldehyde oxidation bt0003
Aliphatic hydroxylation bt0241, bt0242, bt0036, bt0332,

bt0333, bt0334
Amide hydrolysis bt0067, bt0318, bt0024, bt0027
Aromatic vic-diol ring cleavage bt0008, bt0254, bt0041, bt0045,

bt0069, bt0131, bt0165, bt0174,
bt0184, bt0297

Aromatic ring dioxygenation bt0005, bt0042, bt0055, bt0065,
bt0072, bt0128, bt0196

Aromatic ring monooxygenation bt0011, bt0012, bt0013
Phenolic ring monooxygenation bt0014, bt0064
C=C bond reactions bt0021, bt0049, bt0259, bt0291
CoA-thioester formation bt0094, bt0315
Decarboxylation bt0051, bt0082, bt0060, bt0072
Keto-ene hydrolysis bt0040, bt0047
Keto-enol tautomerism bt0231, bt0044
Oxidation of vic-di-H-di-OH to aromatic bt0255, bt0056, bt0197

Rules in normal font are part of a strict relative reasoning rule; rules in italics were added
to develop the extended rule set (see text). Details of each btrule, for example, bt0001,
can be seen using the URL: http://umbbd.msi.umn.edu/servlets/rule.jsp?rule=bt0001

For the first, strict level, a conservative criterion of a minimum of 10
common compounds showing a one-directional relationship was used to
select relative reasoning rules. To be more precise, let Ti be the set of
compounds for which rule ri is triggered (i.e. Ti = {j|Dji = 0 ∨Dji = 1} and
Oi be the set of compounds for which rule ri is triggered and represents a
known UM-BBD reaction for that compound (i.e. Oi = {j|Dji = 1}, thus,
Oi ⊆ Ti). (Note that clearly Oi ∩ Ti ∩Tj = Oi ∩Tj and, vice versa, Ti ∩Tj ∩
Oj = Ti ∩Oj .) The condition for the selection of strict relative reasoning rules
then reads as:

R′
A ={(ri >rj) | |Oi ∩Tj|≥10 ∧ |Ti ∩ Oj|=0}

R′
A was post-processed by inspecting the compound structures within each set

of common compounds to confirm diversity of the reaction centers and their
relative positions in the molecules. Since scientific knowledge on enzyme
specificities for a broad set of enzymes is clearly insufficient to derive
objective measures of the required structural diversity, it was dealt with
as follows. If structural diversity was limited, i.e. three or less molecular
substructures were sufficient to represent the relative positions of the reaction
centers in the set of common compounds, the relative reasoning rule was
restricted to only apply to compounds containing those exact substructures
(for an example, see Section 3.1). This yielded a final set of strict relative
reasoning rules, RA.

For the second, extended level, the search for relative reasoning rules was
extended using analogy reasoning. For each btrule that was part of a relative
reasoning rule on the first level, additional btrules that belong to the same
type of reaction were identified (reaction groups, see Table 1). For each strict
relative reasoning rule, all possible pairings of btrules belonging to the two
respective reaction groups were then analyzed (reaction group matrix). If
there was no contradiction to the one-directional relationship of the strict
relative reasoning rule across the entire reaction group matrix, rule pairs
within that matrix that exhibited at least five common compounds or with at
least one common compound but for which one of the two btrules was part
of the corresponding strict rule pair were included into the set of extended
(second level) relative reasoning rules. In mathematical terms, let group(ri)
denote the set of rules that belong to the same type of reaction as ri. The
condition for the selection of additional relative reasoning rules to be included

in the extended set then reads as:

RB ={(ri >rj)|(r′
i >r′

j ) ∈ RA ∧ ri ∈ group(r′
i ) ∧ rj ∈ group(r′

j )

∧|Ti ∩ Tj|≥ 1 ∧ (¬∃c : c /∈ Oi ∧ c ∈ Oj) ∧ ((|Oi ∩ Tj|
≥ 5 ∧ |Ti ∩ Oj|= 0) ∨ ri =r′

i ∨ rj =r′
j )}

All proposed relative reasoning rules were found to conform to common
knowledge of microbial metabolism. It was also tested whether there were
any contradictions in priorities across all relative reasoning rules. No such
contradictions were found despite relative reasoning rules being derived by
pairwise analysis. These two analyses confirmed that our procedure was
sufficiently stringent to avoid chance relationships and produced results
representing valid metabolic logic.

2.3 Validation method
2.3.1 Testing sets Two sets of compounds were selected for validation
of the relative reasoning approach. The first set consisted of 50 randomly
selected UM-BBD compounds. This set contained both starting compounds
and intermediary metabolites of UM-BBD pathways. Since most of these
compounds were part of the training set, the main purpose of this set was
to check the correctness of our procedure to identify and implement relative
reasoning rules. The second, external validation set contained 47 xenobiotic
compounds from different chemical classes: 24 pesticides, 7 biocides and 16
pharmaceuticals (compound names, CAS numbers and molecular structures
are given in Table S1 of the Supplementary Material).

2.3.2 Validation method Performance of the relative reasoning approach
was measured in comparison to the performance of UM-PPS before the
implementation of relative reasoning. The evaluation was done in two
stages, first implementing the set of strict relative reasoning rules, and
second implementing the set of extended relative reasoning rules. Three
measures were defined to quantify the effect of implementing relative
reasoning rules. To calculate them, we counted the number of predicted
transformation reactions PR, the number of known reactions that are correctly
predicted KRp and the number of known reactions that are not predicted
KRnp. These outcomes were evaluated for prediction of the first generation
of transformation products, i.e. for one transformation step only. The last
two outcomes, KRp and KRnp, were evaluated for the UM-BBD validation
set and for 25 pesticides and biocides from the xenobiotics validation set.
For the UM-BBD validation set, the known reactions were available from
the UM-BBD database. For the xenobiotics validation set we used the
handbooks of Roberts (1998) on metabolic pathways for pesticides, and the
scientific literature, to identify reactions leading to known first generation
transformation products (the experimentally known biodegradation products,
including names, CAS numbers and molecular structures are given in Table
S2 of the Supplementary Material).

The three performance measures defined are reduction (Equation (1)),
indicating by what percentage the number of predicted transformation
reactions could be reduced by implementing relative reasoning; sensitivity
(Equation (2)), indicating what percentage of known transformation reactions
are captured by the UM-PPS predictions; and selectivity (Equation (3)),
a measure of prediction stringency, indicating how many of the predicted
reactions correspond to known products.

Reduction :
(

1− PRARR
PRBRR

)
·100 (1)

Sensitivity :
(

KRp

KRp +KRnp

)
·100 (2)

Selectivity : KRp

PR
·100 (3)

PRBRR is the number of predicted reactions before introduction of relative
reasoning, and PRARRis the number of predicted reactions after introduction
of relative reasoning.
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Table 2. Relative priorities among reaction groups

Reaction Group Name (abbr.) Priority over

Alcohol oxidation (acx) arm, alh
Aldehyde oxidation (adx) ard, arm, cc, alh
Aliphatic hydroxylation (alh) –
Amide hydrolysis (amh) alh
Aromatic vic-diol ring cleavage (arc) ard, arm
Aromatic ring dioxygenation (ard) –
Aromatic ring monooxygenation (arm) ard
Phenolic ring monooxygenation (prm) arm
C=C bond reactions (cc) alh
CoA-thioester formation (coa) alh
Decarboxylation (dc) –
Keto-ene hydrolysis (keh) ard, arm, cc, coa, dc, ket
Keto-enol tautomerism (ket) –
Oxidation of vic-di-H-di-OH to aromatic (vda) acx, ard, arm, cc

3 RESULTS AND DISCUSSION

3.1 Relative reasoning rules
Of the 90 rule pairs with ≥10 compounds in common, 46
were clearly one-directional. Inspection of the structural diversity
of the common compounds of each one-directional rule pair
led to the restriction of the applicability domain of one rule
pair (bt0067 > bt0242) to secondary amides only. The other 45
one-directional relationships were used directly as strict relative
reasoning rules. The btrules involved in the strict relative reasoning
rules could be attributed to 14 different reaction groups. Table 1
lists the different reaction groups and the btrules assigned to them. It
distinguishes between btrules that are part of strict relative reasoning
rules and btrules that were assigned to the same reaction groups for
use in analogy reasoning. Table 2 indicates the priorities between
reaction groups as derived from the strict rule set. Based on the
reaction groups and priorities in Tables 1 and 2, an additional 66
relative reasoning rules were identified for the extended set of rules.
Table 3 gives the two sets of strict and extended relative reasoning
rules thus derived.

3.2 Implementation
The relative reasoning rules were implemented in three
different ways. For two of the biotransformations, oxidation
of aldehyde to carboxylate (bt0003) and oxidation of vic-
dihydrodihydroxyaromatic to vic-dihydroxyaromatic (bt0255),
evidence from gene sequencing and enzymatic studies suggest
that they proceed very readily once their substrate substructures
(aldehyde for bt0003 or vic-dihydrodihydroxyaromatic for bt0255)
are formed. The high likelihoods of bt0003 and bt0255 were further
confirmed by inspection of the extracted rule priority matrix, which
showed that in 211 out of 215 (for bt0003) and in 237 out of
238 cases (for bt0255) these btrules have priority over the other
applicable btrules. These rules were, therefore, implemented as
so-called immediate btrules in UM-PPS. For immediate btrules only
the product of the immediate btrule (carboxylate for bt0003 or
vic-dihydroxyaromatic for bt0255) is shown to the user; the user
is not given the choice of selecting any of the other theoretically
possible transformation products of the starting compound.

Table 3. Strict (A) and extended (B) relative reasoning rules derived from
the extracted rule priorities

A. Strict relative reasoning rules

bt0001 > bt0011, bt0012
bt0002 > bt0241, bt0242

bt0003a > bt0005, bt0011, bt0012, bt0013, bt0021, bt0049, bt0291, bt0242
bt0008 > bt0005, bt0011, bt0012, bt0013, bt0014, bt0064
bt0014 > bt0005
bt0021 > bt0242
bt0040 > bt0049, bt0231

bt0047a > bt0005, bt0011, bt0012, bt0021, bt0049, bt0291, bt0040, bt0051,
bt0082, bt0094

bt0067 > bt0242b

bt0094 > bt0241, bt0242
bt0254 > bt0005, bt0014, bt0064

bt0255a > bt0002, bt0005, bt0011, bt0012, bt0013, bt0021, bt0049, bt0291
B. Extended relative reasoning rules

bt0001 > bt0011, bt0012, bt0013, bt0014, bt0064, bt0241, bt0242
bt0002 > bt0011, bt0012, bt0013, bt0241, bt0242, bt0332, bt0333, bt0334
bt0008 > bt0005, bt0011, bt0012, bt0013, bt0014, bt0055, bt0064,

bt0065, bt0128
bt0014 > bt0005, bt0011c, bt0012c, bt0013c

bt0021 > bt0241, bt0242
bt0040 > bt0005, bt0011, bt0012, bt0049, bt0231
bt0041 > bt0005, bt0011, bt0012, bt0013, bt0014, bt0064
bt0045 > bt0005, bt0011, bt0012, bt0013, bt0014, bt0064
bt0056 > bt0002, bt0005, bt0011, bt0012, bt0013, bt0021, bt0049, bt0291
bt0067 > bt0242b

bt0069 > bt0014
bt0094 > bt0241, bt0242
bt0131 > bt0005, bt0014, bt0064
bt0165 > bt0005, bt0014, bt0064
bt0174 > bt0005, bt0011, bt0012, bt0013, bt0014
bt0197 > bt0002, bt0005, bt0011, bt0012, bt0013, bt0021, bt0049, bt0291
bt0254 > bt0005, bt0011, bt0012, bt0014, bt0055, bt0064, bt0128
bt0297 > bt0005

aThese strict rules were treated separately and do not form part of the extended rule set
(see text).
bThis relative reasoning rule was only applied to secondary amides (see text).
cThere were only 8, 7 and 6 common compounds between bt0014 and bt0011, bt0012
and bt0013, respectively, and no corresponding strict relative reasoning rule. However,
since these rule priorities represent common metabolic logic, they were nonetheless
implemented at the extended level.

Another btrule, bt0047 (hydrolytic cleavage of 2-oxo-3-enoate-
4-aryl compounds to pyruvate and aromatic aldehydes), was also
identified as a candidate immediate btrule: in 2 out of 175 cases
involving bt0047 as one btrule of a rule pair, both bt0047 and the
other btrule represent known reactions for their common compound.
In all remaining 173 cases bt0047 has priority. However, because
bt0047 is an integral part of a common pathway for the degradation
of condensed aromatic compounds, it was not implemented as an
immediate btrule. Instead, the entire pathway was implemented as a
single super rule covering a series of reactions in a fixed sequence,
with bt0047 included as one step of that super rule. The overall effect
of this on the number of predicted reactions is the same as that of
an immediate btrule.

All other relative reasoning rules identified in Table 3 were
implemented such that whenever two btrules for which a relative
reasoning rule exists are triggered for a given compound, only the
product of the btrule with the higher priority is shown. Other rules
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Fig. 2. First generation biotransformation products of atenolol before (all arrows) and after implementation of the extended set of relative reasoning rules
(eliminated biotransformations with solid Xs). The biotransformation with a dotted X can be eliminated by absolute reasoning (see text). The transformed
atoms and newly formed bonds are marked in bold.

with no relative reasoning associated could still be triggered for the
same compound. In contrast to the case for immediate btrules, the
products of those rules would also be shown besides the product
of the rule that is given priority through an associated relative
reasoning rule.

3.3 Validation
Table 4 presents the reduction in predicted transformation reactions
achieved by implementing relative reasoning for the two validation
sets. Reduction is around 25% for the UM-BBD compound set, and
between 10–15% for the xenobiotics. This is as expected, since the
relative reasoning rules were trained on the UM-BBD compounds
and should therefore work most effectively for them.

More specifically, the UM-BBD compound set includes products
of common intermediary metabolism and many of the relative
reasoning rules involve btrules only applicable in such common
metabolism. This can also be seen when comparing the reductions
achieved with and without implementing the immediate rules.
Whereas the reduction increases by another 4% for the UM-BBD
compounds upon implementing the immediate rules, the xenobiotics
are not affected by the immediate rules because these do not apply
to the stable parent compounds in the xenobiotics validation set.

In individual cases, the reduction can be considerable as is
illustrated in Figure 2 for the human pharmaceutical atenolol. For
this compound, the final system including relative and absolute
reasoning (aerobic likelihood set to neutral or above) yields a
reduction of 42% in the first generation. Still, an average reduction
of 16% (xenobiotics) to 27% (UM-BBD) after implementation of the
extended set of relative reasoning rules might not at first seem like a
large gain. However, if similar reductions are achieved over several
generations, this will reduce the number of predicted reactions
in a multiplicative way. Statistically, a reduction of 27% in the
first generation propagates into a reduction of 47% in the second
generation, and a reduction of 61% in the third generation. For the
example of atenolol again, final system performance including

Table 4. Reduction in number of predicted reactions (PR) for the UM-BBD
and xenobiotics validation sets

PR Reduction (%)
(no immediate rules) (no immediate rules)

n Original Strict Extended Strict Extended

UM-BBD 50 429 331 (348) 315 (332) 22.8 (18.9) 26.6 (22.6)
Xenobiotics 47 564 512 (512) 472 (472) 9.2 (9.2) 16.3 (16.3)

Numbers in parentheses ignore immediate rules. Results for before (‘original’) and after
the implementation of both the strict and extended relative reasoning rule set are given.

relative and absolute reasoning over several generations is illustrated
in Table 5. The final system shows a reduction of 73% in the third
generation of atenolol transformation products, confirming its ability
to reduce the hypothetical products to a much more manageable
number.

Table 6 shows the results for the sensitivity and selectivity of UM-
PPS before and after implementation of the strict and extended set of
relative reasoning rules. For the UM-BBD validation set, about 75%
of reported reactions in the database are also predicted by UM-PPS.
The sensitivity is lower than 100% because some transformation
reactions of UM-BBD compounds are not covered by UM-PPS
rules. These include some anaerobic and fungal reactions with only
one or two examples in the database as well as multistep reactions
where the intermediary products of the pathway are not known.
UM-PPS does not assign rules to reactions covering multiple,
unknown steps.

The sensitivity for the pesticides validation set is at 74% of known
reactions and products predicted, similarly high as for the UM-
BBD validation set. We consider this sensitivity to be satisfactory,
given the fact that most of the pesticides exhibit considerably more
complex structures than the compounds in the UM-BBD. Also, rules
for some of the functional groups present in pesticides or biocides
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Table 5. Number of predicted transformation products (PP) for the
β-blocker atenolol over three generations without any rule priorities and
with absolute and relative reasoning in place

PP Reduction (%)

No rule Absolute and relative
priorities reasoning

1st generation 12 7 41.7
2nd generation 80 28 65.0
3rd generation 474 128 73.0

Absolute reasoning criterion set to select products with aerobic likelihood of neutral or
above.

are currently missing in the UM-PPS. The analysis of the validation
results helped us to identify these functional groups. Among others,
these include imine bonds and the carbamate functional group, both
of which are potentially amenable to enzyme-mediated hydrolytic
cleavage.

Sensitivity is identical before and after introduction of relative
reasoning. No deterioration of sensitivity is observed between
the strict and extended set of relative reasoning rules. This
confirms the accuracy of our relative reasoning rules and suggests
that the extended set of relative reasoning rules is not overly
broad. Due to this, and since the gain in prediction reduction is
considerable between the strict and extended set, the extended set
was implemented in the current version of the UM-PPS.

In contrast, selectivity is rather low, in the range of 15–18% both
for the UM-BBD and pesticide validation sets. Also, it shows only
a moderate improvement of 3–4% after the introduction of relative
reasoning. This means that even with relative reasoning in place,
UM-PPS still has a tendency to predict a considerable number of
other transformation products in addition to those that are observed
experimentally in the laboratory or under real world conditions.

Although not completely comparable due to slight differences in
definitions, the sensitivities of our approach compare well with the
sensitivity of the latest version of CATABOL (Dimitrov et al., 2007),
which is reported as 70%. However, CATABOL clearly predicts
relatively less false positives as reflected in a reported selectivity of
70%. In CATABOL, this selectivity is achieved by restricting the
predictions to the application of only the most probable rule from
the second generation onwards; the first generation is predicted by
applying all possible rules, independent of their probability.

In this context, it is interesting to observe that indeed usually only
one product is found for each compound in the UM-BBD, whereas
up to five first generation transformation products (average: 2.3
products/compound) are reported for the pesticides. This illustrates
an important point: not all possible products that might be formed
for a given compound under varying experimental or environmental
conditions are usually reported in the UM-BBD, or in the scientific
literature on which it is based. This is especially true for pathways
identified in pure culture studies, where compounds often represent
the sole nutrient and/or energy source and microbes will tend
to express the most thermodynamically efficient pathways. Under
environmental conditions, on the other hand, co-metabolism is more
likely to occur and the product spectrum, therefore, depends more
on the enzyme pool available under a given condition rather than
on thermodynamic optimization. This situation would typically lead

Table 6. Sensitivity and selectivity before and after strict and extended
relative reasoning for UM-BBD validation set and pesticides/biocides from
the xenobiotics validation set

n PR KRp KRnp Sensitivity (%) Selectivity (%)

Original

UM-BBD 50 429 50 17 74.6 11.7
Pesticides 25 280 43 15 74.1 15.4

Strict

UM-BBD 50 331 50 17 74.6 15.1
Pesticides 25 258 43 15 74.1 16.7

Extended

UM-BBD 50 315 50 17 74.6 15.9
Pesticides 25 240 43 15 74.1 17.9

PR, number of predicted reactions; KRp, number of known reactions that are correctly
predicted; KRnp, number of known reactions that are not predicted.

to a broader spectrum of products, which is reflected in the higher
number of known products for pesticides compared to UM-BBD
compounds. Therefore, the application of only the most probable
rule from the second generation onwards in CATABOL seems overly
restrictive, especially since it is not detailed whether this procedure
was in any way optimized based on existing data. On the other hand,
while 15–18% selectivity achieved with relative reasoning in UM-
PPS might still be somewhat low, it is probably not far from the
optimum selectivity, which lies well below 100%.

4 CONCLUSIONS
This study successfully implemented relative reasoning in
biodegradation pathway prediction. The set of relative reasoning
rules identified so far effectively reduces the number of predicted
transformation products, especially for predictions over several
generations of transformation products.

Whereas our results also show that the thus modified UM-PPS
system is generally successful at predicting most known products,
it still predicts on average five times more products than are
experimentally observed. However, this seemingly low sensitivity
should be examined in light of the main purpose of the UM-PPS
system, which is to support microbiologists, analytical chemists and
chemical risk assessors to generate plausible hypotheses regarding
possible biotransformation products. It therefore should not be too
restrictive.

Atenolol nicely underscores this principle. It was shown to be
partially biodegraded during sewage treatment, but no information
was given on possible degradation products (Maurer et al., 2007).
Figure 2 shows that relative and absolute reasoning leads to a
reduction in the first generation biotransformation products of
atenolol to seven plausible products. One of them has recently
been shown to be the major product in an OECD 308 sediment-
water biodegradation study (T.Ternes, personal communication).
Screening of a water sample for seven possible transformation
products is a feasible task using modern mass spectrometric
techniques and would have supported effective discovery of that
product.
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The set of relative reasoning rules established in this study
will be checked for consistency and updated on a yearly
basis as more known compounds, reactions and pathways are
included into UM-BBD. Also, work on extending the collection of
biotransformation rules, and improving the sensitivity of UM-PPS,
will continue and focus on some of the missing rules for typical
xenobiotic structures identified in this study. Finally, not all the
information stored in the rule priority matrix has been uncovered.
We are currently exploring machine learning methods to develop
chemical structure-based probabilistic relative reasoning rules that
would make use of the information present for rule pairs not
exhibiting a clear one-directional relationship.
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