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S U M M A R Y
A 1-D model is presented that couples the microscale oscillations of non-wetting fluid blobs
in a partially saturated poroelastic medium with the macroscale wave propagation through
the elastic skeleton. The fluid oscillations are caused by surface tension forces that act as
the restoring forces driving the oscillations. The oscillations are described mathematically
with the equation for a linear oscillator and the wave propagation is described with the 1-D
elastic wave equation. Coupling is done using Hamilton’s variational principle for continuous
systems. The resulting linear system of two partial differential equations is solved numerically
with explicit finite differences. Numerical simulations are used to analyse the effect of solids
exhibiting internal oscillations, and consequently a resonance frequency, on seismic waves
propagating through such media. The phase velocity dispersion relation shows a higher phase
velocity in the high-frequency limit and a lower phase velocity in the low-frequency limit.
At the resonance frequency a singularity in the dispersion relation occurs. Seismic waves can
initiate oscillations of the fluid by transferring energy from solid to fluid at the resonance
frequency. Due to this transfer, the spectral amplitude of the solid particle velocity decreases
at the resonance frequency. After initiation, the oscillatory movement of the fluid continuously
transfers energy at the resonance frequency back to the solid. Therefore, the spectral amplitude
of the solid particle velocity is increased at the resonance frequency. Once initiated, fluid
oscillations decrease in amplitude with increasing time. Consequently, the spectral peak of the
solid particle velocity at the resonance frequency decreases with time.
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1 I N T RO D U C T I O N

A number of processes can cause oscillations with a resonance fre-
quency within a heterogeneous rock. For example, the behaviour
of non-wetting fluids entrapped in capillary tubes and in idealized
pore spaces were studied (Dvorkin et al. 1990; Graham & Higdon
2000a; Graham & Higdon 2000b), and one of the main results is the
oscillatory movement of the fluids when an external force is applied
(Hilpert et al. 2000). The restoring force driving the oscillations is
the surface tension force or capillary force. The result that isolated
oil blobs in partially saturated rocks can exhibit a resonance fre-
quency, motivated the suggestion of a new enhanced oil recovery
method (EOR) termed ‘wave stimulation of oil’ or ‘vibratory mo-
bilization’ (Beresnev & Johnson 1994; Iassonov & Beresnev 2003;
Beresnev et al. 2005; Li et al. 2005; Hilpert 2007; Pride et al.
2008). Another example of solids exhibiting internal oscillations
is cavities or other heterogeneities in solids. These heterogeneities
can oscillate and exhibit a resonance frequency (Meyer et al. 1958;

Anderson & Hampton 1980a; Anderson & Hampton 1980b; Landau
& Lifschitz 1997). The process is also called resonant scattering
(Werby & Gaunaurd 1989; Werby & Gaunaurd 1990; Hassan &
Nagy 1997) and has applications in non-destructive testing of mate-
rials (Ida & Wang 1996; Castellini et al. 2000; Schultz et al. 2006).
A third example of oscillatory behaviour is stratified media. Urquizu
& Correig 2004 showed that under certain circumstances a seismic
wave pulse propagating through a layered medium can be described
mathematically with a differential equation for an oscillator.

The oscillating effects caused by heterogeneities or layered me-
dia are implicitly included in numerical models solving the full
elastodynamic wave equations, as long as the heterogeneities or the
layering are numerically well resolved (e.g. Frehner et al. 2008).
However, the oscillatory behaviour of non-wetting fluid blobs in
partially saturated rocks (e.g. Hilpert et al. 2000) is not included
in mathematical models of wave propagation in partially saturated
rocks. These models can be separated into two groups: (1) mod-
els based on Biot’s equations (Biot 1962) for fully-saturated rocks,
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applying a spatial variation of the pore fluid properties represent-
ing a partial saturation on the mesoscale (i.e. larger than the pore
size and smaller than the wavelength; White 1975; Dutta & Ode
1979), and (2) models for three-phase (i.e. solid, wetting and non-
wetting fluid) media considering a partial saturation on the pore
scale, including particular capillary pressure versus saturation rela-
tions (Santos et al. 1990; Tuncay & Corapcioglu 1996; Smeulders
& Van Dongen 1997; Wei & Muraleetharan 2002). In the derivation
of all of these continuum models for fully and partially saturated
media, the individual phases are usually mixed and their proper-
ties are averaged in a so-called representative elementary volume.
During this averaging the individual interfaces between the wetting
and non-wetting fluids in a pore disappear and the restoring force
caused by the surface tension is not included in the continuum mod-
els for wave propagation in partially saturated rocks. Therefore, in
these continuum models only the flow of the pore fluids caused
by fluid pressure differences (described most frequently by Darcy
flow) is considered. Additionally, numerical studies of microscale
wave propagation in porous rocks (Saenger et al. 2007) also do not
include surface tension effects. However, they include microscale
scattering because they resolve the 3-D pore geometry.

In this study a basic 1-D model is presented that couples oscilla-
tions within a rock with the seismic wave propagation through the
rock. The model is not intended to be an extension of the well-known
Biot’s equations (Biot 1962) to three phases (i.e. solid, wetting and
non-wetting fluid), but rather to study the fundamental energy trans-
fer between waves and oscillations and the resulting modification
of the spectral content of elastic waves while propagating through
a solid exhibiting internal oscillations. Here, oscillations caused by
partial saturation of porous solids with a non-wetting fluid are con-
sidered. The remaining pore space is assumed to be filled by a gas.
Resonance frequencies of such oscillations lie at the low-frequency
end of the seismic spectrum (Hilpert 2007; Holzner et al. 2009). The
motivation of this work is to couple the microscale pore fluid oscil-
lation models (assuming a rigid elastic skeleton) to the macroscale
elastic wave propagation model for the elastic skeleton. However,
the model could be modified to study other oscillatory processes.

The paper starts by deriving the coupled wave propagation–
oscillation model. Next, the resulting system of two coupled dif-
ferential equations is solved numerically with explicit finite differ-
ences. The dispersion relation and the energy balance of the coupled
system are studied numerically and analytically. Also, the spectral
modification of elastic waves propagating through solids exhibiting
internal oscillations is analysed. A discussion on the model’s appli-
cability to hydrocarbon reservoirs is followed by conclusions.

2 M AT H E M AT I C A L M O D E L

2.1 Elastic solid

The behaviour of the elastic solid in 1-D is described by the total
stress in the elastic solid σ s, the strain εs, being the spatial derivative
of solid displacement us and the elastic modulus K. The elastic
stress–strain constitutive relationship with x as the spatial coordinate
is

σ s = K εs = K
∂us

∂x
, (1)

where K represents the bulk modulus of the poroelastic rock, which
is saturated by two immiscible fluids. The value of K is a function
of the dry rock frame bulk modulus, the grain bulk modulus, the
bulk moduli of the two fluids and the porosity (Gassmann 1951;

Berryman & Milton 1991; Toms et al. 2006). There exists good
understanding on the value of K within the general theory of porous
media (Borja 2006; Gray & Schrefler 2007), and values of K are,
for example, applied in the theory of wave propagation in partially
saturated rocks (Santos et al. 1990; Tuncay & Corapcioglu 1996). In
the low-frequency range, the Gassmann–Wood limit can be applied
to estimate the value of K (Mavko et al. 1998). Thereby, Wood’s
law is used to calculate the effective fluid bulk modulus from the
bulk moduli of the two immiscible fluids and this effective fluid
bulk modulus is then used in the Gassmann relations (Gassmann
1951) to estimate the effective bulk modulus of the fluid saturated
rock.

2.2 Fluid movement as linear oscillations

In the following, oscillations caused by partial saturation of porous
solids with a non-wetting fluid are considered. The remaining pore
space is assumed to be filled by a gas. Beresnev 2006 showed that
the movement of such non-wetting fluids can be described with an
oscillator equation. Here, a 1-D harmonic oscillator equation with
an angular resonance frequency ω0 is assumed to represent this
oscillatory behaviour:

üf = −ω2
0

(
uf − us

)
. (2)

Superscripts f and s refer to the non-wetting fluid and the solid
rock frame, respectively, and u and ü are displacement and second
time derivative of displacement. The restoring force that leads to a
oscillatory behaviour is the surface tension force or capillary force
(Dvorkin et al. 1990; Hilpert et al. 2000; Hilpert 2007; Holzner
et al. 2009). Both the non-wetting pore fluid and the solid rock
frame can be deformed, but only the relative displacement leads to
a restoring force. Therefore, the relative displacement is used on the
right-hand side of eq. (2). Hilpert et al. 2000 and Holzner et al. 2009
derived analytical formulae for ω0 using different pore geometries
and different boundary conditions at the pore wall. Hilpert et al.
2000 used a fluid blob with pinned contact lines in a pore with
straight walls. The resulting formula is

ω0 =
√

4γ

r 2hρf
sin θ0 (1 + sin θ0)2. (3)

Holzner et al. 2009 used a fluid blob with sliding contact lines in
a bi-conically shaped pore. The resulting formula is

ω0 =
√

6γ

rh2ρf
. (4)

In both formulae, the parameters γ , r, h and ρf are surface ten-
sion, radius of the pore, length of the fluid blob and density of the
fluid, respectively. θ 0 in eq. (3) is the contact angle between the
non-wetting fluid surface and the rigid pore wall. The two formu-
lae have the same structure. Table 1 lists a set of parameters that
is in accordance with the parameters used by Hilpert et al. 2000
and Holzner et al. 2009. Using these parameters, eq. (3) results in
ω0 = 107.7 ( = 17.1 Hz × 2π ) and eq. (4) in ω0 = 75.1 (=12.0 Hz
× 2π ), which is the same order of magnitude. The difference is a
result of the different pore geometries and boundary conditions at
the pore walls of the two cases. Considering n oscillators, the total
kinetic energy of the fluid E f

kin is

E f
kin = 1

2

n∑
j=1

mf
j

(
u̇f

j

)2
. (5)
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Table 1. Parameters used to calculate the resonance
frequency ω0 with eqs (3) and (4).

Parameter Symbol Value

Surface tension γ 0.02 N m−1

Radius of pore r 0.001 m
Length of pore h 0.005 m
Density of fluid ρf 850 kg m−3

Contact angle θ 0 20◦

In eq. (5) mf
j and u̇f

j are mass and time derivative of the displace-
ment of each individual oscillator. The pores are assumed to be
non-connected. The individual oscillations therefore do not interact
with each other directly. However, the individual fluid oscillations
are coupled indirectly through their coupling to the solid (see be-
low). Also, the individual oscillations are assumed to exhibit the
same resonance frequency ω0. These two major assumptions lead
to a simplified model where no fluid flow between pores can take
place. There will be no wave travelling due to the presence of the
fluid, such as the Biot slow wave. However, the resulting model al-
lows studying first-order effects of the oscillations on seismic wave
propagation, which is included below. The total potential energy of
the pore fluid, E f

pot, is the sum of the individual potential energies:

E f
pot = 1

2

n∑
j=1

mf
jω

2
0

(
uf

j − us
j

)2
. (6)

2.3 Coupling between fluid oscillations and elastic waves

The coupling of the microscale (i.e. pore-scale) fluid oscillations
with a 1-D linear elastic solid yields the effective rheological model
sketched in Fig. 1. Two displacements have to be considered indi-
vidually in this model, the displacement of the solid phase us and

Figure 1. Schematic rheological model for coupling between elastic defor-
mation and fluid oscillations. The elastic bar with bulk modulus K on the
left-hand side is coupled in parallel with a linear oscillator with a resonance
frequency ω0.

the displacement of the oscillating fluid phase uf . The solid is rep-
resented by a linear elastic element and the fluid by an oscillating
mass. The elastic wave propagation and the fluid oscillations are
coupled using Hamilton’s variational principle for continuous sys-
tems (Fetter & Walecka 1980; Bourbie et al. 1987). Therefore, the
energies of the oscillating fluid (eqs 5 and 6), which were defined in
a discrete way, need to be reformulated in the continuous limit. The
different contributions to the total system energy are then written in
the following way:

E f
kin = 1

2

∫ l

0
Sφρf

(
u̇f

)2
dx, (7)

E f
pot = 1

2

∫ l

0
Sφρfω2

0

(
uf − us

)2
dx, (8)

E s
kin = 1

2

∫ l

0
(1 − φ) ρs (u̇s)2 dx, (9)

E s
pot = 1

2

∫ l

0
σ sεsdx . (10)

Parameters ρf , ρs and l are density of the fluid and the solid,
respectively, and length of the 1-D model. Parameters φ and S are
porosity of the rock matrix and saturation of the pores by the non-
wetting fluid, respectively. Both parameters are dimensionless and
have a value between 0 and 1. They are both assumed to be constant
in time, that is, porosity and saturation do not change when a wave
is passing. Eqs (7)–(10) only consider the solid and the non-wetting
fluid phase. In the presented cases, saturation of the pores is smaller
than 1 and a third phase is present. It is assumed that the third
phase is gaseous and that both its kinetic and potential energies
are small compared to the fluid and solid phases. Therefore, the
third phase is neglected. Also, the gaseous phase is assumed to have
a much smaller bulk modulus than the fluid phase. Therefore, the
compression of the fluid can be neglected and the fluid bulk modulus
is not considered as a model parameter. Combining eqs (7)–(10),
the Lagrangian functional L can be formulated (Fetter & Walecka
1980) using the total kinetic energy T and the total potential energy
U :

L = T − U = (
E f

kin + E s
kin

) − (
E f

pot + E s
pot

) =
∫ l

0
Ldx . (11)

The Lagrangian density L has the dimension of energy per
unit length. Hamilton’s variational principle for continuous systems
(Fetter & Walecka 1980; Bourbie et al. 1987) can now be applied
to the Lagrangian functional:

δ

∫ t2

t1

Ldt =
∫ t2

t1

∫ l

0
δLdxdt

=
∫ t2

t1

∫ l

0

{
∂L
∂ui

− d

dt

(
∂L
∂ u̇i

)
− d

dx

(
∂L
∂εi

)}
δui dxdt = 0.

(12)

Superscript i in eq. (12) replaces superscripts s (solid) or f (fluid).
The variations δui are arbitrary (Fetter & Walecka 1980). Therefore,
their coefficients in curly brackets must be equal to zero. The result-
ing equations are the Euler–Lagrange equations for the continuous
two-component system:

∂L
∂ui

− d

dt

(
∂L
∂ u̇i

)
− d

dx

(
∂L
∂εi

)
= 0. (13)
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The Lagrangian density L (in eq. 11) is substituted into the
Euler–Lagrange equations. The final equations of motions are

Sφρf üf = −Sφρfω2
0

(
uf − us

)
, (14)

(1 − φ) ρsüs = ∂

∂x

(
K

∂us

∂x

)
+ Sφρfω2

0

(
uf − us

)
. (15)

Eqs (14) and (15) form a closed system of two equations for the
two unknown functions us and uf . eq. (14) is identical to a linear 1-D
oscillator equation (eq. 2) but is formulated in terms of averaged
density (Sφρf ). The left-hand side together with the first term of the
right-hand side of eq. (15) represents a 1-D wave equation (Lindsay
1960; Achenbach 1973; Szabo 1985). It is also written in terms of
averaged density [(1–φ)ρs]. This 1-D wave equation can represent a
P wave or an S wave, depending on the interpretation of the unknown
solid displacement us and the material parameter K. In this study,
the solid displacement is assumed to be parallel to the propagation
direction of the wave as well as parallel to the fluid displacement
uf . Therefore, in the following, the solid wave is called a P wave.
The additional term on the right-hand side of eq. (15) links the fluid
motion and the solid motion. If eqs (14) and (15) are added the
coupling term disappears and the equation of conservation of the
total linear momentum can be derived.

3 N U M E R I C A L M O D E L

Eq. (1), the two eqs (14) and (15) and two additional kinematic equa-
tions (∂ui/.∂t = vi) represent a coupled system of five first-order
linear partial differential equations. The equations are spatially dis-
cretized over the model length l using the finite difference method
with a 1-D staggered grid (Virieux 1986). The two displacements
and the two velocities are defined on nodal points and the solid stress
is defined on staggered points (i.e. centre points). Discretization
in time is formulated explicitly with a staggered method (Virieux
1986). For some simulations the boundary conditions are rigid (all
displacements and velocities are equal to zero) and for some simula-
tions, non-reflecting (Ionescu & Igel 2003). Fig. 2 shows the model
setup used in this study. Time signals are recorded at two synthetic
receiver locations R1 and R2. For some simulations an external
source is applied at the position S. In fact, the source is active over
a small number of spatial gridpoints whereas the source amplitude
is highest at position S and decays strongly over a few numerical
points. The source acts as an additional force term in eq. (15) and
therefore acts only on the elastic solid. The fluid phase is only af-
fected indirectly through the coupling terms in eqs (14) and (15).
The resonance frequency of the pore fluid oscillations is set to 3 Hz
throughout the model domain but, using non-dimensionalization,
the results can be translated to other frequencies. Physical parame-
ters used in the simulations are given in Table 2. For all simulations
the spatial resolution is chosen in such a way that the wavelength of
a P wave with a frequency of 50 Hz is resolved with 50 nodal points.
The explicit time increment is calculated using the von Neumann
stability criterion (Virieux 1986; Higham 1996).

4 N U M E R I C A L R E S U LT S

4.1 Energy conservation and transfer

To test for conservation of energy of the numerical scheme a ho-
mogeneous numerical simulation was performed with two rigid

Figure 2. 1-D model setup for numerical simulations consists of two re-
ceivers R1 and R2 and one source S. The whole domain is described by the
coupled system of eqs (14) and (15). The lower and upper boundaries can
be rigid (zero displacement) or non-reflecting.

boundaries (Fig. 2). No source function was applied, but a Gaussian-
shaped initial perturbation of the solid velocity field was prescribed.
After the simulation started, this perturbation propagates through
the solid part of the model as an elastic wave and also initiates the
fluid oscillations. In Fig. 3 the four energies in the system (eqs 7–
10), which are calculated from the numerical simulation, are plotted
versus time. The energies of the solid and the fluid phase always add
up to a constant total system energy. The total energy of the system
is conserved, which also illustrates the correctness of the numerical
algorithm. At time zero, following the initial conditions, energy of
the fluid is zero and energy of the solid is maximal. A significant
part of the energy is then transferred back and forth between solid
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Table 2. Parameters used in numerical simulations.

Parameter Symbol Value

Resonance frequency of oscillations ω0 18.85 ( = 3 Hz × 2π )
Density of fluid ρf 800 kg m−3

Density of solid ρs 2800 kg m−3

Elastic bulk modulus K 1010Pa
Porosity φ 0.3
Non-wetting fluid saturation of pores S 0.9
Frequency of external source � ω0 / 10
High-frequency limit of P-wave velocity V HF

P 2259 m s−1

Low-frequency limit of P-wave velocity V LF
P 2132 m s−1

and fluid phase, showing that the pore fluid oscillations influence
the behaviour of the solid phase considerably. For example, after
about 0.4 s, the solid has transferred about 45 per cent of its total
energy to the fluid (Fig. 3).

4.2 Eigenvalues and dispersion curve

In Fig. 4 the phase velocity dispersion curve for a P wave travelling
in a medium described by the coupled eqs (14) and (15) is plotted.
The black line is the analytical P-wave phase velocity as a function
of frequency that is calculated from the eigenvalues of eqs (14) and
(15). For calculating the phase velocity numerically (red dots in Fig.
4), several simulations were performed using different frequencies
� in the external source function,

F (t) = sin (�t) . (16)

The source function was applied at position S of the model shown
in Fig. 2 with two non-reflecting boundaries. The phase velocity of
the P wave was calculated from the time-shift between the record-
ings at receivers R1 and R2. Numerical results agree well with the
analytically calculated phase velocity and the numerical simula-
tions reproduce well the phase velocity discontinuity around the
resonance frequency.

Figure 3. Time evolution of the different energies in the coupled system (eqs 7–10). A 120 m long homogeneous model with two rigid boundaries is used, and
an initial perturbation in the solid velocity field is applied. The total energy, that is, the sum of all energies (thick black line) stays constant over time. Individual
energy contributions are transferred between fluid (red lines) and solid (green lines) phases.

The P-wave velocity in a dry poroelastic solid {√K/[(1 − φ)ρs]}
is the high-frequency limit of the dispersion relation. At frequen-
cies much larger than the resonance frequency, inertia prohibits a
movement of the pore fluid and the seismic waves travel as if there
was no pore fluid. At frequencies much smaller than the resonance
frequency, solid and fluid move in phase. In this regime, the ef-
fective density that has to be considered in calculating the P-wave
velocity is a combination of fluid and solid densities, and it be-
comes

√
K/[(1 − φ)ρs + Sφρf ]. This low-frequency limit is very

similar to the low-frequency limit of the Biot’s equations (Gassmann
1951; Geerstma & Smit 1961) but using a constant bulk modulus.
At frequencies just below the resonance frequency of the fluid os-
cillations a decrease of phase velocity is observed, followed by a
sharp velocity jump at the resonance frequency to very high val-
ues. Mathematically, the phase velocity is indefinite at this point.
With increasing frequencies the phase velocity decreases and fi-
nally reaches the high-frequency limit. This characteristic P-wave
velocity dispersion curve is also observed in other media that ex-
hibit an internal resonance behaviour. For example Fox et al. 1955,
Silberman 1957 and Anderson & Hampton 1980a measured and
described a very similar dispersion relation in water containing gas
bubbles. Although the mechanism of oscillation is different, the ef-
fect on the propagation of seismic waves is comparable. The model
described by eqs (14) and (15) conserves energy (Fig. 3). Therefore,
P waves are not attenuated. Attenuation can be calculated from the
eigenvalues of the system of eqs (14) and (15), but it results in zero
attenuation for all frequencies.

4.3 Spectrograms for wave incidence

A numerical simulation was run with the model setup shown in
Fig. 2 with two non-reflecting boundaries. The external source ap-
plied at position S is a Gaussian curve in time,

F (t) = exp

[
− (t − t0)2

2τ 2

]
, (17)
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Figure 4. P-wave phase velocity versus frequency. Frequency is normalized with the resonance frequency of the fluid oscillations. Velocity is normalized
with the phase velocity in a dry porous rock. Analytical phase velocity is calculated from the eigenvalues of the system of eqs (14) and (15). Numerical phase
velocities are calculated from simulations with a monochromatic external source. Each point represents one individual simulation using one particular external
frequency.

Figure 5. Spectrogram of solid (a) and fluid (b) particle velocities at receiver R2 of the model shown in Fig. 2, with two non-reflecting boundaries. Inlay:
Spectrum of the applied Gaussian source function (eq. 17) applied at position S. Frequency is normalized with the resonance frequency of the fluid oscillations.
Spectral values are normalized with the spectrum of the source function and are plotted logarithmically. Due to the algorithm calculating the spectrograms (see
text), the Gaussian peak of the external source is visible for 10 s (between 5 and 15 s).

where t0 = 10 s and τ = 0.01 s. The inlay in Fig. 5(a) shows the
spectrum of this source function. At receiver R2, both fluid and solid
particle velocities were recorded. Fig. 5 shows the spectrograms for
both particle velocities. The spectral values are normalized with
the spectrum of the external source. To calculate a spectrogram,

a 10 s time window is moved along the time axis of the recorded
particle velocity–time signal with 1 s steps. For each step, the spec-
trum is calculated and plotted at the centre of the 10 s window.
Due to this algorithm, the pulse of the external source is visible
in the spectrogram between 5 and 15 s. Over this time interval, the
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Waves in solids exhibiting a resonance frequency 595

Figure 6. Spectral response of the fluid and solid particle velocity at the external source frequency for different external frequencies. Velocities are recorded
at receiver R2 of the model shown in Fig. 2, with two non-reflecting boundaries. One simulation with a monochromatic source function (eq. 16) at position S
provides the two data points at one frequency. Frequency is normalized with the resonance frequency of the fluid oscillations. Spectral values are normalized
with the spectral values of the external source.

spectrogram of the solid particle velocity (Fig. 5a) shows a minimum
at the resonance frequency of the fluid oscillations. The amplitude
of this minimum is around one order of magnitude smaller than the
amplitude of the external source (orange colour of the minimum).
The second half of the spectrogram, where the external source is not
present, shows a peak at this frequency. Immediately after the source
pulse has passed, this peak has the same amplitude as the source at
this frequency (dark red colour of the peak). The amplitude of the
peak decreases over time, becoming around one order of magnitude
smaller after 25 s (orange colour). The spectrogram of the fluid
velocity (Fig. 5b) shows a peak at the resonance frequency of the
fluid oscillations throughout the whole simulation. The amplitude
of this peak is larger than the amplitude of the external source at
this frequency.

Fig. 5 indicates that at the moment of incidence of the elastic
wave, fluid oscillations are immediately excited. The oscillations
take place at the resonance frequency. Therefore, a maximum at
the resonance frequency develops in the spectrogram of the fluid
particle velocity from the very beginning of the simulation (Fig.
5b). At the same time, a minimum in the spectrogram of the solid
particle velocity develops at this frequency (Fig. 5a). This hap-
pens because the energy for the initiation of the fluid oscillations is
taken from the solid. This energy transfer from solid to fluid takes
place only at the resonance frequency due to the linear nature of
the system equations. After the fluid oscillations are initiated and
the elastic wave has passed, the fluid continues to oscillate with its
resonance frequency. Fluid oscillations in adjacent pores are almost
in phase because they are excited by the macroscale elastic wave
at almost the same instant. Therefore, the effect of the different
pores on the seismic wave adds up to a measurable effect. The os-
cillating fluid continuously transfers energy back to the solid. This
energy transfer from fluid to solid happens only at the resonance

frequency due to the linear nature of the system equations. There-
fore, a maximum in the spectrogram of the solid particle velocity
occurs at this frequency (Fig. 5a). The amplitude of this peak cannot
be larger than the amplitude of the external source, which initial-
ized the oscillations. The non-reflecting boundaries of the system
allow the P-waves to transport energy out of the system. Therefore,
the fluid oscillations decrease in amplitude and the maxima in both
spectrograms decrease.

4.4 Resonance curves

Fig. 6 shows two resonance curves for the coupled eqs (14) and (15).
The two curves represent the solid and the fluid response at the fre-
quency of the external source. They are numerically calculated in
the following way: a set of numerical simulations was performed
using a different frequency � in the monochromatic external source
function (eq. 16) for each of the simulations. The source function
was applied at position S of the model shown in Fig. 2 with two
non-reflecting boundaries. For each simulation two mean spectra
are calculated, one for the fluid particle velocity and one for the
solid particle velocity, both recorded for 300 s at receiver R2. Mean
spectra are calculated by arithmetically averaging in time the spec-
trograms that are calculated the same way as described above for
Fig. 5. From these two mean spectra, the spectral values are picked
at the external frequency �. Each simulation (i.e. each external fre-
quency) results in two spectral values (i.e. solid and fluid response
at the external frequency) that are plotted in Fig. 6. The frequency
is normalized with the resonance frequency of the fluid oscilla-
tions. Spectral values are normalized with the spectral values of the
external source function.

As expected for an oscillatory behaviour, the closer the exter-
nal frequency is to the resonance frequency the stronger the fluid
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Figure 7. Spectral response of the fluid and solid particle velocity at the resonance frequency for different external frequencies. Velocities are recorded at
receiver R2 of the model shown in Fig. 2 with two non-reflecting boundaries. One simulation with a monochromatic source function (eq. 16) at position S
provides the two data points at one frequency. Frequency is normalized with the resonance frequency of the fluid oscillations. Spectral values are normalized
with the spectral values of the external source.

response becomes. Below the resonance frequency, the fluid re-
sponse is equal to the solid response at very low external frequen-
cies. Above the resonance frequency, the fluid response becomes
much smaller than the solid response with increasing frequency.
The solid response is equal to the external source for all frequencies
except for a sharp minimum at the resonance frequency of the fluid
oscillations. The amplitude of this minimum is around one order
of magnitude smaller than the amplitude of the external source.
This is very similar to the minimum described in the first half of
Fig. 5(a). The observations in Fig. 6 can be interpreted with the en-
ergy transfer already described for Figs 3 and 5. The minimum in the
solid response develops because energy is transferred from solid to
fluid only at the resonance frequency to drive the fluid oscillations.
At very low frequencies, the fluid moves in phase with the solid.
Consequently, the fluid response at very low external frequencies
is equal to the solid response. At very high external frequencies,
inertia of the fluid prohibits excitation of the oscillations and the
fluid does not move. Consequently, the fluid response becomes very
small with increasing frequency.

Fig. 7 shows two resonance curves that are similar to the ones in
Fig. 6. The two curves represent the solid and the fluid response at
the resonance frequency of the fluid oscillations. They are calculated
in the same way as described above for Fig. 6, but instead of picking
the spectral values at the external frequency in the mean spectra, the
spectral values are picked at the resonance frequency. Normalization
of the frequency and of the spectral values is also done in the same
way as in Fig. 6. The two data points at an external frequency
equal to the resonance frequency are the same data points as in
Fig. 6 at the same frequency. The two curves in Fig. 7 have the
same shape but different amplitudes. They clearly represent the
resonance effect of the fluid. The closer the external frequency is to
the resonance frequency, the stronger the fluid response becomes.

Because energy transfer between fluid and solid only takes place
at the resonance frequency, the solid response at the resonance
frequency is dominated by the oscillatory behaviour of the fluid.
However, the fluid oscillations are also excited for other external
frequencies than the resonance frequency, that is, spectra do not
drop to zero for external frequencies different from the resonance
frequency. This is an effect of the incidence of the elastic wave at
the beginning of each simulation. At the moment of elastic wave
incidence, all frequencies are introduced into the system and the
fluid oscillations are excited. This excitation is stronger for elastic
waves having a frequency close to the resonance frequency.

4.5 Comparison to purely elastic case

From the set of numerical simulations used in Figs 6 and 7, one
simulation is taken for comparison with a purely elastic model. The
chosen simulation uses a monochromatic external source (eq. 16)
applied at position S with a frequency �, 10 times smaller than the
resonance frequency. This choice is motivated by the fact that the
Fourier spectra of typical passive measurements of seismic back-
ground noise show a dominant peak at around 0.2 Hz (Peterson
1993; Berger et al. 2004), which is about a factor 10 smaller than
the applied resonance frequency. This high-energy spectral peak is
a global feature that can be measured everywhere in the world and
is presumably related to seismic surface waves generated by ocean
waves (Aki & Richards 1980). After different simulation durations,
a Fourier spectrum is calculated from the solid particle velocity
recorded at receiver R2. The procedure to calculate a spectrum is
not a moving-window method with a constant time-window length
but always uses the whole time signal from the beginning of the
simulation until the current time. It is therefore different from the
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Figure 8. Fourier spectra of solid particle velocity–time signal at receiver R2 of the model shown in Fig. 2 with two non-reflecting boundaries. A monochromatic
source (eq. 16) is applied at position S with a frequency 10 times smaller than the resonance frequency of the fluid oscillations. Different spectra are calculated
after different simulation lengths. Longest time signal is 120 s, shortest is 3.5 s. Frequency is normalized with the resonance frequency of the fluid oscillations.
Spectra are normalized with spectra of the analytically calculated solid particle velocity–time signal at the same receiver but for a purely elastic model.

method used to produce Figs 5–7. For the same simulation dura-
tion, a model is considered that has the same dimensions, the same
source and receiver locations and the same elastic properties as
the numerical model but is purely elastic and does not exhibit in-
ternal oscillations. Because this additional model is purely elastic,
the particle velocity–time signal at receiver R2 can be analytically
calculated.

Fig. 8 shows the division of the Fourier spectrum derived from
the numerical simulation (model exhibiting internal oscillations)
by the Fourier spectrum derived from the analytical time signal
(purely elastic) for different simulation lengths. The frequency is
normalized with the resonance frequency of the fluid oscillations.
The two spectra before the division (not shown here) show a very
distinct peak at the frequency of the external source. This peak has
a constant value after different simulation durations. Also, this peak
has the same value for both models (with internal oscillations and
purely elastic) and therefore cancels to a value of 1 when the two
spectra are divided (Fig. 8). Evolution of the two spectra before
the division (not shown here) shows that the spectral amplitude
of all other frequencies than the external frequency decreases with
increasing simulation duration. This decrease of spectral amplitudes
is exactly the same for the two cases (with internal oscillations and
purely elastic). Therefore, the division of the two spectra lets them
collapse onto one single curve (Fig. 8), no matter what simulation
duration was considered.

The decrease of spectral amplitudes with increasing simulation
duration before the spectral division is interpreted in the follow-
ing way. The particle velocity–time signal contains the incidence
of the elastic wave front as the first event. This event introduces
all frequencies when the Fourier spectrum is calculated. After that,
the particle velocity–time signal contains only the signal of the
monochromatic source (in the purely elastic case) and the signal

of the oscillating fluid that is transferred to the solid. For a long
simulation, the monochromatic part of the time signal dominates
and the first event, which introduced all other frequencies, becomes
less important in calculating the Fourier spectrum. Therefore, al-
though the monochromatic part of the time signal stays constant,
the spectral amplitude of all other frequencies decreases with time.
Fig. 8 therefore shows the time-independent spectral difference be-
tween the recorded particle velocity–time signal at receiver R2 of
the model exhibiting internal oscillations and the purely elastic
model. The strong peak at the resonance frequency is initiated at
the very beginning of the simulation when the wave front of the
source signal propagates through the medium and initiates the fluid
oscillations. The time-constant peak in Fig. 8 shows that the ampli-
tude at the resonance frequency decreases with the same rate as in
the purely elastic case and that no intrinsic attenuation due to the
fluid oscillations takes place.

5 D I S C U S S I O N

The oscillation behaviour of individual, partially saturated pores
was studied thoroughly theoretically (Graham & Higdon 2000b),
experimentally (Li et al. 2005) and numerically (Hilpert 2007; Pride
et al. 2008; Holzner et al. 2009). However, the influence of such
oscillations on the propagation of seismic waves in the porous skele-
ton was not studied in detail. Also, oscillatory behaviour of fluids
and surface tension effects are not included in poroelastic theo-
ries, such as Biot Theory (Biot 1962), in patchy-saturation models
(White 1975; White et al. 1975; Dutta & Ode 1979), in 3-phase
wave propagation models (Santos et al. 1990; Lo & Sposito 2005),
nor in microscale models of porous flow (Saenger et al. 2007).
For studying fundamental effects of the coupling between fluid
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oscillations and seismic wave propagation, the presented model
equations (eqs 14 and 15) are intentionally kept simple. Additional
effects, for example, damping of the oscillations, interaction be-
tween individual pores (i.e. connected pores), attenuation of seis-
mic waves, non-linear oscillations due to more complex pore ge-
ometries or more spatial dimensions could be included to gain more
insight into the coupling effects. Despite the simplicity of the model,
the dispersion relation (Fig. 4) agrees well with the dispersion re-
lation for water containing gas bubbles (Fox et al. 1955; Silber-
man 1957; Anderson & Hampton 1980a), which is a comparable
problem of a wave travelling through a medium exhibiting internal
oscillations.

Because the system eqs (14) and (15) are linear, the energy trans-
fer between solid and fluid only happens at the resonance frequency
of the oscillations (Figs 5a and 6). Therefore, the source, which
is only active in the solid in the presented cases, needs to contain
some energy at this frequency for the oscillations to be initiated.
Even using a monochromatic source (eq. 16), every point in the
model experiences a moment of seismic wave incidence because
simulations are done in the time-domain. The wavefield is therefore
not stationary like in a frequency-domain simulation. At the mo-
ment of seismic wave incidence all frequencies are introduced into
the model, despite the monochromatic source, and the oscillations
are initiated. After the wave front has passed, the fluid continues to
oscillate and constantly transfers energy to the elastic porous matrix.
This results in a decrease of amplitude of the oscillations as long
as the oscillations stay undisturbed (Fig. 5a). Seismic background
noise in nature (Aki & Richards 1980; Peterson 1993) contains the
most energy at around 0.2 Hz but also at larger frequencies with
smaller amplitudes. Additionally, natural wavefields show signifi-
cant variations in amplitude. These amplitude variations can have
similar effects as individual incident wave pulses, which can poten-
tially drive the fluid oscillations.

A possible application of the coupled wave propagation–
oscillation model presented here is passive low-frequency spectral
analysis applied for detection of hydrocarbon reservoirs (Dangel
et al. 2003; Graf et al. 2007; Walker 2008; Lambert et al. 2008;
Holzner et al. 2009). Passive low-frequency measurements show
increased spectral amplitudes between 1 to 6 Hz when the am-
bient seismic background noise is measured above a hydrocarbon
reservoir compared with measurements in areas without a reservoir.
Several different physical mechanisms are discussed as a potential
cause of this phenomenon (Graf et al. 2007), but no accepted phys-
ical theory has been published until now. Current models suggest
that reservoirs act like a filter or scatterer and modify the ambient
seismic background noise. Fluid oscillations and surface tension
effects could play an important role in hydrocarbon reservoirs be-
cause of the coexistence of a wetting and a non-wetting phase in
the pores and other cavities, such as fractures. The presented model
requires that the ambient seismic background noise contains some
energy at the resonance frequency of the oscillations (presumably
between 1 and 6 Hz) at reservoir depth. Bradley et al. 1997 and
Bonnefoy-Claudet et al. 2006 indicate that the spectral amplitude
of the ocean wave peak (0.2 Hz) stays very constant with depth but
that spectral amplitudes of higher frequencies drop relatively fast
with depth. However, ambient seismic noise still contains energy
at these higher frequencies at reservoir depth. The presented model
also requires a partial saturation of the pore space. A hydrocarbon
reservoir can be only partially saturated or fully saturated. However,
the effect in nature is expected to be stronger close to the oil–water
contact, close to the oil–gas contact or at the margin of a reservoir,
where the pores are partially saturated.

In natural environments, the resonance frequency of the fluid os-
cillations is not expected to be constant for all pores due to complex
pore geometries, different pore sizes, different degree of connectiv-
ity or different degree of saturation. In addition, there can be other
effects causing oscillatory behaviour of a solid with a different
resonance frequency, such as multiple reflections in layered media
(Urquizu & Correig 2004) or resonant scattering at heterogeneities
(Werby & Gaunaurd 1989; Werby & Gaunaurd 1990; Hassan &
Nagy 1997). Therefore, natural media should be represented by a
range of resonance frequencies rather than one particular value. The
expected effects are smoother peaks and minima rather than such
strong and distinct peaks and minima shown in Figs 5–8.

6 C O N C LU S I O N S

The impact of media exhibiting internal oscillations on elastic waves
propagating through such media is studied with a basic 1-D model
that couples microscale oscillations with macroscale seismic waves.
Oscillations are assumed to arise from non-wetting fluids trapped in
pores or other cavities in the solid rock matrix but can also arise from
other processes. The coupling of fluid oscillations with wave prop-
agation models causes dispersion of the P-wave velocities around
the resonance frequency (Fig. 4). Numerical simulations show that
incident seismic waves initiate oscillations in the media. The energy
required for the initiation of the oscillations is transferred from solid
to fluid at the resonance frequency. A seismic wave front there-
fore looses energy at the resonance frequency and a minimum in
the spectrum of the solid particle velocity develops. After the wave
front has passed, the fluid continues to oscillate with its resonance
frequency and energy is continuously transferred back from fluid to
solid. Therefore, a peak develops in the spectrum of the solid parti-
cle velocity after the wave front has passed. The continuous transfer
of energy from fluid to solid after the wave front has passed leads
to a decrease of amplitude of the fluid oscillations. Consequently,
the spectral peak at the resonance frequency also decreases with in-
creasing time (Fig. 5). However, no intrinsic attenuation takes place
due to the fluid oscillations (Fig. 8).

The results indicate that the frequency content of a wavefield can
be modified by a medium exhibiting a resonance frequency as long
as the original wavefield contains energy at the resonance frequency.
Depending on the piece of the recorded particle velocity–time signal
used for calculating the Fourier spectrum the spectral amplitude at
the resonance frequency can be larger (i.e. a peak) or smaller (i.e. a
minimum) than in the original wave. No constant peak or constant
minimum is expected.

The presented model is a basic one for studying fundamental
effects. It includes the impact of fluid oscillations on propagating
waves that is not included in poroelastic theories or in microscale
models. Oscillatory effects might play an important role in natural
porous media that are partially saturated with a non-wetting fluid,
such as hydrocarbon reservoirs, or other media exhibiting a reso-
nance frequency. Despite the simplicity of the presented model, the
dispersion relation agrees well with the one for water containing
gas bubbles, which is another example of a medium exhibiting a
resonance frequency.
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