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Synopsis
We study the rank one convexity of some functions /(§) where § is a 2 x 2 matrix. Examples such as
|g|2a + /t(det|i) and | | | 2 o r ( | | | 2 -ydet g) are investigated. Numerical computations are done on the

4
example of Dacorogna and Marcellini, | | | 4 —-=. |§|2 det §, indicating that this function is quasiconvex.

Introduction

In this paper we consider

l{u)=\ f{Vu{x))dx, (0.1)

where Q <= IR2 is a bounded open set, u : Q c R 2 - > R 2 and therefore V« e B2 x 2

(the set of 2 x 2 matrices which will often be identified with IR4) and/ : IR4—* IR is
a continuous function.

One of the fundamental problems is then to minimise / with prescribed
Dirichlet conditions on the boundary dQ. To do this, usually the only available
tool is to prove that / is sequentially weakly lower semicontinuous (abbreviated
w.l.s.c.) in a certain Sobolev space WliP. Therefore it is of primary importance to
know conditions on / which ensure this property of /. Surprisingly, this problem
turns out to be difficult and it has not yet received a fully satisfactory answer. This
problem was first formulated by Bliss in 1937 in his seminar on the calculus of
variations and has received considerable attention, in particular by Albert [1],
Reid [17]. MacShane [12], Hestenes and MacShane [9], Terpstra [19], Van Hove
[20], Serre [18] and Marcellini [13] for the quadratic case and in a more general
context by Morrey [14,15] (for a survey of this problem, see [4,5,7]).

In order to describe our results we need the following definitions.

DEFINITIONS 0.1. (i)/ is said to be quasiconvex if

) dx ^f(£) meas Q (0.2)f
for every §elR4 and for every <f> e Wj'°°(Q; 1R2) (the set of Lipschitz functions
vanishing on dQ).

(ii) / is said to be rank one convex if

(0.3)
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136 B. Dacorogna et al.

for every A e [0, 1], %, r, e R4 with det (f - IJ) = 0 (if § = (&, §2, §3, §4) e R4,
§ § 1 f 4 § 2 | 3 )

(iii) / i s said to be poly convex if there exists 0: K5—* R convex such that

/(§) = *(§, det £) (0.4)

for every §'e R4.

Remarks 0.2. (i) It can be proved (cf. [7] for example) that if (0.2) holds for
one domain Q, it holds for any domain.

(ii) In the second definition it is easy to see that if / is C2, then the rank one
convexity of / is equivalent to the classical Legendre—Hadamard condition

2 2 32f(P\

2 2 Tr^g-A^/ipSO (0.5)

for every § e (R2x2 and every A, /x e R2.
In general, one has the following diagram:

f convex j ^ / polyconvex J r / quasiconvex ^T / rank one convex

0
/ is w.l.s.c.

Money's conjecture 0.3. It was conjectured by Morrey [14], that in fact /rank
one convex 2 > / quasiconvex.

It is the aim of this article to study the rank one convexity of some functions /
and marginally their polyconvexity and quasiconvexity. In the first section, we
study functions of the type

/(£) = g(l£|2,det£), (0.6)

where g: U2->U and |£|2 = E4=i£2, d e t ! = ! i§4 - |2lf3 whenever § =
(Bi> ?2> §3. £4) ̂  fR4- These functions are important in elasticity (cf. for example
[4,7]) and in optimal design (cf. [11]).

Usually when one studies functions as in (0.6), it is more convenient to write
them as /i(A, ft), where (A, fj.) are the eigenvalues of (^')1'2. The rank one
convexity of / being then expressed in terms of some convexity of h (cf.
[2-4,10]). However in some cases, (cf. [8]) it may be easier to study the
Legendre-Hadamard condition (0.5) directly.

In particular, we shall concentrate on the following two examples:

/(£) = l£|2Qr + /*(det§) (0.7)
/ (?) = l£ | 2 a ( l§ | 2 -adet£) . (0.8)

The first one is particularly important for applications and has been studied in the
case a < 2 by Ball and Murat [6]. The second one is interesting, since it gives the
first example (in the case a = 1) of a rank one convex function (for a = 4/V3)
which is not polyconvex (cf. [2,8]).

In Section 2 we return to the example of Dacorogna and Marcellini [8]

/(£) = l£|4-^l£|2det§. (0.9)
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Rank one convex functions in dimension two 137

Because of the above observation, and in view of the above diagram, / is a
candidate for answering Morrey's conjecture. However, analytical computations
seem to be a very hard method for deciding whether or not / is quasiconvex. We
present some numerical computations which tend to indicate that / is indeed
quasiconvex, leaving, therefore, Morrey's conjecture unanswered.

We conclude by a remark on the proofs of Section 1. The proofs require only
elementary calculus. In this sense they are simple, though a bit tricky.

1. Examples of rank one convex functions

We start with some properties of functions of the type

/(g) = g(|g|2,det£), (1.1)

where for § = (g,, g2, g3, g4) e U\ |g|2 = £ t i g2 and det § = gxg4 - g2g3-

PROPOSITION 1.1. (i) If f is rank one convex, /(0) = 0 and g(x, —y) = g(x, y),
for every x, y ^ 0, then / = 0.

(ii) / is rank one convex if and only if f is convex with respect to the first
variable.

(iii) Let f and g be C2. The following properties are then equivalent:
(a) f is rank one convex;
(b) for every g e IR4, the following holds:

4gxM\2, det m\ + W l § | 2 , det g)gxg4

+ 8yM\2, det g)gj + 2gM\2, det g) ̂  0, (1.2)
a

where gx = — g and similarly for gxx, gxy, gyy;
ox

(c) the following holds

4gAx, y)u2 + Agxy{x, y)uv + gyy(x, y)v2 + 2gx(x, y) ^ 0, (1.3)

for every (x, y, u, v) e !R4 satisfying

Remarks 1.2. (i) The first part rules out examples of the type |£|2<*(||;|4-
y(det§)2) when y>2 . It also trivially implies that / is quasiconvex at 0, i.e.,
Jn/(V<K*)) dx ^ 0 for every <f> e Wj'°°(Q; U2).

(ii) In many instances, as for example the two cases discussed below, it is
easier to show (1.3), than to verify the Legendre-Hadamard condition (i.e. (1.2))
or the equivalent properties for the function /t(A, ju), where (A, JU) are the
eigenvalues of (^')m and /(g) = g(|£|2, det g) = h(k, fi) (see [3,10] for more
details on this last approach).

Before proceeding with the proof, we need to introduce some notations and to
establish an elementary lemma.

NOTATION 1.3. Let £ = (§i, £2» %3, g4)eR4; we denote by | e R 4 , the vector
I = (g4, ~h, "§2, Si). For S, A e U4 we let (g/A) = S4

=1 g,A,-
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138 B. Dacorogna et al.

Remark 1.4. Observe that 2 det § = ( | / | ) .

LEMMA 1.5. Let | , AeR4 w/r/i |A|2 = 1 and detX = 0. Then there exists
V = (ii, Vi> V3, V*) e R 4

Proof. It only remains to find rj2 and r/3, which are given by

The system is solvable provided

f2 (1.6)

(1-7)

We show (1.6) ((1.7) being shown similarly), which is equivalent to showing that

min {|£|2 + 2 det | - 2(|/A)(|/A) - (£/A)2 - (|/A)2} i£ 0. (1.8)

Let a be the Lagrange multiplier and </>(|, A) = |£|2 + 2det § -2(|/A)(|/A) -
(£/A)2 - (|/A)2 - ar(|£|2 - 1). We find that 4> attains its minimum on | | | = 1 and
where V0 = 0, i.e.

ar̂ . (1.9)

Multiplying (1.9) first by | , then by A and X (bearing in mind that |A|2 = 1, |?|2 = 1
and detA = 0) we find that or = 0 ( | , A), a(|/A) = a(|/A) = 0. We therefore
deduce that either a = 0 or (§/A) = (|/A) = 0, which, in any case, imply (1.8).
Proceeding in the same way with (1.7), we have indeed established the
lemma. •

We now turn to the proof of Proposition 1.1:

Proof of Proposition 1.1. (i) Assume for contradiction that there exists
S1 = (Si,£2,!3,l4) such that / ( | 1 ) < 0 . Let §2 = ( | l f | 2 , - | 3 , - | 4 ) , §3 =
(-? i , ~h, §3, | 4 ) and I4 = - I 1 . Since

f det I 1 = det §4, det §2 = det §3 = - det £x

we deduce from the facts that / is rank one convex and that g(x, y) = g(x, -y) ,
that

/ ( i l 1 + W) =/(§i , I2, 0, 0) ̂  ^ ( l 1 ) + -^(§2) < 0,

RW + i l 4 ) = / ( - § ! , - I 2 , 0, 0) ̂  ^(§3) + \f(?) <

Thus, using the rank one convexity of/again, we deduce that

/(0) = / ( * ( - ! i , - | 2 , 0 , o) +1(^1( | 2 , 0 , o)) <o,

which is absurd.
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Rank one convex functions in dimension two 139

(ii) Necessity: this part is obvious.
Sufficiency: we now assume that / is convex with respect to the first variable

and we wish to show that / is rank one convex which is equivalent to showing that
/ ( ? + tk) is convex in t e R for every §, AeR4 with det A = 0. Applying Lemma

1.5 to § and to —, we can find rjeU4 with rj1 = (IT/TTT), ^ 4 = ( l / T T T ) ,
|A| \ / |A|/ \ / \k\/

det r] = det % and |TJ|2 = |£|2. We then obtain that

/ ( § + U) =g(|§|2 + 2*(|/A) + ?2 |A|2, det § + r(|/A))

l| +12 \k\2, det rj + fr?4 |A|) (1.10)

=/(»/ +»(|A|, 0,0,0)).

Since/is convex with respect to the first variable, we find that/(§ + tk) is convex
in t for every §, A e IR4 with det A = 0 and thus / is rank one convex.

(iii) The fact that (a) and (b) are equivalent results from (ii) and from a direct
computation of /§,§,, which is positive. The fact that (b) and (c) are equivalent is
easily seen, by setting u = £u v = §4, v = det g, x = |§|2 and we leave out the
details. •

We now turn our attention to some examples.

THEOREM 1.6. For a § \ and h e C\U), let

(1) The following conditions are equivalent:
(i) / rank one convex;
(ii) for every z eU,

where
if i^
if <* =

^t/2 " == '

with

(1.11)

bo\z ia-2 (1.12)

(1.13)

i is given by

2a - 1

a
2(a-l)2

2(a + (a-

x =
-(or2 - 1) + [(or2 - I)2 - 4(or - l)(qr - 2)(2ar - I)]1

2 ( a - l ) ( a r - 2 )
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140 B. Dacorogna et al.

(2) LetO^b^b0, where b0 is as in (1.13); then

/(£) = |£ | 2 a ~ 2a~1b |det %\a (1-14)

is rank one convex.

Remarks 1.7. (i) The case ae [\, 2) has been established by Ball and Murat
[6].

(ii) Functions/as in (1.11) often occur in nonlinear plane elasticity where the
strain energy function has the above form (see [4, 7, 16] for more details).

(iii) We now point out a curious result which occurs when a = 2, i.e. when
/(§) = |£|4 — 2(det £)2. In fact it is easily seen that / is not only rank one convex
but also convex. (To see this, let (A, n) be the eigenvalues of (£§')1/2 and observe
that /(£) = (A2 + (i2)2 - 2AV = A4 + ju4. A general result (cf. [4]) immediately
implies that/ is convex.)

(iv) More generally if a e [\, 2], then in view of the theorem and of the above
remark / is convex if and only if it is rank one convex. However, one should be
careful not to conclude from this remark that if / i s as in (1.11), then/is convex
if and only if / is rank one convex. Indeed /(§) = | § | 2 - y det § is rank one
convex for every y while it is not convex if y > 2.

Before proceeding with the proof we give our next example.

THEOREM 1.8. For a ^ l , y^O, let

/(£) = l£|2Qr(l£|2-ydet§). (1.15)

Then, f is rank one convex if and only if0^y = Yo, where

Yi if
Yo =

Yi if

where

„ / 1 1
Y2~ 2ar + V 4 a r 2 2 a r 2 V 2a 2a2'

a
y/4a~2a- 2

I 1\ , , / 1\
Yi = 1 + - )m(a) = 1 + -

V a) \ al minmin ^
<>o I 3t3 + (2a+l)t

4
Remark 1.9. The case a = \, which gives yo= Y\ = —JT, has been studied by

Dacorogna and Marcellini [8] (see also [2]). This example is interesting in the
4

sense that, with Y = ~is, the function / is rank one convex but not polyconvex,

thus answering an open question.
To see that / i s not polyconvex, it suffices to observe that if § = (1, 0, 0, 1) then

/(f§) = 2(2—ft)1*' an(* then to use the Hahn-Banach theorem to show that /
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Rank one convex functions in dimension two 141

cannot be polyconvex (see [7,8] for details). We therefore use strongly the fact
that lim,_»0O/(^)/f2 = — °°. However, in view of (1.16), except for a close to 1,
/ ( § ) ^ 0 for every £elR4. Therefore if a is not close to 1, one cannot use the
above argument, thus leaving the question of the polyconvexity of/unsettled.

We now proceed with the proofs of the theorems.

Proof of Theorem 1.6

We consider only the case a ^ 2. Ball and Murat [6] have obtained the result
when \ ̂  a < 2. We start by proving part (2).

Proof of part (2). To show that / is rank one convex, we proceed in three
steps.

Step 1. By Proposition 1.1, the rank one convexity of/is equivalent to

A{cc(a- l)xa-2)u2-2a-lba{a- 1) \y\"-2v2 + 2axa~1^0, (1.17)

for every u, v, x, y satisfying w2 + v2 § x, (M + v)2 — x ^ 2y ̂  x — (u — v)2. Using
the homogeneity off, we find that (1.17) is equivalent to

2(a-l)u2-b(a-l)\2y\a-2v2 + l^0, (1.18)

whenever u2 + v2^l, (u + u ) 2 - 1 ^ 2 j i l - ( u - v)2.
Obviously the function \2y\a~2 attains its maximum either for 2y = (w + v)2 — 1

or for 1 - (M — v)2. Furthermore, since changing v to — v does not alter (1.18), we
find that the rank one convexity of / is equivalent to showing that

<t>b(u, v) = l + 2(a- 1)M2 - b{a - 1) |1 - (M - v)2\a~2 v2 g 0, (1.19)

whenever u2 + v2 ̂  1.
On letting

o(b) = min {(f)b(u, v):u2 + v2^l} (1.20)

and observing that a(0) = 1, a(+°o) = -°° and that a is continuous and strictly
decreasing, we find that there exists a unique b0 such that

o(b0) = 0. (1.21)

Consequently / is rank one convex if and only if 0 § b ̂  b0. It is the aim of the
next steps to show that b0 is as stated in the theorem.

Step 2. First observe that the case a = 2 is immediately settled, leading to
b0 = 1 as claimed. So we may assume from now on that a > 2. We next let
fi = {(«,u)eR2: «2 + u 2 < l } , C+ = {(u,v)eU2: (u-v)2<l} and C_ =
{(u,v)eU2: (u-v)2>l}. We then claim the following facts, which will be
proved in Step 3:

Fact 1: 0fc|ac = (f>bUc ^ 1 = 0(0, 1) ̂  min {^(u, v): (u, v) e 9B}.
Fact 2: grad+06(u, v)¥=0 if (u, v) e B D C_.
Fact 3: Let b, (u, v)eC+, then <pb(u, v) = 0 and grad <f>b{u, v) = 0

—, v= a

Furthermore, if a S 2 + V2, then (u, 0) e B D C+.

, v= a u. (1.22)

of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210500024318
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:55:24, subject to the Cambridge Core terms

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210500024318
https:/www.cambridge.org/core


142 B. Dacorogna et al.

Fact 4: {u, v) defined as in (1.22) is the absolute minimum of <pb2 over C+.
Fact 5: The minimum of <pb on dB is the same as that on dB D C+, 3BnC_,

3fin{M, u^O}, dBn{u^0, v^O), 3 B n { « § 0 , u^O} and dB n
{«, u^O}.

To conclude the proof of part (2) of Theorem 1.6, we split the discussion into
two cases.

Case 1. let a ^ 2 + V2. From all the above facts we may conclude that
0 = 4>bl(u, v) = min {4>b2(u, v): (u, v) e B} and hence by (1.21), we have b0 = b2

as claimed.
Case 2. if 2< ar<2 + \[2, we have bo = b1. Indeed since B = {(u, v) e U2:

u2 + v2^ 1} is compact we have by (1.20) and (1.21) that there exists (u, v) e B
such that tf>60(u, v) = 0 = o(b0), since («, u) 4 9C+ U 3C_ and grad 0fto(M, u) =/=0
(by Facts 2, 3 and 4) we must have (M, ii) € 3B and thus min {cj)bo:(u, v) e B} =
min {(j)bo: (u, v) e 3B} = 0 = o(b0). By Fact 5 we have also that

0 = min {1 + 2(ar - l)u2 - bo(a - l ) (2uu)a-V: u2 + v2 = l,u,v^ 0}. (1.23)

Writing u = cos 6, v = sin 6, x = cos 20, we find that (1.23) is equivalent to

min { V(x) - a + (or - 1)* - y (a - 1)(1 - x2)0"2"1^ - x): xe [-1, 1]} = 0.

(1.24)

Since ip(l) = 2a-l and xp(-l) = l, we find that b0 is characterised by
x e ( - l , 1) such that y>(x) = W(x) = 0. An elementary computation then gives
bo = bi, as claimed in Theorem 1.6.

Step 3. Therefore, to conclude the proof of part (2), it remains to show Facts 1
to 5 of Step 2.

Fact 1: The first fact is trivial.
Fact 2: If (u, v) e C_ and grad 06(M, V) = 0, we find that

|2M = b(a - 2)v2(u - v)((u - v)2 - I)*"3,
l(« - v)2 - 1 = (or - 2)v{u - v).

By multiplying the first equation by ((« - v)2 - 1) and then using the second, we
find that 2uv = bv2((u - v)2 - l)a~2, which implies in particular that uv ^ 0;
however, if (u, v) e B n C_ we should have 0 ^ M2 + v2 - 1 ^ 2MV, which is
absurd. Thus there is no stationary point of 0fc in B D C_.

3: We now let (M, Ci) e C+ such that grad tf>ft(u, i>) = 0, this implies that
either M = ii = 0 (which gives 4>6(0, 0) = 1), or

f 2M = 6(or - 2)f>2(€) - fi)(l - (M - v)2)a~3, (1.25)f 2M = 6(or - 2)f>2(€)
l l - ( « - t ) ) 2 = (ar- 2)i)(t;-M). (1.26)

As above, we then obtain

(2uv = bv\l -(u- v)2)"-2, (1.27)
l l = «2 + (or - l)v2 - ocuv. (1.28)

((1.28) is just a restatement of (1.26), and (1.27) is obtained by multiplying (1.25)
by (1 - (M - v)2) and using (1.26).) Therefore at a stationary point, we find that
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Rank one convex functions in dimension two 143

<f>b(u, v) = 2(a - l)w2 - 2(ar - l)uv + 1 = (v - u)((a - l)v - (2a - l)u), and
hence if <t>b(u, i>) = 0, we find (1.22). The conclusion is that, if a g 2 + y/2, then
u2 + v2^l is immediately obtained from (1.22), and we thus conclude that
(u, v)eBnC+.

Fact 4: We now wish to show that (u, v) is the absolute minimum of 4>b2 in C+.
To see this, observe first that a direct computation gives b2<2. Therefore if
(u, v) e C+, \ib^b2<2 and if we let u = v + t, we find that t e ( - 1 , 1) and that
06(K, W) = v2[2(a - 1) - 6(a - 1)(1 - t2)a~2] + 4(ar - l)vt + 2(a - l)t2 + 1. The
above identity leads immediately to the fact that if (u, v) e C+, then

lim <j)b(u, v) = +oo. (1.29)

V—»co

With the help of (1.29) we are now ready to conclude. Let

p(b) = inf {<&,(", v): («> w) e C+}. (1.30)
As above, we observe that ju(O) = 1, ju(+°°) = — °° and that ju is continuous and
strictly decreasing. Therefore there exists a unique b such that /*(£) = 0. In view
of (1.22), b^b2- Therefore using (129), we find that the minimum is attained in
(1.30) by a certain (it, v) e C+. Hence <t>b(u, v) = 0 and grad <f>b(u, v) = 0, which
by (1.22) leads to 6 = b2, therefore establishing Fact 4.

Fact 5: This is trivial once it has been observed that if u2 + v2=l, then
06(w, v) = 1 + 2{a - 1)M2 - b(a - 1) \2uv\a~2v2. This concludes Step 3 and thus
part (2) of Theorem 1.6.

Proof of part 1. As mentioned above, we consider only the case a ̂  2. Also let

(i). We l e t / ( £ ) = | f | 2 a r - a o | d e t § r a n d h(z) = h(z) + a0 \z\a for zeR.
We may then write / ( | ) = / ( § ) + ^(det §). In view of part (2), / is rank one
convex and since h satisfies (1.12) we deduce that h is convex and t h u s / i s rank
one convex.

(i)4>(h). We proceed by contradiction. Assume that there exists z e R such
that

h"(z) + aoa(a-l)\z\"-2<0. (1.31)

By continuity of h" we may assume that i # 0 . As seen from (1.17) and (1.21) and
by Proposition 1.1, we have that there exists f e U4 such that

L(|) - 2a(2a - 2) \l\2°"*l\ - aoa(a - 1) |det | r " 2 | 2 + 2a \^\2a~2 = 0. (1.32)

In view of (1.32) we may even ensure that z . d e t | > 0 . We then let | =
(f/det | ) 1 / 2 | . Thus by homogeneity of L in (1.32) we obtain

L( | ) = 0, d e t | = f. (1.33)

If/were rank one convex, we should have by Proposition 1.1

2a - 2) m2a~4 %\ + h"(det ml + 2a \^2a"2^0, (1.34)

for every § e IR4. However, choosing | = | , using (1.31) and (1.33), we find that
M ( | ) < 0 , which contradicts (1.34) and thus establishes Theorem 1.6. •
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Proof of Theorem 1.8

We proceed as in Theorem 1.6 and we decompose the proof into three steps.

Step 1. Using the homogeneity of/and Proposition 1.1, we find that the rank
one convexity of / is equivalent to (1 + (l/a)) + 2(a + l)u2 — 2yuv — yy(l +
2(ar-l)u2)^0, for every u2 + v2^l, (u + v)2-1^2y^l-(u-v)2. Since)'
attains its maximum at \{1 — (w — v)2), we find that the above inequality is
equivalent to

4>Y(u, v) = ( l + -) - 1 + 2(ar + 1)M2 - lyuv

+ 1 (« - v)2 - y(a - 1)(1 - (u - vf)u2 ^ 0 (1.35)

in B where £ = {(«, v) e K2: w2 + v2 < 1}.
Denoting by

o(y) = min {tf>y(u, u): (u, v) e B), (1.36)

we find that a is a continuous strictly decreasing function such that a(0) = 1 +

— >0, a(+oo) = -oo. Therefore there exists a unique y o >0 such that

a(yo) = 0. (1.37)
Observe also that

0<y<l + ^- (1.38)

Consequently / is rank one convex if and only if 0 ̂  y ̂  y0. It is the aim of the
next steps to show that y0 is as stated in Theorem 1.8.

Step 2. We first claim the following facts which will be proved in Step 3.
Fact 1: We have that

min {<pY(u, v): (w, v) e 3B) ^ OoO g y ̂  yt. (1.39)

Fact 2: If a = 1 and grad <pY(u, v) = 0, then <t>y(u, v) > 0.
3: Let a > 1, then

(j>y(u, v) = 0 and grad #V(M, u) = 0

, a - 1 + V4a2 - 2ar - 2 3M+2(OT-1)M 3

Furthermore,

u2+v2^i&a^
9-±^l. (L41)

Facf 4: Let (u, u) be as in (1.40); then (M, U) is the absolute minimum of (j>r2

over the whole of U2.
With the help of the above facts we may now conclude.
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Case 1 (or^(9 + 5V5)/4). We have that if (u, V) is as in (1.40), then
0 = <t>Y2(ii, v) = min {<f>Y2(u, v): (u, v)e B}, which when combined with (1.37)
immediately gives Y0 = y2.

Case 2 (1 ^ a < (9 + 5\/5)/4). In this case we have y = Yi- Indeed since B is
compact, we have that there exists (u, v)e B such that 0yo(«, v) = o(b0) = 0.
Observe that (w, v) e 3B, otherwise we would have (u, v)e B, <f>Yo(u, v) = 0 and
grad #yo(w, v) = 0, which would imply by Fact 3 that y0

 = Yi> ("> v) = (u, u) £ B,
which is absurd.

We therefore have 0 = <r(yo) = min {<j>Yo(
u> v): (M> v)e&} = min {<t>Yo(u, v):

(u, v)edB}. By Fact 1 and (1.37) we have immediately yo = Yi, and this
achieves the proof of Step 2.

Step 3. We now have to prove the above facts.
Fact 1: In (1.35), we let u2 + v2 = 1 and we set u = cos 6, v = sin 0, t — tan 0;

we then obtain

0y(u, u) = (1 + - J + 2(ar + 1) cos2 0 - 3y cos 0 sin 0 - 2y(a- - 1) cos3 0 sin 0

a) l + r l + r (l + rf
Therefore, <pY(u, v) ^ 0 over w2 + u2 = 1 if and only if

hit) = (1 + - V - 3yf3 + 2(a + 1)( 1 + - V 2 - y(2<* + IV + (1 + - ) (2a
\ ex) \ a) \ a)

Since trivially h(t) ^ 0 for t ̂  0, we have that h(t) ^ 0 if and only if

/ 1\ , , / 1\ fr4 + 2(ar + lV2

yt = 11 + — )m(a) = 11 + — ) min \ —^———
V a) \ a) ,>o I 3t3 + (2a + l)t

which is exactly the claimed result. Note also that

T = 1 + ^

2: We now let a = 1; then 0y(u, u) = 2 - ^ + (4 + (y/2))u2 - 3y«u +
y

-u2. One sees immediately that if y # 0 , 1, then the unique stationary point is

u = v = o (and therefore 0y(O, 0) = 2 - 1 > 0 by (1.38)). If y = 0, then 0y(«, u) ^
2 and if y = 1, then <pY(u, v) ^ \. Thus Fact 2 is established.

Fact 3: We first compute grad <j>Y(ii, v) = 0; we have

p 2(2(ar + 1) - ya + ̂ f)u - 3yv + 2y(a - l)(u - v)2u
all \ 2 /

+ 2y(<v - 1)M2(M - v) = 0 (1.43)

dd>
-p- = y(v - 3M + 2(a - I)u2(t) - M)) = 0. (1.44)
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We first observe that if either y = 0 or U = M = 0, then 0y(w, v)>0. We have
from (1.44) and from adding (1.43) and (1.44) that

. 3u + 2(a-l)u3 _
U = l + 2 ( « - l ) * 2 ' ( L 4 5 )

u(2(a + 1) - ya) - yv + y(ar - l)(w - vfu = 0. (1.46)

Using (1.45) in (1.46) and dividing by u, we obtain

- ya) - y(l + 1 + 2 ( ^ 1} _2) + y(« - 1) ( 1 + ^ 1} _2)2 - 0.^ 1} _2)2

We therefore obtain y[(a + 1)(1 + 2(ar - 1)M2)2 + 2] = 2(ar + 1)(1 + 2(ar - l)u2)2,
which leads to

We now return to the expression (1.35) of <f>y and use (1.46) to obtain

<t>r{u, v) = ( l + ̂  - 1 ) + 1 (0 - 3a)(i) - «).

On inserting (1.45) in the above identity, we have

Finally, using (1.47) in (1.48), we obtain

(j)Y(u, v) = 0&(a2 - 1)M4 - (or - l ) w 2 - | = 0. (1.49)

Combining (1.45), (1.47) and (1.49), we have indeed obtained (1.40). To
conclude the proof of Fact 3, it remains to show (1.41), but this is easily seen by
combining (1.40) and (1.45). Indeed, u2 + v2^l is equivalent to

la + V4ar - 2a - 2

Suppressing the denominator, we obtain
1 + (2a + 1 - V4ar2 - 2a - 2)2 ^ |(V4ar2 - 2ar - 2 - (or - 1)),

which leads to

12a2 + 4* - 1 = (6ar - l)(2a + 1) § (6ar + 4)V4<*2 - 2a - 2
= (6ar + 4)V(2ar + l)(2ar - 2).

The last inequality turns out to be equivalent to (bearing in mind that a ^ 1)
4a2 - 18ar - 11 ^ 0 0 a ^ (9 + 5\/5)/4. Hence M2 + v2 ^ 1 if and only if a^ (9 +

4: In view of Fact 3, it is sufficient to show that there exists a, b > 0 such
that

<t>Y2(u,v)>±>0, (1.50)
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in QO|6 = {(«, v)e R2: \u\ >a or \v\>b} (since the only stationary points are
(0,0) with 0y2(O, 0) > 0 and (w, V) with 0y2(«, v) = 0).

We fix or ^ 1 and we let £ be such that y2 = 2 - 2e. Observe that 0 < e ^ \. To
prove the existence of a and b, we first find a such that (1.50) holds for every
\u\ >a and every v e U, then find b such that (1.50) holds for every |«| ^ a and
every \v\ >b.

(1) Observe first that if u = 0, we immediately obtain (1.50), since #y2(0, v) =
l/a + e + (1 — e)v2> I/a. We may then assume that u¥=0 and we let
v = tu with teR. We obtain

<f>Y2(u, tu) = -+e + h(t)u2 + 2(1 - e)(or- 1)(1 - t f u \ (1.51)
1

ry2VM, to) =
a

where h{t) = (1 - e)f2 - 6(1 - £)f + (5 - 3e + 2ea). Observe that h(t) ^ - 4
and that since h(l) = 2e(a +1), there exists 6 = 6 ( a ) > 0 such that
h(t) ^ £(a + 1) for every t e [1 - 6, 1 + 6].

Case 1. If te[l — 6, 1 + 6], we then obtain (1.50), since </>y2(«, to) §
I /a + £ + f(a + l)u2 > I/a.

Case 2. If t$ [1-6,1 + 6], then 0V2(M, to) ^ 2(1 - e)(a - 1 ) 6 V -

Then choosing a sufficiently large so that |w|>a implies 2 ( l - e ) ( a —
1 ) 6 2 M 4 - 4 M 2 ^ 0 , we immediately obtain (1.50).

(2) We may now assume that |«| ^ a ; we then obtain

0r2(M; v) = ( - + £ J + (5 - 3£ + 2£OT)M2 + (1 - £)u2 - 6(1 - s)uv

+ 2(1 - e)(a - 1)(« - U)2M2

^ - + £ + (1 - e){v2 - 6uv) ^ - + £ + (1 - e)(v2 - 6a \v\).

Therefore we choose b sufficiently large so that v2 — 6a \v\ ̂  0. We deduce
(1.50) immediately and thus the theorem. •

2. Numerical results

We now turn to the example of Dacorogna and Marcellini [8], i.e. that of
Theorem 1.8 with a= 1; more precisely, let

/y(£) = | ! | 4 - r | § | 2 d e t £ . (2.1)

We have seen in Theorem 1.8 as well as in Remark 1.9 that:
4

(1) If O ^ y ^ —IT, then fr is rank one convex;
4

(2) if 2< y = -TJ» then/y is not polyconvex.

In view of the general diagram presented in the introduction, fY polyconvex
4>/y quasiconvex ^>fy rank one convex, we deduce that the function fY is a
candidate for answering Morrey's conjecture: /rank one convex j^f quasiconvex.
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148 B. Dacorogna et al.

Unfortunately, it seems very hard to decide whether the function fY is
quasiconvex or not when y = 4/V3- We could not even decide if the function fY is
quasiconvex at 0, which means that we could not decide whether
inf{jafY(V(f>(x))dx: </> e Wj""(fi; U2)} is 0 or -°°. We have therefore under-
taken some numerical computations which we present below. Our results tend to
indicate that fY is quasiconvex whenever y ^ 4/V3.

We now set the problem. For £ e R2x2 and 0 e Wl'\Q; U2), we let

= f (2.2)

We choose Q = (0,1) X (0,1). The quasiconvexity of fY is then equivalent to

inf inf UJ£, <b)\ - 0. (2.3)

Remarks 2.1. (i) Note that because of the homogeneity of fY, the infimum in
(2.3) is either 0 or -°°.

(ii) It follows from Theorem 1.8 that, if y>4/V3, then fY is not rank one
convex and therefore in (2.3) the infimum is — °°. This can also be seen by

in our
/ I 0 \

choosing I; = I r-J and a highly oscillating <t>. It is for this reason that i
0 V / I 0 \

numerical computations we study with special care the case § = I r-).
We now describe our numerical approximation. We let N be a positive integer

and h = 1/N. We partition Q into Qiy = (ih, (i + l)/i) x (jh, (/ + \)h), 0 ^ i,
j^N — 1. each of these Q,y is then subdivided into two triangles as in Figure 1.
We let rh denote this triangulation of Q and the triangles by K. We let

Figure 1
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Pu P2,...,PM,M = (N- I)2, be the internal nodes. We next set

Vh = {u e C°(Q): u is affine on each K e xh and u = 0 on 3Q},

Remark 2.2. It is well known that for every u e WlA(Q; U2) we have
linv^oinf^w, \\u - uh\\wi.* = 0.

We first fix § e U2x2 and we minimise JY over Wh. To do this, we use the
gradient method which we now describe. Let w', I = 1, 2, . . . , L be given and
d' = VJY(wl), g'(a)=JY(w' + ad'), w'+1 = w' + ad', where a is obtained by

dg'
solving -2- = 0, using only one step in Newton's method with starting point a = 0.

da
We now give our results. We fix N = 10. We have done five types of

experiment. Each time when we choose w1, we mean that we have chosen w1(Pm)
for 1 ^ m ^ (N — I)2 and where Pm are the internal nodes. We recall also that
4/V3« 2-3094.

(I) £ random and w1 random. For each of the values of y, we have chosen four
different random values of % and four different random values of w1. The
conclusions are that JY(wL) = 0 up to the order 10~12 and usually for L around
500 and this for the values of y = 2-31/2-32/2-3225/2-3275.
(II) £ = (1, 0, 0, V3) and w1 random. In fact we have chosen a multiple of £
(100.?). We found that for y = 2-31/2-32/2-3225/2-3275, JY(wL) = 0. However, if
y = 2.33 we found for four different w1 chosen in a random way, /r(w

782) =
-44.05; -354.01; -440.55; -73.552.
(III) § = (1, 0, 0, V3) and oscillating w1. We have chosen w\Pm) = ( - l )m + 1( l , 1)
and we found that for y = 2-31/2-32/2-3225/2-3275, JY(wL) = 0. However, if
y = 2.33 we found that /y(w

300) = -261.72.
(IV) | = (0, 0, 0, 0) and w1 random. We chose as before four different random
values of wl and we found that up to y = 3-25, JY(wL) = 0 up to the order 10~12

usually for L = 300. However, for y = 3-3 we found JY(w115) = -60.
(V) £ = (0, 0, 0, 0) and oscillating w\ We have chosen n-1(Pm) = ( - l )m + 1( l , 1)
and we found that up to y = 3.5, JY(wL) = 0, while at y = 3-60, J^w280) = -5.3.
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