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On Ohmic heating in the Earth’s core I: nutation constraints
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1Institute for Geophysics, ETH Zürich, CH-8093 Switzerland. E-mail: ajackson@ethz.ch
2IGPP, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093, USA

Accepted 2008 October 2. Received 2008 October 1; in original form 2008 May 14

S U M M A R Y
We present calculations to place formal lower bounds on the energy dissipated by the magnetic
field in the core. These bounds are discovered by solving for 3-D magnetic fields in the Earth’s
core that are optimally configured for minimizing the dissipation. Such bounds are relevant
for addressing the balance of heat flow through the core–mantle boundary into the mantle, and
thus for constraining Earth’s history scenarios. The bounds we derive are based on a number
of different constraints. We use observed values of the magnetic field at the core–mantle
boundary for epoch 2001, and also the root-mean-square values of the radial magnetic field
on the inner core boundary and the core mantle boundary inferred from interpretations of
the Earth’s nutations. A formal lower bound for the dissipation based on all the constraints
is almost 10 GW. This lower bound is achieved for a 3-D magnetic field configuration that
has very unlikely features. We present two further geophysically reasonable (but no longer
rigorous) calculations that raise the dissipation towards 100 GW, not dissimilar to other recent
estimates of dissipation.

Key words: Electromagnetic theory; Dynamo: theories and simulations; Heat flow.

1 I N T RO D U C T I O N

There is currently considerable interest in the heat budget of the Earth, and in particular, in quantifying the contribution of the core to the total
budget. On the one hand, the amount of heat leaving the core is important in governing the process of mantle convection, since convection with
a significant heating from below can be different in character to primarily internally heated convection (Schubert et al. 2001). On the other
hand, the amount of heat flowing through the core–mantle boundary (CMB) is intimately related to the heat needed to drive the geodynamo
and maintain the magnetic field through time. This quantity is central to studies of convection in the core, with interesting repercussions for
the entire evolution of the Earth; indeed, the age of the inner core (since formation) hinges crucially on this quantity (e.g. Nimmo 2007).
Several lines of argument are available for estimating the partitioning of heat flow, but it is remarkable how large the range of possibilities is
for the heat leaving the core, with probably an order of magnitude of difference between lower and upper values.

Of the 44 TW of heat leaving the Earth (Chapman & Pollack 1975), perhaps 20 TW is thought to be generated in the mantle from
radioactivity if we adopt the CI chondrite model of McDonough & Sun (1995), which contains 240 ppm of potassium. In addition, a further
8 TW is generated in the crust. The remaining mantle contribution we should account for is the heat lost through cooling. This is difficult to
estimate and leads to perhaps 7–15 TW of heat. The core contribution is clearly very poorly defined under this accounting, clearly between 1
and 9 TW, in other words an order of magnitude of uncertainty. Lay et al. (2008) have reviewed the situation and give similar figures, though
some have even larger uncertainties than those we give.

A new method for estimating the temperature gradient at the base of the mantle, and hence the heat flow, has emerged as a result of
the discovery of the post-perovskite transition close to the CMB (Iitaka et al. 2004; Murakami et al. 2004; Oganov & Ono 2004). In this
method, a double-crossing of the perovskite to post-perovskite transition can occur as a result of the strong temperature gradient in the thermal
boundary layer at the base of the mantle. The thermal conductivity of the mantle is required to perform the conversion, and indeed there is
controversy over the value of this figure for mantle materials; disregarding this for the moment, the value for the heat flux at the base of the
mantle is in the range 9–13 TW according to the studies of Hernlund et al. (2005) and 9–17 TW according to Lay et al. (2006).

A lower bound on the heat leaving the core is simply the heat flowing down the adiabat at the CMB, though this depends on the
assumption that the whole of the core is well mixed; a stably stratified layer at the top of the core could reduce this number. Recent estimates
of the heat flowing down the adiabat vary, but the range 6–8 TW seems representative (Gubbins et al. 2003; Roberts et al. 2003). Arguments
based on the heat flux carried by plumes originating at the CMB give estimates in the range of 3–9 TW (Montelli et al. 2004) or 2–3 TW
(Davies 1999).
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Another set of estimates for the heat leaving the core is based on thermodynamic arguments, and requires a figure for the en-
tropy needed to drive the dynamo, sometimes loosely called the dissipation and given as an energy rather than an entropy. The dis-
sipation is the amount of energy lost by Ohmic heating in the core due to its finite electrical conductivity. This figure has been esti-
mated in several ways. If one adopts the view of Roberts et al. (2003), the dissipation takes a value 1–2 TW; similarly Gubbins et al.
(2003) give the value of approximately 2 TW (equivalent to an entropy of 500 MW K−1), but the objectivity of the methods used to
determine the entropy needed is somewhat wanting. The former originates with estimates of the spectrum of energy in the core and
makes links with behaviour of dynamo models. The latter simply sets the Ohmic dissipation equal to the entropy increase due to
thermal conduction down the adiabat. A separate recent estimate of Christensen & Tilgner (2004) is based on scaling the energetics
of numerous numerical dynamo models to reach the relevant regime of the Earth, with corroboration of the scaling provided by the results of
the Karlsruhe dynamo experiment (Stieglitz & Müller 2001). This gives estimates in the range 0.2–0.5 TW.

A few words are in order concerning the connection between the dissipation and the heat flow at the CMB. Because of thermodynamic
efficiency constraints, the dissipation is only a fraction of the heat flow through the CMB. When convection is generated by latent heat and
light element release at the inner core boundary (ICB), dissipations of 1–2 TW are associated with heat flows of perhaps 5–10 TW. In the
absence of an inner core, these figures essentially double and there become grave difficulties with the driving mechanisms for the dynamo.
Such a discussion is outside the scope of this paper, details can be found in, for example, Roberts et al. (2003).

Another approach, originating in the work of Parker (1972), places a rigorous lower bound on the Ohmic heating in the core (the
dissipation referred to above) based purely on the observed values of the magnetic field. Parker asked the question, ‘what is the minimum
value of the mean-square current density (over the whole core) that could be associated with the observed value of the Earth’s dipole field?’.
He used variational calculus to show that there is a unique minimum value of this quantity compatible with the measured dipole field. If J is
the current density and a value for the electrical conductivity of the core σ is supplied, then the Ohmic heating � can be duly calculated as

� = 1

σ

∫
J2 dV = 1

μ2
0σ

∫
V

(∇ ∧ B)2 dV . (1)

Here, we have used the Maxwell equation ∇ ∧ B = μ0J to relate J to the magnetic field B. Indeed, when a modern value for the dipole
moment of B is used, (1) gives � = 5.7 × 107 W. Actually in the original paper, Parker turned the problem around and adopted a steady state
assumption (that the heat emerging from the core cannot exceed that observed to be flowing out of the Earth’s surface) to place a bound on
the electrical conductivity of the core.

A significant refinement of Parker’s calculation was provided by Gubbins (1975), who generalized the calculation to take into account all
the harmonics of the observed magnetic field. We shall refer to this problem in the rest of the paper as the canonical P–G (i.e. Parker–Gubbins)
problem. In what follows we take a to be the Earth’s radius, c to be the core radius and b to be the inner core radius. The exterior magnetic
field B, measured in spherical polar coordinates (r , θ , φ), is represented as the gradient of a potential V as

B = −∇V, (2)

and V is expanded as a series of Schmidt quasi-normalized spherical harmonics with associated Gauss coefficients {gm
l ;hm

l } in the form

V = a
∑
l,m

(a

r

)l+1 [
gm

l cos mφ + hm
l sin mφ

]
Pm

l (cos θ ), (3)

where Pm
l is an associated Legendre function. We shall find it convenient to write (3) in the compact form

V = a
∑
l,m

(a

r

)l+1
βm

l Y m
l (θ, φ), (4)

where Y m
l is a spherical harmonic and with an obvious identification of the coefficients {βm

l } with the Gauss coefficients {gm
l ;hm

l }. The Y m
l

satisfy∫ (
Y m

l

)2
d� =

〈(
Y m

l

)2
〉
= 4π

2l + 1
, (5)

where d� is the element of solid angle on the surface of a sphere, and we have introduced the notation 〈 〉, used frequently in the paper, to
signify the integral over the sphere. We use 〈 〉l to signify the contribution of degree l to 〈 〉, and also refer in the paper to root-mean-square
(rms) values over the sphere, for example, Br(c)rms is the rms value of Br over radius c. The relation between the two notations is clearly
4π Br(c)2

rms = 〈Br(c)2〉.
When one uses the normalization of (5) together with (4), it transpires that the minimum Ohmic heating associated with the observed

field can be written in the form

�min = 4πc

μ2
0σ

∑
l,m

(l + 1)(2l + 1)(2l + 3)

l

(a

c

)2l+4 (
βm

l

)2
, (6)

where μ0 is the permeability of free space (Gubbins 1975); for an accessible treatment of the problem, see section 5.5 of Backus et al. (1996),
though note the different normalizations employed therein. The observed values of the Gauss coefficients can be used out to degree 14, at
which point it is well accepted that the crustal magnetic field begins to dominate (see Fig. 1). Using degrees l = 1–14 of the model CO2
(Holme et al. 2003) from the observations of the CHAMP satellite gives � = 2.93 × 108 W.
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Figure 1. The geomagnetic power spectrum at the Earth’s surface, often called the Lowes spectrum. It is accepted that degrees 1–14 represent the field from
the core, largely unpolluted by the crustal magnetic field. Beyond degree 14 the signal is probably largely crustal in origin, and the power from the core is
likely to be overwhelmed by this. In this region, the power spectrum forms a rigorous upper bound to the power from the core field. Also shown (dashed) is the
spectrum predicted by model k 3 of Jackson (1994).

These values based on the magnetic field alone are quite small compared to the estimates of around 1–2 TW of Roberts et al. (2003)
and of around 0.5 TW of Christensen & Tilgner (2004). A feature of variational problems is that the addition of extra constraints can never
decrease the lower bound on the target function, and usually serve to increase the bound; therefore, ideally, one brings to bear on the problem
as many constraints as is possible. Recently, Buffett et al. (2002) have used the observed nutations of the Earth to infer properties of the
magnetic field at the CMB and ICB that are otherwise invisible to observation. They note the mismatch between the IAU 1980 nutation series
and the observations, in particular, the out of phase component of the 18.6 yr retrograde nutation. This out of phase component argues for
significant dissipation in the Earth, and Buffett et al.’s preferred explanation is in terms of electromagnetic coupling acting at the CMB and
ICB. Their explanation of the observations does require a highly conducting lower mantle (in fact, with the same electrical conductivity as the
core), and then determines the rms value of the radial magnetic fields on the surfaces of the inner and outer cores. The preferred values are
Br(c)rms = 0.69 mT and Br(b)rms = 7.1 mT. Comparing the former value to the value inferred by observations of degrees 1–14 of the external
field, namely 0.32 mT, we find that the extra power argues that the spectrum of Br cannot drop off very quickly, indeed, it may remain flat
out to high spherical harmonic degree, or even rise. This need for extra power in spherical harmonic degrees beyond the observable degrees
1–14 was demonstrated earlier by Buffett (1992), who showed that adopting a conducting layer at the base of the mantle with conductivity
the same as that of the core could explain the nutation discrepancy if there was four times the energy in the radial field beyond degree 12 as
was contained in the first 12 degrees. This meant Br(c)rms over all degrees was 0.67 mT, in accordance with the later results. We note that a
recent study by Koot et al. (2008) has a value for the imaginary part of the ICB coupling constant which is at variance (by a factor of two)
with the value used by Buffett et al. (2002); it is therefore possible that the value of the ICB field used here is not completely secure.

Observed values for 〈Br(r )2〉 provide constraints on any model of the magnetic field in the core, and can therefore be used to further
refine the class of permissible models in the variational calculation. It is the use of these constraints that are the central thrust of this paper,
and we use them to compute the minimum compatible Ohmic heating in the core. Indeed, a number of different calculations can be performed,
using different combinations of (a) the observed Gauss coefficients βm

l from degrees 1–14, (b) 〈Br(c)2〉 and (c) 〈Br(b)2〉. These calculations
are presented in Sections 4 and 5.

The role of the magnetic field in the energetics of the core was first identified in Backus (1975) and Hewitt et al. (1975). These works
note that it is actually the entropy increase associated with the Ohmic decay of the field that is the crucial quantity for driving the dynamo—in
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other words, one must consider the entropy E �, where

E� = 1

σ

∫
J2

	
dV (7)

and 	 is the absolute temperature. Although the temperature of the core is subject to some debate, it is likely that it varies by only of the order
of 25 per cent over its entire depth. Therefore, little error is incurred if temperature is taken outside the integral and E � is set to �/T av with
T av being the average temperature of the core. In this respect, the dissipation � remains a very central quantity, even if it is not strictly the
entropy. Nevertheless, given an adiabatic profile for the core, one can readily calculate bounds on E � in a similar fashion to �.

The arrangement of the paper is as follows: In Section 2, we introduce the poloidal–toroidal decomposition that is central to our analytical
and numerical developments, and introduce the canonical form of the variational problem. In Section 3, we describe the form of the known
solutions to the canonical P–G problem, including a treatment of the effect of imprecision in the observed values of the spherical harmonic
decomposition of the magnetic field. In Section 4, we report on the solutions to a series of problems that only use the nutation constraints,
but in various different combinations. Section 5 concerns itself with raising the bounds on dissipation higher by combining the nutation and
magnetic field constraints. Some undesirable properties of the solutions found are avoided by the assignment of plausible but ad hoc spectral
constraints in Section 6; the results for the dissipation reach values that are largely in accord with intuition, though these results cannot strictly
be regarded as rigorous.

2 F O R M U L AT I O N O F T H E VA R I AT I O NA L P RO B L E M

We begin by setting up the general framework required for the subsequent calculations. We work entirely in terms of the magnetic field B,
and the Ohmic heating, as defined by (1) is rewritten using the Maxwell equation ∇ ∧B = μ0J as

� = 1

μ2
0σ

∫
V

(∇ ∧ B)2 dV, (8)

where μ0 is the permeability of free space and V is the volume of the conducting spherical core. The core has constant electri-
cal conductivity σ and outside the core the mantle is assumed to be an electrical insulator. We take the electrical diffusivity η =
(μ0σ )−1 = 1.6 m2 s−1, equivalent to a value for the conductivity of the core of 5 × 105 S m−1.

The magnetic field in the core is decomposed using the Mie representation, which automatically ensures that the magnetic field is
divergence free:

B = ∇ ∧ ∇ ∧ (Pr) + ∇ ∧ (T r). (9)

The toroidal and poloidal scalars (T and P) are required to satisfy the boundary conditions on electric and magnetic fields across the interface
between the core and the surrounding insulator. Although undoubtedly present in the core, the toroidal magnetic field has no radial component
and thus does not enter into any calculation where poloidal (i.e. radial) fields are prescribed (Parker 1972; Gubbins 1975), and this remains
true even for our calculations that involve rms values of the radial field determined from the nutation observations; thus only P will be
important. The contribution of toroidal magnetic fields to the Ohmic heating remains unconstrained. The scalar P is expanded in terms of
Schmidt quasi-normalized spherical harmonics with unknown radial functions pm

l (r ). Matching to an exterior electrical insulator leads to a
single boundary condition on the pm

l of the form

dpm
l (r )

dr
+ l + 1

r
pm

l (r ) = 0 at r = c. (10)

Following Backus et al. (1996), when (9) is inserted in (8), we find that the Ohmic heating can be written as

� = − 1

μ2
0σ

∫
∇2 P ∇2∇2

h P dV, (11)

where ∇2
h is the horizontal Laplacian. This then gives a total heat from the spherical harmonic expansion with degrees l and orders m of

� =
∑
l,m

4πl(l + 1)

μ2
0σ (2l + 1)

∫ c

0
r 2

(∇2 pm
l (r )

)2
dr. (12)

The minimum heating is a variational problem, solved by Gubbins (1975); when variations of (12) are taken, the resulting fourth-order
differential equation has solutions of the form r l, r l+2, r−(l+1) and r−(l−1). When the whole sphere is considered, the finiteness of P dictates
that the solution has no contribution from the two eigenfunctions that are singular there; two boundary conditions at the outer surface, one
originating with matching the field to a vacuum field in the insulating exterior and the other stemming from the prescribed value of the field
for a specific harmonic degree, complete the solution. We use the solution to this variational problem at several points in our analysis.

A useful facet of the problem is the absence of any dependence on angular order m in (12). This is a reflection of the rotational symmetry
of the problem, and means that there is a degeneracy in order m, and all eigenfunctions of degree l are the same; this permits us to perform
the calculation based only on the power per degree

∑
m(βm

l )2, rather than considering the spherical harmonic coefficients individually.
It is perhaps worth remarking on the similarity of variational problem (8) to two other similar variational problems. These allied problems

are

min

∫
V (∇ ∧ B)2 dV∫

V +V̂ B2 dV
, (13)
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where V̂ is the region of space outside V , and

min

∫
V (∇ ∧ B)2 dV∫

V B2 dV
. (14)

These problems have been solved by Backus (1958) and Proctor (1977), respectively. The solutions of the first take the form of decay modes
for the sphere (spherical Bessel functions), which are only slightly modified to become solutions of the second problem.

Returning to the variational problem at hand, namely (8), to perform numerical calculations we adopt a spectral representation of the
poloidal scalar that has proven useful in other contexts: for each degree l and order m, we expand the radial functions pm

l (r ) in terms of a
Galerkin Chebychev basis Cn(r ), consisting of recombined Chebychev polynomials that automatically satisfy the boundary condition (10)
(for details see Livermore & Jackson 2004):

pm
l (r ) =

N∑
n=0

n pm
l Cn(r ). (15)

The field is thus represented by coefficients {n pm
l }, where the index n signifies the radial basis function to which the coefficient is attached.

The expansion terminates at CN (r ) and thus there are N + 1 coefficients for each degree l and order m. These coefficients are stored in a
model vector m. We shall need expressions for the Ohmic dissipation and the value of the poloidal scalar at the CMB in this basis; they are
respectively

� = mT Jm (16)

and

pm
l (c) = Am, (17)

for given matrices J and A.

3 T H E C A N O N I C A L P – G P RO B L E M F O R O H M I C H E AT I N G

The first calculations we perform are concerned with reproducing the results of Gubbins (1975) using our spectral basis: we have the bound
(6) with which to compare. Given spherical harmonic coefficients {gm

l ; hm
l } to degree L, we have D = L(L + 2) boundary values for the

magnetic field poloidal scalar P; the problem then is to minimize � given by (16) subject to the D constraints

pm
l (c) = a

βm
l

l

(
a

c

)l+1

. (18)

In our numerical implementation of the variational problem, we use the spectral expansion (15). To allow full generality of the problem,
we actually impose the constraints (18) using two methods: in one we incorporate the linear constraints exactly, reducing the number of radial
degrees of freedom of (15) by one for each degree l and in the other we use a quadratic penalty function. These two methodologies give us
the flexibility to impose the constraints exactly, or to acknowledge that they are in fact imprecise measured values with associated errors and
that they should be fit in a statistical sense, using their given error estimates. This latter scenario leads to the penalized least-squares problem
amply described in Parker (1994). The problem becomes to minimize

mT Jm + λ [Am − c]T C−1
e [Am − c] , (19)

where Ce is the covariance matrix of the errors on the βm
l (taken to be diagonal), c stores the observed values on the right-hand side of (18)

and λ is chosen to attain a suitable misfit to the data, chosen so that
1

D
[Am − c]T C−1

e [Am − c] = 1. (20)

We perform two calculations, one treating the measured βm
l as exact (the canonical P–G problem) and the other treating them as imprecise,

to illustrate the effect of errors on the measurements.
The errors on the Gauss coefficients {βm

l } that enter Ce are taken from the crustal model of Jackson (1994). This model predicts the
power that lies in the crustal field at all spherical harmonic degrees, based on a stochastic model for the magnetization of the crust. It predicts
larger, and more realistic errors, than would be given by the a posteriori covariance matrix that results from a spherical harmonic model of
the field. These formal errors from the least-squares fitting procedure do not acknowledge that the field in degrees 1–14 has contributions
from both core and crust. Therefore, one needs to adopt a measure of the probable contamination of the measured {βm

l } by the crust. We
adopt the model k 3 with parameters ν = 0.995 and k(β) = 6 (see Jackson 1994), since this predicts larger errors than does model k 4. Fig. 1
shows the k 3 spectrum from which these errors are calculated.

Fig. 2 shows the radial eigenfunctions for the first eight spherical harmonic degrees. The known eigenfunctions for this problem take
the form

pm
l (r ) = c

[
−2l + 3

2l

(
r

c

)l

+ 2l + 1

2l

(
r

c

)l+2
]

βm
l , (21)

(see Backus et al. 1996). The Ohmic dissipation as a function of position is plotted in Fig. 3 as the truncation level is raised from degree 1 to
2 and finally to 14. One can see that the highest dissipation tends to be close to the CMB. In terms of dynamo thermodynamic efficiencies, it
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Figure 2. Behaviour of the poloidal scalar times radius for the minimum dissipation problem, when only observed values of the βm
l on the CMB are prescribed

(Gubbins 1975). The amplitude is arbitrary, though the largest in the figure corresponds to l = 1 and the smallest to l = 8.

Figure 3. Isosurfaces of |J|2 for the canonical P–G problem for (a) L = 1, (b) L = 2 and (c) L = 14. In all cases, the red isosurface is that with the highest
squared current density. Note that the highest local dissipation tends to be close to the CMB.

is perhaps worth remarking that this is a disadvantageous situation, indeed it would be much better if more of the heat were generated close
to the ICB where the temperature is higher, leading to a higher Carnot efficiency factor. We shall see that some of our solutions have this
property.

In terms of results for total dissipation, when the constraints are fit exactly we find �min = 2.93 × 108 W (agreeing with the value below
eq. 6), and when they are fit weighted inversely with their errors using the criterion (20) we find � = 2.91 × 108 W, a trivial difference.

4 C A L C U L AT I O N S W I T H Q UA D R AT I C N U TAT I O N C O N S T R A I N T S

We wish to introduce the constraints on the field behaviour in the core based on the considerations of the nutations of the Earth described by
Buffett et al. (2002). As a result, we now perform the calculation of minimizing the Ohmic heating when mean-square radial field strengths
are prescribed on the CMB and ICB. We refer to the constraints of squared radial field on the CMB and ICB as C 1 and C 2. The constraints
can be written

C1 =
∑
l,m

∫ [
l(l + 1)

c
pm

l (c)Y m
l (θ, φ)

]2

d� = 4π

c2

∑
l

l2(l + 1)2

2l + 1

∑
m

pm
l (c)2, (22)

C2 =
∑
l,m

∫ [
l(l + 1)

b
pm

l (b)Y m
l (θ, φ)

]2

d� = 4π

b2

∑
l

l2(l + 1)2

2l + 1

∑
m

pm
l (b)2. (23)
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On Ohmic heating in the Earth’s core I 373

Figure 4. Example of the method for determining the correct Lagrange multiplier λ1. This is for the example L min = 2, L = 19, N = 30 and upper bounds
prescribed for the βm

l for l = 15–19. Computations are performed for a series of values of λ1, determining the correct λ2 at each one. In green is the value of
〈Br(c)〉 with the target value as a dashed horizontal line (left-hand scale). The dashed line corresponds to the Ohmic heating (right-hand scale). Of the many
intersections of the green line with the target, only one has the minimum associated Ohmic heating (the largest λ1). The value of λ1 that minimizes the Ohmic
dissipation in this case is −3.6.

The following sections explain a series of implementations of the constraints; we firstly describe the numerical implementation of the
constraints using the spectral basis (15). This is important because the ultimate problem we wish to solve, which embraces all the constraints
in the form of both (10) and (18) and of (22) and (23) can only be solved numerically. The problem with only constraints (22) and (23) has
analytical solutions as we shall see.

4.1 Quadratic constraints: numerical implementation

The problem of minimizing (12) subject to (10), (22) and (23) is independent of order m and so it is only the total power per degree that is of
importance, which can be implemented without loss of generality as axisymmetric harmonics. It is not clear that the solution separates in l
as is the case for the canonical P–G problem, so one solves simultaneously for L radial expansions p0

l (r ). Using the spectral basis (15), the
values of C 1 and C 2 can be written in terms of the model as

C1 = mT C1m, C2 = mT C2m, (24)

where m contains L(N + 1) parameters. Note the notational distinction between the target value of the constraint, C 1, and the matrix which
defines the norm of the model, C1. We form the constrained functional

mT Jm + λ1

[
mT C1m − C1

] + λ2

[
mT C2m − C2

]
, (25)

using Lagrange multipliers λ1 and λ2. The minimum of this is clearly when

Jm + λ1C1m + λ2C2m = 0. (26)

To find the correct values of λ1 and λ2 such that the constraints are satisfied exactly, we first set λ1 to a known value. We then discover the
correct value of λ2 by solving the generalized eigenvalue problem

[J + λ1C1] m = −λ2C2m (27)

for the (N + 1)L eigenvalues λ2. The most positive eigenvalue is the one of interest, since it leads to the minimum Ohmic dissipation. We
now scan through different values of λ1, solving the eigenvalue problem at each value to find the appropriate λ2. Fig. 4 shows the multiple
values of λ1 that fit the constraint. Again, the most positive one is the appropriate choice. We can also solve the similar problem when only
one constraint is imposed, though in this case the problem can be solved as an eigenvalue problem without the need for a line search. All the
solutions turn out to be single l solutions, a fact that can be seen from the block diagonal structure of the matrices J, C1 and C2.
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374 A. Jackson and P. Livermore

Figure 5. Field lines and current density shown for the l = 1 canonical P–G solution. Green colours are low current density and red colours are high current
density.

The problem of minimizing the Ohmic dissipation subject to known rms radial field on the CMB has a solution that is exactly the
l = 1 canonical P–G solution. However, the dissipation associated with the solution is now 5.97 × 108 W, 10 times higher than the
l = 1 value for the Parker (1972) problem as a consequence of the higher value of the rms field at the CMB demanded by the nutation
observations. Because we have told the variational problem nothing other than the rms field strength, the solution found is degree 1 despite
the fact that we know that most of the power for the true Earth must be beyond the observable range of degrees 1–14. This deficiency will be
addressed in Section 5. In Fig. 5, we show the current density in the core associated with this solution: it is a toroidal current growing linearly
with cylindrical radius s, of the form (see Parker 1972)

J = 15r sin θ

μ0c2
β0

1 φ̂ = 15s

μ0c2
β0

1 φ̂, (28)

where φ̂ is the unit vector in the azimuthal direction.
Table 2 shows the results of imposing the constraints separately and jointly. We make use of the fact that Buffett et al. (2002) are able

to decompose the radial field power that they require into a dipole contribution and a uniform field contribution which we take to be the
contributions from degrees higher than 1 (see Table 1). This means that we can divide the problems into degree 1 contributions (i.e. by solving
with only degree 1 allowed) and a problem where degree 1 is not in the solution space (i.e. by solving with only spherical harmonics between
2 and L allowed). By this mechanism, the figure given above for the minimum dissipation solution subject to 〈Br(c)〉, namely 5.97 × 108 W,
is raised to 7.23 × 108 W.

If one were not to impose this division and simply implemented either of C 1 or C 2, the optimizing field is entirely l = 1. For the
case where both constraints C 1 and C 2 are imposed Fig. 6 shows the poloidal scalar that achieves the minimum �. This is an entirely
l = 1 solution. When one implements the division between l = 1 and l > 1 given in Table 1, one obtains the results of Table 2. The total
dissipation associated with this case is 8.56 × 109 W, approaching 30 times larger than the value for the canonical P–G problem.
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Table 1. The field strengths in mT determined by Buffett et al. (2002).

l = 1 l > 1 Total

CMB rms field: Br(c)rms (mT) 0.212a 0.640 0.674
ICB rms field: Br(b)rms (mT) 4.33 5.72 7.17

Note: These give the ratio α = 0.049 (defined below eq. (36) for the dipole, and
α = 0.115 for the rest.
aThe value has been changed from that quoted by Buffett et al. (2002). They use
the values given by Langel & Estes (1982) and deduce that the dipole field has an
rms value of 0.264 mT, but this answer is in error by a factor of

√
3/2, and

consequently we have changed it to the correct value of 0.212 mT. See also
Mathews & Guo (2005).

(a) (b)

Figure 6. Characteristics of the solution when constraints C 1 and C 2 are implemented (l = 1 mode). (a) Poloidal scalar times radius as a function of radius.
(b) Contours of J2 and field lines when the solution is assumed to be axisymmetric. The dashed line indicates r = b.

4.2 Known rms radial field strength on the ICB and CMB: analytical solution

If we consider the problem of minimizing the Ohmic heating when just the rms values of Br are given on r = c and r = b, the solution can be
found analytically. We know from the structure of the problem described in Section 4.1 that the solution is a single harmonic degree l, with
no mixing; however, the question remains, which l gives the minimum? We begin by dividing the core into two regions, labelled I and II in
Fig. 7, corresponding to the inner and the outer cores, respectively. Since in regions I and II the solution minimizes the dissipation, we can
make use of the linear combination of eigenfunctions that solve the variational problem defined by minimizing the squared current density
throughout the core (Gubbins 1975; Backus et al. 1996). In region I, we write

P =
∑

Alr
l + Blr

l+2, (29)

where we have explicitly excluded the eigenfunctions that are singular at the origin. In region II, we write

P =
∑

Clr
l + Dlr

l+2 + Elr
−(l+1) + Flr

−(l−1). (30)

Table 2. Heating in Watts due to different combinations of the quadratic nutation
constraints.

Dissipation � (W)

Constraint applied l = 1 l > 1 Total

〈Br(c)2〉 5.64 × 107 6.66 × 108 7.23 × 108

〈Br(b)2〉 1.94 × 109 5.76 × 109 7.70 × 109

〈Br(c)2〉 & 〈Br(c)2〉 2.78 × 109 5.77 × 109 8.56 × 109

Note: We use the values of Table 1 for the field strengths.
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Figure 7. The regions I and II, corresponding to the inner and the outer cores, respectively, used for the boundary value problem of Section 4.

At the boundaries between I and II, and also at the boundary between II and the mantle, we impose continuity of the poloidal scalar P
and its derivative P′ to the potential field outside, which has known amplitude. Hence, we have at the ICB where r = b

Alb
l + Blb

l+2 = Clb
l + Dlb

l+2 + Elb
−(l+1) + Flb

−(l−1), (31)

Allb
l−1 + Bl (l + 2)bl+1 = Cllb

l−1 + Dl (l + 2)bl+1 − El (l + 1)b−(l+2) − Fl (l − 1)b−l , (32)

and at the CMB we have

Clc
l + Dlc

l+2 + Elc
−(l+1) + Flc

−(l−1) = −cBr (c)/(l(l + 1)), (33)

Cllc
l−1 + Dl (l + 2)cl+1 − El (l + 1)c−(l+2) − Fl (l − 1)c−l = Br (c)/ l, (34)

where Br(c) is the radial field in the lth harmonic degree, and we will assign all (2l + 1) harmonics to have the same power in the ultimate
solution that uses the rms values on c and b. At the ICB, we define the amplitude of the field, so that

Alb
l + Blb

l+2 = −b
Br (b)

l(l + 1)
. (35)

There are thus five equations in six unknowns, and hence the solution can be written with one free parameter. The Ohmic heating is then
optimized as a function of that parameter by discovering the stationary value of the resulting quadratic; when this occurs the Ohmic heating
is found to be

� = 16πcηBr (ri )2(2l + 3)(2l + 1)

μ0

×
{
α(2l − 1)

[
r 2

i + 2l
(
r 2

i − 1
) − 3

]
r l+1

i + (2l − 1)r 2
i + α2

[
(4l + 2)ri − (2l + 3)r 2l

i

]}
l(l + 1)

[
8ri − (4l2 + 8l + 3) r 2l

i + (8l2 + 8l − 6) r 2l+2
i − (4l2 − 1) r 2l+4

i

] ,

(36)

where α = Br(c)/Br(b) is the fractional field strength at the core surface compared to that at the ICB; and ri = b/c is the radius of the inner
core measured as a fraction of the outer core radius. Asymptotically, at large l, the dissipation increases linearly with l.

4.3 Known rms radial field strength on the ICB: analytical solution

In a similar vein to the above calculation, one can solve exactly for the poloidal scalar that minimizes the Ohmic dissipation when the rms
radial magnetic field is given only on the ICB. In this case, we find the inner and outer solutions (in regions I and II) take the single-l form

pm
l (r ) =

⎧⎪⎨
⎪⎩

Br (b)
(

r
b

)l [(4l2−1)r2−(2l+3)b(−2b2l +2lb+b)]
2l(l+1)[(2l+3)b2l −2(2l+1)b] r ≤ b

Br (b)
(

b
r

)l+1 [(4l+6)r2l+1−(4l2+8l+3)r2(4l2−1)b2]
2l(l+1)[(2l+3)b2l −2(2l+1)b] r ≥ b

, (37)
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Figure 8. Minimum dissipation as a function of l for the problem where Br(b) is prescribed. The solution is normalized by the value of Br(b)2.

where Br(b) is the field equally distributed in one of the (2l + 1) modes of degree l, and the minimum heating is

�l = η

μ0
4πb2 Br (b)2 (2l + 1)2

(
4l2 + 4l − 3

)
l(l + 1)

[
(4l + 2)b − (2l + 3)b2l

] . (38)

In Fig. 8, we see that the contribution rises monotonically with l (a fact deducible from the asymptotics of 38), showing that the minimum is
obtained when l = 1 only, in agreement with intuition. When l = 1 the minimum dissipation is

� = η

μ0

90πbBr (b)2

6 − 5b
(39)

with a poloidal scalar given (for each of the three contributing l = 1 modes) by

P =

⎧⎪⎨
⎪⎩

Br (b)
(

r
b

) [3r2−5b(3b−2b2)]
4(5b2−6b) r ≤ b

Br (b)
(

b
r

)2 (10r3−15r2+3b2)
4(5b2−6b) r ≥ b

. (40)

This scalar is shown in Fig. 9. The fact that the numerical solution based on the recombined Chebychev expansion is everywhere differ-
entiable whereas the analytical solution is not at r = b appears to make little difference, since the actual values for the dissipation are
indistinguishable.

5 C O M B I N E D U S E O F N U TAT I O N A N D G E O M A G N E T I C C O N S T R A I N T S

In Section 4 we used the nutation constraints, but this left the observed field at the core surface undue freedom in the range l = 1–14 to adapt
itself to minimize the net rms currents. In this section, we reimpose the constraints (18) to ensure that the low degree field is in accord with
the observations.

The study of Buffett et al. (2002) was able to discriminate between the contribution to the rms radial magnetic field of l = 1 and the
contribution from all the other harmonics at the CMB and ICB, see Table 1. For this reason, we carry out separate calculations for the l = 1
component and for the remaining components. These results are shown in Tables 2 and 4. The l = 1 calculations are particularly easy and are
very similar to the calculations of the previous section. The total dissipation is simply the sum of these contributions.

To carry out the l > 1 calculations, we must remove the known contribution of degrees 2–14 to the integrated squared field at the CMB;
this removes 0.76 mT2 from the nominal value of 5.15 mT2 (see Table 1) and thus we generate the constraint C 3 where

C3 = mT C3m. (41)

The numerical value of C 3 is 4.39 mT2 but this constraint is only pertinent to the degrees larger than 14. In view of the results of Section 3
we impose the constraints from degrees 1–14 exactly, whilst demanding that C 2 and C 3 are also fit. We find that this raises the Ohmic heating
to 1.245 × 1010 W, and that the spherical harmonic spectrum at the CMB takes the form shown in Fig. 10: all of the power required to match
constraint C 3 is now contained in degree 15. The CMB field is not allowed to have such a large degree 15 component, since it would be
visible at the Earth’s surface and would be much larger than the observed spectrum. Although we believe the power observed in the degrees
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Figure 9. Poloidal scalar (l = 1) for the problem when the radial field is given on the ICB.

Figure 10. Plot of
∫

B2
r d� at the CMB from model CO2. Also shown is the power predicted at degree 15 when the {βm

l : 1 ≤ l ≤ 14} are constrained along
with C 1 and C 2, demonstrating that this power would exceed the power in the crustal field by a large amount.

from 15 onwards represents the crustal field and not the core field, we can make use of these values as ‘upper bounds’ on the core spectrum:
it is a certainty that the core spectrum cannot exceed these values.

In fact the desire for the dissipation-minimizing solution to put all the power required to satisfy constraint C 3 in the lowest spherical
harmonic degree that is unconstrained means that the inequality constraints (from the crustal field upper bound) are then actually satisfied
as equality constraints. We find that the solution has power equal to the upper bounds (supplied from the crustal part of the spectrum) for
14 ≤ l ≤ 18, and that degree 19 has a value required to make the total squared flux correct (see Table 3). The dissipation associated with this
solution is 1.247 × 1010 W. This is the final rigorous lower bound that can be formally placed on the dissipation.

And yet this solution has many unsatisfactory features. It is extremely unlikely that the power spectrum at the core surface would be
approximately flat in degrees 1–14 before dramatically rising. We provide the results of two final calculations, which are not formally lower
bounds, but are indicative values that are much more in accord with geophysical intuition. Let us assume that the power spectrum at the core
surface is flat all the way out from l = 15 to l = 58, with a power 〈Br(c)2〉l = 0.1 mT2 (see Fig. 11). This idea for the power spectrum is
similar in nature to the one explored by Buffett (1992). We impose this constraint on the variational problem and find that the dissipation now
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Table 3. Values of 〈Br(c)2〉l from the model CO2 for epoch 2001 up to
degree 14.

Degree 〈Br(c)2〉l (mT2)

1 5.667 × 10−1

2 6.737 × 10−2

3 1.136 × 10−1

4 9.505 × 10−2

5 6.284 × 10−2

6 4.690 × 10−2

7 5.394 × 10−2

8 3.131 × 10−2

9 5.779 × 10−2

10 3.429 × 10−2

11 3.196 × 10−2

12 4.124 × 10−2

13 6.887 × 10−2

14 5.621 × 10−2

15 1.178 × 10−1

16 3.149 × 10−1

17 9.900 × 10−1

18 2.799 × 100

19 1.658 × 10−1

Note: For 15–18, the values are upper bounds on the core spectrum, again
supplied by the model CO2. For degree 19, the upper bound is created by
reducing the true value of 1.04 × 101 mT2 to the value given to match the
total rms radial field on the CMB with that given by Buffett et al. (2002).

Figure 11. Plot of
∫

B2
r d� at the CMB from model CO2. Also shown is the flat spectrum assigned for 15 ≤ 58.

rises to 1.54 × 1010 W (see Table 4). Recall that we have split the l = 1 contribution out of these calculations because it can be solved for
separately, as a result of the Buffett et al. (2002) rms field division given in Table 1. We briefly drop this division and use the total fields given
in Table 1 in a calculation to illustrate one unsatisfactory feature of the solution to the flat spectrum problem. When we perform a calculation
with all degrees l allowed, the problem is the fact that even though the solution at the CMB is a mixture of harmonics between degrees 1 and
58, the solution at the ICB is almost entirely degree 1. This is illustrated in Fig. 12 and occurs because the solution minimizes the dissipation
by having most of the interior energy in the lowest degree. Of course the same behaviour occurs when we split off the l = 1 contribution,
as we have usually done; in this case the field at the ICB is simply l = 2, the lowest degree available to the minimization. Although this
solution satisfies all constraints applied to it, it falls short of geophysical reality. In the final spectrum, we investigate the effects of a more
geophysically likely spectrum at the ICB.
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Table 4. Minimum values for the Ohmic heating � when various constraints are applied to the problem.

Linear Quadratic Ohmic dissipation � (W) Remarks

l = 1 only 5.66 × 107 Parker (1972) solution
1 ≤ l ≤ 14 2.93 × 108 Gubbins (1975) solution
1 ≤ l ≤ 14a 2.91 × 108

〈Br(c)2〉 7.23 × 108 b, f
〈Br(b)2〉 7.70 × 109 b, f
〈Br(b)2〉 and 〈Br(c)2〉 8.56 × 109 b, f

1 ≤ l ≤ 14 〈Br(b)2〉 and 〈Br(c)2〉 1.25 × 1010 f
1 ≤ l ≤ 19c 〈Br(b)2〉 and 〈Br(c)2〉 1.25 × 1010 f
1 ≤ l ≤ 58d 〈Br(b)2〉 and 〈Br(c)2〉 1.54 × 1010 f
1 ≤ l ≤ 58e 〈Br(b)2〉 and 〈Br(c)2〉 8.11 × 1010 f

Note: In all cases the observed values for the Gauss coefficients βm
l , supplying the linear constraints, are taken

from the magnetic field model CO2 (Holme et al. 2003) for epoch 2001. The quadratic constraints come from
Buffett et al. (2002). The diffusivity η = 1.6 throughout the paper. aIndicates that the Gauss coefficients are fit
using their standard deviations and using a Chi-squared measure of misfit.
bIndicates that the solution would be purely l = 1 if only a total squared radial flux is supplied. In fact we split
off the l = 1 solution as in Table 2, and solve for the remainder. This remainder solution is entirely l = 2.
cIndicates that the observed values of the crustal spectrum in CO2 are applied as upper bounds to the power in
15 ≤ l ≤ 19 in the problem.
dIndicates that the values of 〈Br(c)2〉l are set to 0.1μ T 2 for 15 ≤ l ≤ 58 in the problem.
eIndicates that the values of 〈Br(c)2〉l are set to 0.1μ T 2 for 15 ≤ l ≤ 58 in the problem, and that 〈Br(b)2〉l is
also made to have the same spectrum as the CMB spectrum scaled by γ for 1 ≤ l ≤ 58 (see eq. 42).
f Indicates that these problems have been solved by separating the l = 1 contribution from the rest, by using the
division of the squared fields given in Table 1. Consequently, the problems are solved for the ‘uniform field’
contribution by performing the minimisation problems beginning with l = 2. The l = 1 solutions are exactly
those of Table 2, and both l = 1 and l > 1 contributions are added to give the final value.

Figure 12. The optimizing poloidal scalars multiplied by radius as a function of normalized radius for the problem in which the entire spectrum{〈Br (c)2〉l : 1 ≤ l ≤ 58
}

is specified, along with 〈Br(b)2〉; note that the l = 1 contribution is so much larger than the others.

6 A S S I G N M E N T O F A P L AU S I B L E S P E C T RU M AT T H E I C B

Given a rich ‘white’ spectrum at the CMB, we believe it is contrary to intuition that the ICB spectrum would be dominated by a single low
spherical harmonic degree. In this section, we extend the white spectrum assignment that we have applied to the CMB to the ICB by assigning
each spherical harmonic degree to have a constant ratio between its values at the CMB and ICB. Since

√〈Br (c)2〉l/〈Br (b)2〉l = γ = 0.125,
we assign the ratio γ to be the ratio for every spherical harmonic degree. Thus, we have√

〈Br (c)2〉l

〈Br (b)2〉l
= γ, 1 ≤ l ≤ 58. (42)
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Figure 13. Ohmic heat as a function of spherical harmonic degree l for the final constrained problem in which the spectra at the CMB and ICB are constrained
to be flat. Note the linear increase in the dissipation.

Figure 14. Bar chart showing how the different lower bound problems (blue) approach the estimate of Christensen & Tilgner (2004) (red) as different
constraints are applied.

Since we now have constraints on every spherical harmonic degree, the solution now separates in l and we can find the value of the poloidal
scalar for each degree l independently. This two-point boundary value problem is exactly that solved in Section 4. The Ohmic dissipation
produced by each spherical harmonic degree is shown in Fig. 13. The total heating associated with this solution is 8 × 1010 W, within a factor
of three of the 0.2–0.5 TW range for the dissipation found by Christensen & Tilgner (2004).

7 C O N C LU S I O N S

A variety of different constraints have been added to the canonical problem of Parker and Gubbins of minimizing the Ohmic dissipation in the
core. All of the values for Ohmic heating are given in Table 4, and Fig. 14 shows pictorially how the imposition of different constraints leads
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to a gradual sharpening of the lower bound, bringing it closer to the value of Christensen & Tilgner (2004). Applying geodetic observational
constraints to the minimum Ohmic heating bound problem raises the lower bound by a factor of 30, from ∼3 × 108 W to almost 10 GW. This
increase is completely dependent on the veracity of the interpretation of nutation mismatches between theory and observation being the result
of electromagnetic coupling at the ICB and CMB. Although this is the formal minimum, it is unsatisfactory in many ways: the spectrum at
the CMB is exactly that of the crustal spectrum, leaving no energy whatsoever for the crustal field in degrees 14–19; and additionally the
spectrum at the ICB is almost entirely l = 1. These features are extremely unlikely in reality and therefore argue that the true minimum
dissipation is still higher than this estimate. An ad hoc (and thus non-unique) method for moving the solution towards the geophysical regime
is to assign the spectra of the radial field at the CMB and ICB. When these spectra are prescribed to be flat, the minimum dissipation rises
to 0.08 TW. Although this is no longer a formal lower bound, we consider that it is a geophysically indicative number. This number is now
within a factor of three of the value for the dissipation given by Christensen & Tilgner (2004), based on a suite of numerical dynamo runs.

The problem addressed in this paper ignores entirely the dynamics of the core. Because of the nature of the constraints, the solutions
contain no toroidal field at all and consequently ignore any potential Ohmic dissipation associated with it. Since the toroidal field is thought
to be strong in the Earth, this is a serious shortcoming. In the future, we will demonstrate how dynamical constraints can be incorporated
into the variational problem that naturally contain toroidal field, raising the lower bound en route (without the need for ad hoc assumptions
regarding the spectra at the ICB and CMB) and bringing the answers closer to geophysical reality.
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netic field model, in Proceedings of the First CHAMP Science Meeting,
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