ON THE WEAK HOMOLOGICAL DIMENSION OF THE GROUP ALGEBRA OF SOLVABLE GROUPS

URS STAMMBACH

Let KG denote the group algebra of the group G over a field K of characteristic 0. The weak (homological) dimension of KG is defined as the largest integer q for which there exist KG-modules B, C such that $\operatorname{Tor}_q^{KG}(B, C) \neq 0$. By [1; p. 352] q is equal to the largest integer for which there exists a KG-module A such that $H_q(G, A) \neq 0$. We write w.dim KG = q.

The following is a corollary of the main result (Theorem 1): For a solvable group G the weak dimension of KG is equal to the Hirsch number hG of G, w.dim KG = hG.

As an application we obtain (Theorem 5):

If G is a nilpotent group of finite Hirsch number hG, then hG is equal to the largest integer q for which $H_q(G, K^+) \neq 0$, where K^+ denotes the additive group of K with trivial G-operation.

The starting point of our investigation was a result of K. W. Gruenberg [3], communicated privately to the author, which relates the Hirsch number of a torsion-free nilpotent group to the cohomological dimension of the group. We would like to express our sincere thanks to Gruenberg for showing us his result.

1. The Hirsch number of G and the weak dimension of KG

We define a class C of groups as follows: The group G is in C if and only if there exists a series of normal subgroups $\{N_i\}, i = 0, ..., k+1$

$$1 = N_{k+1} \subseteq N_k \subseteq \dots \subseteq N_1 \subseteq N_0 = G$$

such that the successive quotients N_i/N_{i+1} for i = 0, ..., k are either locally finite or abelian. Note that C contains all solvable groups.

Definition. Let G be a group in C, and $\{N_i\}$ a series of normal subgroups with the above property. We define the Hirsch number hG of G to be the sum of the ranks of those quotients N_i/N_{i+1} which are abelian. If this sum is not finite, we write $hG = \infty$.

The fact that hG does not depend on the series of subgroups is well known; also, it follows immediately from our Theorem 1. (In the literature the Hirsch number is usually defined for a slightly different class of groups, see for example [4; p. 150]. However, the above definition is better for our purpose.)

THEOREM 1. For G in C we have hG = w.dim KG.

We first prove a special case:

PROPOSITION 2 [2]. Let N be an abelian group of rank n. Then w.dim KN = n and $H_n(N, K^+) = K$.

Proof. We proceed by induction on n.

Received 23 May, 1969. Supported in part by NSF GP 7905.

[J. LONDON MATH. SOC. (2), 2 (1970), 567-570]

(a) Let N be an abelian group of rank zero, and let A be a KN-module. If N is finite of order |N|, then it is well known that $|N| \cdot H_p(N, A) = 0$ for all $p \ge 1$. On the other hand $H_p(N, A)$ is a K-space. Since K is a field of characteristic 0, it follows that $H_p(N, A) = 0$ for $p \ge 1$. But trivially, $H_0(N, K^+) = K$.

If N is locally finite, then N is the direct limit of its finitely generated, hence finite subgroups N_{α} . We then have for $p \ge 1$

$$H_p(N, A) = \lim H_p(N_a, A) = 0$$

(see [1; p. 125]). Of course $H_0(N, K^+) = K$.

(b) If $n \ge 1$, then N contains at least one infinite cyclic subgroup C. Consider the extension $C \to N \to N/C$. Clearly, rank (N/C) = n-1. The result is now deduced from the Hochschild-Serre spectral sequence [1; p. 350]

$$H_n(N/C, H_a(C, A)) \Rightarrow H_n(N, A)$$

Since C is a free group and since $H_0(C, K^+) = K = H_1(C, K^+)$ we have w.dim KC = 1. By induction we have w.dim K(N/C) = n-1. By the "maximum principle for spectral sequences" it follows that

w.dim $KN \leq w.dim K(N/C) + w.dim KC = n-1+1 = n$.

But choosing $A = K^+$, we obtain $H_n(N, K^+) = H_{n-1}(N/C, H_1(C, K^+)) = K$.

Note that it follows from this proposition that $H_n(N, A) = A$ for any trivial KN-module A, for such a module is simply a K-space.

LEMMA 3. Let N be a normal subgroup of G with quotient group G'. Suppose N is abelian of rank n. Then to any KG'-module A there exists a KG'-module B such that $H_n(N, B) \cong A$ as KG'-module.

Proof: Let B be any trivial KN-module. By Proposition 2 we have $H_n(N, B) = H_n(N, K^+) \otimes_K B = K \otimes_K B$. In virtue of the fact that N is a normal subgroup of G, the group $H_n(N, K^+) = K$ has a G'-action which is generally non-trivial. We shall denote the KG'-module $H_n(N, K^+)$ by \tilde{K} . The G'-module structure of $\tilde{K} \otimes_K B$ is defined by $x(q \otimes b) = xq \otimes xb$ for $x \in G$, $q \in K$, $b \in B$. Denote by \tilde{K}^{-1} the additive group of K together with the "inverse" G'-action, i.e., if $x \in G'$ sends $l \in \tilde{K}$ into q, then x sends $l \in \tilde{K}^{-1}$ into 1/q. It is obvious that \tilde{K}^{-1} is a KG'-module. Define $B = \tilde{K}^{-1} \otimes_K A$. We claim that $\tilde{K} \otimes_K (\tilde{K}^{-1} \otimes_K A) \cong A$ as KG'-modules. Clearly this is true as K-spaces; moreover

$$x(\mathbf{l} \otimes \mathbf{l} \otimes a) = q \otimes 1/q \otimes xa = xa.$$

LEMMA 4. Let N be a normal subgroup of G with quotient group G'. Suppose N is abelian of rank n and suppose hG' = m, then w.dim KG = m+n.

Proof. Consider the Hochschild-Serre spectral sequence

$$H_p(G', H_q(N, B)) \Rightarrow H_{p+q}(G, B)$$

Clearly w.dim $KG \leq n+m$. We show that there is a KG-module B such that $H_{n+m}(G, B) \neq 0$. By hypothesis there is a KG'-module A such that $H_m(G', A) \neq 0$. Take B to be the KG'-module (hence also KG-module) defined in Lemma 3. By the "maximum principle of spectral sequences" we obtain

$$H_{m+n}(G, B) = H_m(G', H_n(N, B)) = H_m(G', A) \neq 0.$$

Proof of Theorem 1. We proceed by induction on k+h = l where k is the length of the given series of subgroups of G, and h = hG is the Hirsch number of G.

(a) If l = 0, then G is the trivial group.

(b) Let $l \ge 1$. Divide by N the last nontrivial term N_k in the given series of subgroups, and let G' = G/N.

If N is locally finite, it is the direct limit of its finitely generated hence finite subgroups N_{α} . We therefore have $H_q(N, A) = \lim_{\to \to} H_q(N_{\alpha}, A) = 0$ for any KN-module

A and $q \ge 1$. Hence by the Hochschild-Serre spectral sequence we obtain

$$H_q(G, A) = H_q(G', A_N).$$

This shows that w.dim KG = w.dim (G') = h(G') = hG.

If N is abelian of rank n, then we have w.dim KG = w.dim K(G') + n by Lemma 2. Hence by induction w.dim KG = h(G') + n = hG.

Finally, if $hG = \infty$, then G contains subgroups of any Hirsch number; hence w.dim KG cannot be finite.

Remark. The conjecture that hG is also equal to the cohomological dimension of KG turns out to be false: any infinite, locally finite abelian group is a counter example.

2. Nilpotent groups.

THEOREM 5. Let G be a nilpotent group with $hG < \infty$. Then hG is equal to the largest integer q for which $H_a(G, K^+)$ (or equivalently $H^q(G, K^+)$) is nontrivial.

Proof. In view of Theorem 1 we have to show that for h = hG, $H_h(G, K^+) \neq 0$. We prove $H_h(G, K^+) = K$ by induction on the length k of the lower central series of G.

(a) If G is abelian, Proposition 2 shows that

$$H_h(G,K^+)=K$$

for h = hG.

(b) If G is not abelian denote by G_k the last nonzero term of the lower central series of G. Since $[G, G_k] = \mathbf{l}$, the subgroup G_k must be contained in the centre of G. By the Hochschild-Serre spectral sequence

$$H_p(G/G_k, H_q(G_k, K^+)) \Rightarrow H_n(G, K^+)$$

we obtain for $p = h(G/G_k), q = hG_k$, and h = hG

$$H_{h}(G, K^{+}) = H_{p}(G/G_{k}, H_{q}(G_{k}, K^{+})) = H_{p}(G/G_{k}, K^{+}) = K,$$

using the fact that G_k is central, Proposition 2 and the induction assumption, respectively.

The cohomology part now follows from the remark that

$$H^q(G, K^+) = \operatorname{Hom}_{K}(H_q(G, K^+), K^+).$$

References

- 1. H. Cartan, S. Eilenberg, Homological Algebra (Princeton University Press, 1956).
- 2. A. J. Douglas, "The weak global dimension of the group ring of abelian groups", J London Math. Soc. 36 (1961), 371-381.
- 3. K. W. Gruenberg, Springer Lecture Notes, to appear.
- 4. W. R. Scott, Group Theory (Prentice Hall, 1964).

Cornell University, Ithaca, N.Y. 14850, U.S.A.

Eidgenössische Technische Hochschule, Zürich, Switzerland.