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Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability
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Recent theoretical and empirical work has focused on the variabil-
ity of network dynamics in maturation. Such variability seems to
reflect the spontaneous formation and dissolution of different func-
tional networks. We sought to extend these observations into
healthy aging. Two different data sets, one EEG (total n = 48, ages
18-72) and one magnetoencephalography (n = 31, ages 20-75)
were analyzed for such spatiotemporal dependency using multi-
scale entropy (MSE) from regional brain sources. In both data sets,
the changes in MSE were timescale dependent, with higher
entropy at fine scales and lower at more coarse scales with greater
age. The signals were parsed further into local entropy, related to
information processed within a regional source, and distributed
entropy (information shared between two sources, i.e., functional
connectivity). Local entropy increased for most regions, whereas
the dominant change in distributed entropy was age-related
reductions across hemispheres. These data further the understanding
of changes in brain signal variability across the lifespan, suggesting
an inverted U-shaped curve, but with an important qualifier. Unlike
earlier in maturation, where the changes are more widespread,
changes in adulthood show strong spatiotemporal dependence.
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Introduction

It is becoming clear that brain signal variability (i.e., transient
temporal fluctuations in brain signal) conveys important infor-
mation about network dynamics (Deco et al. 2011). In neural
network modeling, information integration across widespread
neural networks is achieved through the emergence and dis-
appearance of correlated activity between brain regions over
time and across multiple timescales (Jirsa and Kelso 2000;
Honey et al. 2007). Such transient changes cause fluctuations
in the temporal dynamics of the corresponding brain signal;
networks with more potential configurations elicit a more
variable response. In turn, signal variability may represent the
information processing capacity of the system, where higher
variability reflects greater information integration across the
network.

Our empirical studies have noted developmental increases
of brain signal variability that could be related to the idea that
variability reflects the capacity for information processing.
The first study (McIntosh et al. 2008) examined EEG signal
variability using two measures; (1) principal components
analysis (PCA) of single trial data, where a more variable
brain would produce a greater number of principal com-
ponents, and (2) multiscale entropy (MSE), a measure that is
sensitive to linear and nonlinear variability and is able to
differentiate variability of a complex system such as the brain,
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from a purely random system (Costa et al. 2002; Costa et al.
2005). Both PCA and MSE analyses indicated that EEG signal
variance increased from ages 8 to 15 and was even higher in
young adults. Furthermore, behavioral stability (measured by
accuracy and intra-subject variability of reaction time) was
greater with a more variable brain signal, suggesting that a
more variable brain produces more stable behavior. Misic
et al. (2010) replicated this finding across a slightly wider age
range (6-16 years) and using magnetoencephalography
(MEG). Finally, Lippe et al. (Lippe et al. 2009) extended these
observations to infants, showing that EEG signal complexity
increased from 1 month to 5 years in response to auditory
and visual stimuli. Interestingly, the trajectories of the change
were not the same for the auditory and visual responses, in
that auditory responses were more complex than visual in
infants and complexity in both modalities gradually merged
to be indistinguishable in adults.

During maturation from childhood to adulthood, the brain
becomes more specialized in that a larger repertoire of indivi-
dualized physiological states for separate brain regions devel-
ops. Integration between distributed neuronal populations also
increases. Vakorin et al. (Vakorin et al. 2011) introduced a
method to decompose the total variability of signals into local
entropy that characterizes the dynamics within brain areas and
distributed entropy that characterizes the signal variability at-
tributed to information exchange between areas. Using these
measures, the present study explored the interplay between
specialization and integration and how these factors contribute
to changes in brain complexity in development. The results
suggested that increased integration was the key factor contri-
buting to the developmental increase in complexity of brain
signals. Specifically, developmental changes were characterized
by a decrease in the amount of information processed locally,
accompanied by an increase in distributed entropy.

The structural and functional changes during adult aging
are less global than those during early maturation. Extant lit-
erature has characterized more heterogeneous changes in
structure, with areas showing different rates of change with
age (Guttmann et al. 1998; Courchesne et al. 2000; Raz and
Rodrigue 2006). Similarly, functional networks seem to show
different rates of change that seem to reflect changes in the
cognitive functions they support (Grady 1998; Greenwood
2000; Grady et al. 2003; Andrews-Hanna et al. 2007; Damoi-
seaux et al. 2007; Park and Reuter-Lorenz 2009). If we con-
sider such alterations in the context of nonlinear systems, one
may predict that brain signal variability should also show
changes, but perhaps less globally than was observed for chil-
dren. Indeed some of our work with functional MRI suggests
both regional increases and decreases of variability in normal
aging (Garrett et al. 2011; Garrett et al. 2012).
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Our measures of brain signal variability can be most readily
appreciated from the perspective of complex systems. Com-
pared with deterministic or random systems, complex systems
such as the brain have a greater capacity for information pro-
cessing (Tononi et al. 1994; Sporns et al. 2000a; Sporns et al.
2000b). Entropy measures are sensitive to the information
content in signals, and thus the measures of MSE, distributed
and local entropy, are estimates of the information and so too,
complexity. Thus, we can reframe the focus of the study as
follows: development brings with it the evolution of a brain
that has greater capacity for information processing. Whereas
this evolution likely continues into early adulthood, it is less
clear how the trend changes in senescence. A handful of
studies that have measured complexity of EEG in aging have
produced conflicting results (e.g., Anokhin et al. 1996; Pierce
et al. 2000; Gaal et al. 2010). Thus, a key aspect of our current
work is to characterize the different temporal scales over
which information integration may take place in the brain.
Although we found that information processing capacity in-
creases across most scales in development, given that changes
in late adulthood are not as global as they are early in life, it is
likely that the characterization of changes in information pro-
cessing capacity will depend on spatiotemporal scale.

We sought to characterize the changes in brain signal varia-
bility across two different adult samples from two studies.
One study tested adults from 19 to 72 years and measured
EEG in a range of visual perception tasks. The second study
tested adults from 20 to 75, with no participants in the
middle-age range and examined MEG response in a multisen-
sory task (Diaconescu et al. 2012). For both data sets, analysis
was done based on cortical source solutions rather than in
original sensor space to increase the spatial location precision,
given the spatial differences reported for age-related changes
and to minimize the artifact of volume conduction for ana-
lyses of functional connectivity (Srinivasan et al. 1998). The
purpose of the present work was to get general characteriz-
ations of age-related changes in variability to see how they
complement those we observed early in development.

Methods

The study was based on the analysis of two different data sets. Both
focused on the age-related changes in evoked activity to sensory
stimuli. Both studies were approved by the joint Baycrest Centre—Uni-
versity of Toronto Research Ethics Committee, and the rights and
privacy of the participants were observed. All participants gave
formal informed consent before the experiment and received monet-
ary compensation.

Study 1—EEG

Sixteen young adults (6 males, mean age 22 + 3 years), 16 middle-age
adults (7 males, mean age 45 + 6 years), and 16 older adults (5 males,
mean age 66 + 6 years) participated in the EEG study. All participants
had healthy neurological histories, and normal or corrected-to-normal
vision.

Apparatus and Task
EEG recordings from 76 electrodes were collected using BioSemi
Active Two system with a bandwidth 99.84 (0.16-100) Hz and
sampling rate of 512 Hz. Data were recorded reference free, but were
converted to an average reference at Cz during the pre-processing.
The EEG data were part of a larger study that contained six different
conditions (similar to the configuration of tasks used in a fMRI study
by Grady et al. (2010)). For the purposes of the present work, we used

two tasks, visual perceptual matching (PM) and delayed-match-to-
sample (DMS). Presentation (version 10.3, Neurobehavioural Systems,
Inc.) and Matlab (version 7, Mathworks) were used to control visual
stimulus delivery and to record participants’ response latency and
accuracy. Stimuli were one-dimensional Gaussian white noise fields
with a two-octave frequency filter and were presented simultaneously
in a triangular array. In the PM task, subjects indicated which of the
three bottom stimuli matched the one on the top by pressing one of
three buttons. The task instructions for DMS were the same as for PM,
except that in DMS, the top row stimulus appeared first for 1.5-2 s and
then disappeared before the bottom row stimuli were shown. There
was a 4-s delay between the onsets of top (encoding phase) and
bottom stimuli (recognition phase). For the present study, only the
data from PM and the encoding phase of DMS were used.

We used a psychophysical thresholding procedure to ensure that
subjects were matched in terms of accuracy by adjusting stimulus dis-
criminability so that each person was 80% accurate (Protzner and
McIntosh 2007). Stimulus discriminability was manipulated by modi-
fying the center frequency ratio. For example, at a ratio of 2, and a
base frequency of 2 c¢/deg, the center frequencies were 2 ¢/deg, 4c/
deg, and 8c/deg. To decrease stimulus discriminability, a ratio of 1.5
would produce center frequencies of 2 ¢/deg, 3 ¢/deg, and 4.5 ¢/deg.

Data Pre-processing

Continuous EEG recordings were bandpass filtered from 0.5 to 55 Hz.
Only trials with correct responses were analyzed. Data were epoched
and base-lined into 500-2000 ms epochs with a 500-ms pre-stimulus
baseline. Artifact removal was performed using independent com-
ponent analysis in EEGLAB (Delorme and Makeig 2004). There was
an average of 182 trials for the PM task and 171 for the DMS task
after data processing was completed for all subjects. There was no sig-
nificant difference in the number of useful trials between conditions
or groups.

To further localize the dynamics of source activity at specific
locations, we identified 72 ROU’s in Talairach space (Diaconescu et al.
2011) and performed source estimation at these locations using
sLORETA (Pascual-Marqui 2002), as implemented in Brainstorm
(Tadel et al. 2011), which is documented and freely available for
download under the GNU general public license (http://neuroimage.
usc.edu/brainstorm). Source reconstruction was constrained to the
cortical mantle of a brain template MNI/Colin27 defined by the Mon-
treal Neurological Institute. Current density for three source orien-
tations (X, Y, and Z components) was mapped at 72 brain regions of
interest adapting the regional map coarse parcellation scheme, as
developed in Kotter and Wanke (2005) (see Table 1). For each
subject, MSE measures of source waveforms were calculated for the
PM task and the encoding part of the DMS task.

Study 2—MEG Data

Fifteen young adults (7 males, mean age 23+ 3 years) and 16 older
adults (8 males, mean age 70 +5 years) with an average of 16.5 years
of education participated. All participants were right handed with
healthy neurological histories, and normal to corrected-to-normal
vision. All participants were audiometrically screened to determine
hearing thresholds for each ear separately; adults whose hearing
thresholds exceeded 15dB hearing level were excluded from partici-
pation, as that was considered below normal levels. The young adults
who participated in the study had average hearing thresholds of 2 dB
(range 0-8 dB), and older adults had average hearing thresholds of
10 dB (range 5-15 dB).

Apparatus and Task

Auditory and visual stimuli were used in this study. Black and white
line drawings selected from a database (Snodgrass and Vanderwart
1980) were used for visual presentations. All visual stimuli were
matched according to size (in pixels), brightness, and contrast. Audi-
tory stimuli were selected from a local database of non-speech,
complex sounds (e.g., animal calls, car horns). Complex sounds were
matched according to amplitude. Complex sounds were delivered
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Table 1

Regional map coordinates with reference to the Talairach—Tournoux Atlas

X y z Region Short name
0 32 24 Anterior cingulate cortex CCA

0 =32 24 Posterior cingulate cortex CCP

0 —48 12 Retrosplenial cingulate cortex CCR

0 16 -8 Subgenual cingulate cortex CCS
40 -14 4 Al Al

60 -14 4 A2 A2

36 8 56 Frontal eye fields FEF

36 16 -4 Anterior insula 1A

36 -8 —4 Claustrum IP

24 —24 56 M1 M1

44 —48 20 Inferior parietal cortex PCI

44 —64 28 Angular gyrus PCIP

8 —64 54 Precuneus PCM

8 —64 54 Superior parietal cortex PCS

48 32 12 Centrolateral prefrontal cortex PFCCL
48 36 32 Dorsolateral prefrontal cortex PFCDL
8 36 40 Dorsomedial prefrontal cortex PFCDM
8 48 20 Medial prefrontal cortex PFCM
24 44 =20 Orbitofrontal cortex PFCORB
24 64 4 Frontal polar PFCPOL
48 32 -8 Ventrolateral prefrontal cortex PFCVL
28 —16 —16 Parahoppocampal cortex PHC

48 0 60 Dorsolateral premotor cortex PMCDL
4 0 60 Medial premotor cortex PMCM
44 4 24 Ventrolateral premotor cortex PMCVL
16 -28 4 Pulvinar PULVINAR
40 -28 64 S1 S1

56 -16 16 S2 S2

64 -24 -12 Middle temporal cortex TCC

64 =24 -24 Inferior temporal cortex TCl

52 12 -28 Temporal pole TCPOL
52 —4 -8 Superior temporal cortex TCS

32 —28 -28 Ventral temporal cortex TCV

8 -8 4 Thalamus THALAM
4 -84 -4 V1 V1

4 -96 8 V2 V2

20 —88 20 Cuneus VACD
20 -84 -12 Fusiform gyrus VACV

binaurally at an intensity level of 60 dB HL based on the audiometric
mean across both ears. There were 40 trials for each condition.

Presentation software (version 10.3, Neurobehavioural Systems,
Inc.) was used to control visual and auditory stimulus delivery and to
record participants’ response latency and accuracy. The time interval
between the end of the stimulus presentation and the beginning of
the next trial was between 2 and 4 s (equiprobable). Participants were
instructed to respond to any trial type, auditory or visual, as quickly
as possible with their left index finger response.

The MEG recordings were acquired in a magnetically shielded room
at the Rotman Research Institute, Baycrest Centre using a 151-channel
whole head neuro-magnetometer (OMEGA, VSM Medtech Inc., Vancou-
ver, Canada). Participants sat in upright position and viewed the visual
stimuli on a back projection screen that subtended approximately 30° of
visual angle when seated 70 cm from the screen. With regard to the
visual presentations, the MEG collection was synchronized to the onset
of each stimulus by recording the luminance changes of the screen with
a photodiode. Binaural auditory stimuli were presented at 60 dB HL via
OB 822 Clinical Audiometer through ER30 transducers (Etymotic Re-
search, Elk Grove, USA) and connected with 1.5 m of length matched
plastic tubing and foam earplugs to the participants’ ears. With respect
to the auditory stimuli, the MEG data collection was synchronized to the
onset of the auditory sound envelope.

Neuromagnetic activity was sampled at a rate of 1250 Hz. Third
gradient noise correction was applied to the continuous MEG data.
Afterward, the MEG data were parsed into epochs including a 200 ms
pre- and 1000 ms post-stimulus activity window, and DC offsets were
removed from the entire epoch. The data were bandpass filtered
between 0.1 and 55 Hz. A principal component analysis was per-
formed on each epoch, and components larger than 2.0 picoTesla
(pT) at any time point were subtracted from the data to remove large
artifacts caused by eye blinks.
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MEG data were co-registered to each participant’s individual struc-
tural MRI to constrain the sources of activation to each participant’s
head shape and structural anatomy. MRI scans were acquired for each
participant using a 3.0T Siemens Tim MAGNETOM Trio MRI scanner
(Software level Syngo MR, Siemens Medical, Germany) with
12-channel head coil.

To obtain spatial precision without integrating power over long
temporal windows, we used an event-related version of the synthetic
aperture magnetometry analysis technique introduced by Cheyne
et al. (2000) to identify evoked brain responses from unaveraged,
single trial data. The spatial filter included the same 72 brain regions
of interest in Talairach coordinate space as used in the EEG data set
(Table 1). The individual functional maps were overlaid on the indi-
vidual participant’s MRI based on co-registration with the indicator
coils placed on the nasion and bilateral pre-auricular points. The func-
tional data were then transformed to the standard Talairach-Tournoux
space using the same transformation applied to the structural MRI
[AFNI software, Cox (1996)].

MultiScale Entropy. Full details of MSE and its relevance for the
analysis of signal complexity are given in Costa et al. (2002) and Costa
et al. (2005). The utility of MSE for characterizing complexity of brain
signals has been confirmed by numerous studies (Bhattacharya et al.
2005; Mclntosh et al. 2008; Lippe et al. 2009; Takahashi et al. 2009;
Misic et al. 2010; Protzner et al. 2010; Catarino et al. 2011).

To calculate MSE, we used the algorithm available at www.
physionet.org/physiotools/mse/ that computes MSE in two steps.
First, the algorithm progressively down-samples the EEG post-
stimulus time series per trial and per condition (i.e., for timescale ¢,
the coarse-grained time series is constructed by averaging data points
within non-overlapping windows of length #). Second, the algorithm
calculates the sample entropy for each coarse-grained time series.
Sample entropy quantifies the variability of a time series by estimating
the predictability of amplitude patterns across a time series. The
pattern length was set to m =2; that is, two consecutive data points
were used for pattern matching. The similarity criterion was set to
r=0.5; data points were considered to have indistinguishable ampli-
tude values (i.e., to ‘match”) if the absolute amplitude difference
between them was <5% of the time series standard deviation. For
each subject, a source specific MSE estimate was obtained as a mean
across single trial entropy measures for each timescale.

Local and Distributed Entropy. The specific derivation of local
versus distributed entropy has been described in our previous
publication (Vakorin et al. 2011). In information theory (Shannon
1949), entropy H(X) of single random variable X can be defined as a
measure of uncertainty associated with X. Conditional entropy H(X|Y)
of X given another random variable Y is the entropy of X, provided that
the uncertainty about Y'is excluded. The reduction in uncertainty due to
another variable is called mutual information. Specifically, the mutual
information between two random variables X and Y is defined as

I(X;Y) = H(X) - H(X|Y). (1)

The mutual information is a measure of affiliation between two
variables, similar to a correlation coefficient.

The joint entropy H(X, Y), which represents the uncertainty of a
pair of random variables (X, Y), can be partitioned into the con-
ditional entropies of the variables X and Y and the mutual information
between them. Specifically,

H(X,Y)=H(X|Y)+H(Y|X) +I(X;Y). (2)

Suppose that a network of M interacting neural sources is identified,
and source dynamics are described by M variables Xi, where i=1, ...,
M. For a given pair of sources, i and j, the information contained in
the dynamics of source i can be partitioned into the local entropy
associated only with source i and the distributed entropy that is
shared between sources i and j. The local entropy corresponds to the
conditional entropy H(Xi|Xj). For a given source i, the local entropy,
Ejocai(i), can be computed by averaging conditional entropy H(Xi | Xj)
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over all other sources Xj, j =i, constituting the network, whereas the of time series at various scales that is similar to the approach used for

distributed entropy E;s-i(i, j) is represented by the mutual infor- MSE. Downsampling alleviates linear stochastic effects, such as auto-
mation I(Xi;Xj). It should be noted that in practice, however, esti- correlation of the brain signals, that might lead to a bias in estimation
mation of information-theoretic measures based on finite noisy time of the entropy and mutual information (Kaffashi et al. 2008).

series may be of crucial importance. In this study, we estimated Ej,..,
and E, as described in Vakorin et al. (2011), using the corre-

sponding correlation integral C that is generally considered more ac- PLS Analysis. Partial least squares analysis (PLS McIntosh et al.
curate than box-counting techniques for calculation of joint entropies 1996; McIntosh and Lobaugh 2004; Krishnan et al. 2011) was used to
(Silverman 1986; Prichard and Theiler 1995). assess age-related changes in spatiotemporal distributions of the
In addition, we will estimate the local entropy and mutual infor- entropy measures. Similar to multivariate techniques like canonical
mation on different timescales, based on downsampling of the orig- correlation analysis, PLS operates on the entire data structure at once,
inal time series. Zhang (Zhang 1991) computed the Shannon entropy extracting the patterns of maximal covariance between two data
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Figure 1. PLS result from the EEG data set for the comparison of age-related changes in MSE. (4) The bar graph depicts the data-driven contrast between age groups that was
significantly expressed across the entire data set (source X timescales) as determined by permutation tests. (B) The statistical image plot represents the regional sources and
timescale at which the contrast was most stable as determined by bootstrapping. Values represent the ratio of the parameter estimate for the source divided by the
bootstrap-derived standard error (roughly z scores). Positive values indicate timescales and sources showing decreased MSE with age and negative values denote age-related
increases. Text labels in bold font indicate regions where the bootstrap ratio is greater than 4.0. (C) Average MSE ( =SE) curves for each group for the regional source in right
precuneus for the simple (top) and delayed (bottom) matching tasks. Circle above the curves indicate the timepoints with reliable confidence intervals.
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matrices, in the present case group membership (age) and the
entropy measures.

Statistical assessment in PLS is done across two levels. First, the
overall significance of each pattern, or latent variable (LV), that relates
the two data sets is assessed with permutation testing (Good 2000).
An LV was considered significant if the observed pattern was present
less than 1% of the time in random permutations (e.g., P<0.01). The
second level uses bootstrap resampling to estimate confidence inter-
vals around the individual weights in each LV, allowing for an assess-
ment of relative contribution of particular locations and timescales, in
the case of the brain side of the equation, and the stability of the
relation with age group in the case of the other side of the equation
(Efron and Tibshirani 1986; Efron and Tibshirani 1993). For the brain

data, we plot bootstrap ratios (ratio of the individual weights over the
estimated standard error) as a proxy for the confidence interval. Con-
fidence intervals are plotted for group effects. A minimum threshold
of a stable 95% confidence interval was used for all analysis.

Results

Bebavior Analysis

EEG Experiment: all groups maintained an accuracy level at
or greater than 80% for all tasks, and this level did not differ
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Figure 2. PLS result from the MEG data set for the comparison of age-related changes in MSE. (A) The bar graph depicts the data-driven contrast between age groups that
was significantly expressed across the entire data set (source X timescales) as determined by permutation tests. (B) The statistical image plot represents the regional sources
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between groups. Mean reaction time was different between
groups, showing the typical slowing effect with age (PM: F
(2,45)=4.14, P<0.05; DMS: F(2,45)=8.92, P<0.01). There
was a slight group difference in the PM task only, with the
youngest age group showing more variation than the middle
age or oldest group (F2,45] =4.3, P<0.05).

MEG Experiment: accuracy was above 90% for both groups
in the two detection tasks, with the older subjects showing
slightly lower accuracy in the visual condition (91 vs. 98%).
Mean reaction time was slower in general for older subjects (F
[1,29] =5.88, P<0.05), and the coefficient of variation of reac-
tion time was higher in the older group (#11,29], 12.30,
P<0.01).

Aging and MSE

In both data sets, we observed significant changes in MSE dis-
tribution with age. There were no reliable interactions of age
with task in both data sets. Although we treated age as a cat-
egorical grouping factor, the results do not change if age is
treated as a continuous measure. Unlike what we have ob-
served in children, this age effect depended on temporal
scale.

In the EEG data set, we observed a progressive increase in
sample entropy at fine temporal scales with age (Fig. 14),
roughly from 2 to 15 ms and then a cross-over at coarse scales
with young subjects showing greater sample entropy at
approximately 20 ms (Fig. 1, B,C). These differences were not
homogeneous across source space, with the strongest effects
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in medial cortical sources such as precuneus and superior
parietal lobe (Fig. 10).

For the MEG data set, a similar pattern was observed,
although the age differences were much stronger (Fig. 2A4).
At fine scales, the older adults showed greater sample entropy
from 2 to 15 ms. The cross-over of the curves took place
around 16 ms at which point sample entropy was higher in
young adults (Fig. 2B, C), similar to the EEG data. The effects
of fine scale were quite robust across most sources, whereas
the difference at coarse scales showed more spatial variation
concentrating mainly on temporal and occipital cortical
sources (Fig. 20).

Local Versus Distributed Entropy

Local Entropy

For local entropy, PLS analyses revealed the existence of one
significant LV in both MEG and EEG data. Specifically,
Figure 3 shows the age-related patterns of changes in local
entropy for MEG (left column) and EEG (right column). The
upper panels in Figure 34 and D illustrate the corresponding
age-related trends of changes in the variability of brain signals
associated with the information processed locally.

The overall distributions of the bootstrap values for all
sources and timescales are shown in Figure 3B and E, for
MEG and EEG, respectively. Figure 3C and F shows the same
bootstrap ratio values as the function of timescales for all
brain sources, each associated with a curve. As can be seen,

D
Contrast (P-value = 0.006)—EEG (S/D tasks)

Young Young Middle Middle Older Older
Age Groups

E Overall distribution of bootstrap values

-6 -4 -2 0
Bootstrap value
Distribution across sources
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Figure 3. Age-related changes in local entropy: MEG (left) and EEG (right), from the PLS analysis. Panels (4 and (D) illustrate the data-driven contrasts. Expression of these
trends is shown in (B) and (£) as the distributions of all the bootstrap ratio values for all regional sources. The same bootstrap ratio values are plotted in (C) and (F) as functions

of timescales.
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the overall distributions of the bootstrap values are signifi-
cantly skewed toward negative numbers. Considered together
with the effect in Figure 34 and D, this would imply that the
dominant effect in aging is an increase of amount of infor-
mation processed locally.

Distributed Entropy

One significant LV was found both for the EEG and MEG data
in the analysis of distributed entropy. The upper panels A and E
in Figure 4 illustrate the corresponding effects (P-value < 0.001
in both cases) underlying the group differences. The corre-
sponding overall distributions of the bootstrap ratio values
associated with the pairwise connections between the brain
regions and timescales are given in Figure 4B and G. As can be
seen, there are relatively large negative and positive bootstrap
ratio values, although the bulk of the connections show positive
ratios. In conjunction with the effect in Figure 44 and E, this
would indicate that there are more decreases than increases of
distributed entropy in relation to aging. This difference is stron-
gest in the MEG data set.

The difference between decreased and increased distribu-
ted entropy is broken down further in Figure 4, which shows
how the strength of effects attributed to age-related changes
in distributed entropy varies across timescales. Specifically,
we identified the 2.5%-tails, cut off by 0.025- and
0.975-quantiles, of the overall distributions of the bootstrap
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ratio values in Figure 4B and F. At each timescale, the number
of connections with the bootstrap ratio values larger than the
0.975-quantile was computed. These numbers are plotted in
Figure 4C and G. In a similar way, the number of connections
with the bootstrap ratio values smaller than the 0.025-quantile
is plotted in Figure 4C and G, as a function of timescale.

Figures 5 and 6 show the spatial patterns supporting the
corresponding age-related changes in connectivity between
the brain regions. We plotted the bootstrap ratio values at
scales around 7 ms for decreased entropy, and 27 ms for in-
creased entropy, for MEG, and around 20 ms (decreased) and
8 ms (increased), for EEG. These time points correspond to
the peak distribution of bootstrap by time shown in Figure 4,
hence the difference in the peaks between the data sets. The
spatial distribution of these changes did not change appreci-
ably across other time points.

Pairwise connections that show decreased entropy with
age are depicted in Figure 5. A threshold of >1 was used for
the figure to emphasize the spatial distribution. The corre-
sponding lower panels of Figure 5 show the distribution of
the bootstrap ratio values associated with local entropy.
Similar to Figure 5, Figure 6 shows the distribution of connec-
tions showing increased entropy with age.

An obvious spatial pattern is evident in Figures 5 and 6.
The networks can be differentiated from the perspective of
inter- versus intra-hemispheric connections. As can be seen in
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Figure 4. Age-related changes in distributed entropy: MEG (left) and EEG (right), from the PLS analysis. Panels (A) and (£) illustrate the data-driven contrasts. Expression of
these trends is shown in (B) and (G) as the distributions of all the bootstrap ratio values for the distributed entropy between each pair of regional sources. The strengths of the
effects related to a decrease (C,G) and increase (0,H) in distributed entropy are plotted as the number of connections whose bootstrap ratio values belong to the corresponding

2.5% tails.
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Figure 5, the dominant effect in the pattern of age-related de-
creases in connectivity is represented by the communication
between the hemispheres (right/left and left/right quadrants).
In contrast to Figure 5, Figure 6 reveals that the increase in
connectivity is supported mostly by the connections linking
the brain areas that belong to the same hemispheres (left/left
and right/right quadrants). It is worth noting that there is an
overall agreement between MEG and EEG modalities with
respect to the inter- and intra-hemispheric connections. It is
noteworthy that in the case of EEG, however, the effects
related to increased connectivity as a result of normal aging
are expressed most strongly in the right hemisphere. We em-
phasize again that for both figures, we purposely chose a
liberal statistical threshold for the plots to indicate that the
pattern is not an artifact of an arbitrary threshold.

Discussion

Across two independent data sets, one using EEG and one MEG
and each using different source reconstruction algorithms, we
observed similar changes in brain signal variability, measured
using MSE, with normal aging. As was hypothesized, these
differences were dependent on the temporal scale of investi-
gation. Finer timescales showed an increase with normal aging,
whereas more coarse timescales showed a decrease in normal
aging. The MSE results were then broken down further using
the estimation of local and distributed entropy. The significance
of the MSE findings can be appreciated in two different perspec-
tives. First, there has been an emphasis in the neurophysiology
literature on long-range correlations within time series as a re-
flection of the formation of associations and networks (Nunez
1989). Although it is likely the case that finer timescales reflect
local dynamics, in this case reflecting neural populations, the
more coarse timescales would reflect longer-range interactions
with other populations. The observations in this paper suggest
that with age, comes a shift from long-range connections (cap-
tured by coarse scales in MSE and distributed entropy estimates)
to more local processing (captured at fine scales in MSE and
local entropy estimates). This stands in a nice juxtaposition to
the observations early in life that seemed to reflect an increase
in long-range interactions and a concomitant decrease in local
entropy (Vakorin et al. 2011). We found that in aging, this situ-
ation is reversed, suggesting that the interplay between inte-
gration and specialization can be described as a U-shaped
function of age over the lifespan. We also observed a wide-
spread increase in local entropy. This may suggest more func-
tional independence for different brain areas in normal aging.
There is correspondence between this idea and observations
from graph theory metrics applied to functional connectivity in
fMRI across young and old adults (Meunier et al. 2009). The es-
sential finding from that study was that older adults on average
had more modules than younger adults, with few that integrated
spatially distant nodes. It is reasonable to link this finding with
the current ones by suggesting that an increase in modularity
would correspond to the observed increase in local entropy and
potentially the concomitant decrease of distributed entropy.

An important observation from our study is that the
age-related changes are temporally dependent. This is quite
evident from the MSE analysis, where fine scales showed
higher entropy and coarse scales showed lower entropy with
age. In some respects, such temporal dependence could have
been predicted from the work on spectral power changes in

normal aging, in which low frequencies, in general, decrease
in power whereas higher frequencies tend to increase
(Dustman et al. 1993; Dustman et al. 1999), which was also
observed in our data sets (see Supplementary Figures). Our
MSE results mirror this. Moreover, the analysis of local and
distributed entropy extend the interpretation by showing that
local entropy, which is most highly correlated with fine scales
in MSE, increases with age, and is mostly reflected in high fre-
quency dynamics.

Although tempting to make a general statement that distrib-
uted entropy shows a complementary decrease in aging, the
picture is not so simple. We do note that there are more de-
creases than increases in distributed entropy, but the de-
creases predominantly involve cross-hemispheric interactions.
Studies of EEG coherence have also noted the reduction in
interhemispheric functional connections with age (Duffy et al.
1996; Kikuchi et al. 2000). The observed decrease in distribu-
ted entropy seems to be consistent with previous studies, indi-
cating that both the axonal and myelin integrity of the white
matter is compromised in aging (Bartzokis et al. 2004; Head
et al. 2004; Persson et al. 2006; Makris et al. 2007; Kennedy
and Raz 2009; Seidler et al. 2010). In particular, a number of
studies reported age-related deterioration of white-matter
microstructure of corpus callosum (Doraiswamy et al. 1991;
Sloane et al. 1999; Abe et al. 2002; Sullivan et al. 2010) that is
in accordance with our finding indicating age-related decrease
in distributed entropy between the hemispheres.

Conclusions

The intersection of studies in human neuroimaging from EEG
and fMRI have emphasized that the brain operates at many
different spatial and temporal scales, whereas theoretical expo-
sitions underscore the importance of the space-time structure
as key to understanding processing capacity of brain networks
(Jirsa and Kelso 2000; Deco et al. 2011). The essential points of
this study revolve around spatiotemporal dependency as cap-
tured by measures of brain signal variability. In particular, we
complete the picture of maturational changes in signal variabil-
ity showing a general inverted-U trend from childhood to old
age. There is an important caveat here—the nature of the latter
part of this trend is critically dependent on temporal scale.
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Supplementary material can be found at:
oxfordjournals.org/.
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