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Abstract. The nonlinear dynamics of magnetic electron drift mode turbulence are
outlined and the generation of large-scale magnetic structures in a non-uniform
magnetized plasma by turbulent Reynolds stress is demonstrated. The loop-back
of large-scale flows on the microturbulence is elucidated and the modulation of
the electron drift mode turbulence spectrum in a medium with slowly varying
parameters is presented. The wave kinetic equation in the presence of large-scale
flows is derived and it can be seen that the small-scale turbulence and the large-scale
structures form a self-regulating system. Finally, it is shown by the use of quasi-
linear theory that the shearing of microturbulence by the flows can be described
by a diffusion equation in k-space and the corresponding diffusion coefficients are
calculated.

1. Introduction
The nonlinear study of turbulence in plasma physics is strongly related to the
appearance of structures with higher symmetry, in contrast to the random under-
lying turbulence. Usual drift wave turbulence is known to generate fluid motions
with additional symmetry [1], frequently referred to as flows, which are commonly
divided into zonal flows and streamers [2]. Zonal flows are defined here as symmetric
structures with a finite scale in the direction of plasma inhomogeneity, significantly
larger than the scale of the underlying small-scale turbulence [3, 4]. Streamers are
convective cells which complement zonal flows, in that they have short proportions
in the direction of translation symmetry, i.e. perpendicular to plasma gradients,
and are elongated structures in the direction of plasma inhomogeneity [5, 6]. This
elongation along one defined direction is attributed to an additional symmetry of
large-scale flows compared with the randomly distributed small-scale fluctuations.
The mechanisms for the generation of such flows have been extensively studied

in many astrophysical, geophysical and laboratory settings. For instance, the gen-
eration of zonal flows by Rossby waves in the atmosphere has recently been studied
in [7] and these waves are known to have a significant influence on larger scales, for
example the Jet Stream in the atmosphere and the Gulf Stream in oceanography [8].
In addition, zonal flows have for a long time been observed in experimental and
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numerical simulations of rotating neutral fluids and have been invoked to explain
the striped atmospheres of giant planets. Regions of alternating azimuthal velocity
have been found on Saturn and Jupiter by the Voyager spacecraft. In recent years,
the study of zonal flows and streamers and their interactions with drift wave
turbulence [9] has become an important part of theoretical plasma physics, most
of all because of its assumed relation to anomalous transport [10,11].
Transport and amplification properties of large-scale magnetic fields are an area

of active investigation, mostly because of their importance in a range of physical
phenomena. One impressive effect of large, strong magnetic fields is the release
of high-energy bursts in solar flares [12]. These bursts are believed to occur as a
result of the reconnection of magnetic field lines, which one attempts to understand
through turbulent magnetic field diffusivity, relating directly to the question of the
transport of large-scale magnetic fields in a turbulent environment [13–16]. Other
possible mechanisms of reconnection may be via magnetic streamers [17], which are
radially elongated magnetic structures. The investigation of magnetic streamers
is motivated by the similarity to the radially extended convective cells in drift
wave turbulence, which represent a mechanism for describing the often observed
bursty or intermittent transport in simulations and experiments. Furthermore,
through their radial extension, magnetic streamers have the potential for greatly
increased thermal transport, and, together with zonal magnetic fields (poloidally
extended structures), are candidates for the significant increase in electron energy
transport [18].
On the other hand, since the end of the 1970s, experiments have demonstrated

that strong quasi-steady magnetic fields are created in laser-produced plasmas [19].
This was an important result as it had often been assumed that the absence of
magnetic field effects, which greatly affect heat transport, was a desirable feature
of laser-produced plasmas [20]. These measurements showed clearly that strong
magnetic fields can be generated even in magnetized plasmas [21]. Closer investiga-
tions revealed that these magnetic fields oscillate with a typical frequency between
the ion and the electron plasma frequencies, and are fed by density and temperature
gradients through the first-order baroclinic vector [22].
In order to investigate the generation of strong magnetic fields within the afore-

mentioned frequency range, we will in this article develop the nonlinear theory
of magnetic electron drift wave turbulence in an unmagnetized inhomogeneous
plasma. This theory is a two-field theory, in contrast to the theory of electrostatic
drift wave turbulence.
The coupling of small-scale fluctuations to mean flow can be described by the

kinetic equation for wave packets [23] and corresponds to the conservation of an
action-like invariant of the wave turbulence with slowly varying parameters due
to the mean sheared flow. However, the conserved action-like quantity (‘pseudo-
action’) is different from the usual definition of the wave action, since, as has been
noted in [24] and [25], the standard action variables used to describe the self-
interaction between small-scale fluctuations without the shear flow are modified by
the flow and may not be suitable.
Here we develop a self-consistent theory of magnetic electron drift mode tur-

bulence. The model should not only include the generation of strong, large-scale
magnetic fields by microturbulence but also the back reaction of these structures
on the small-scale drift wave turbulence. The linear theory of magnetic electron
drift modes, developed for an unmagnetized non-uniform plasma on the basis of
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fluid models [26–28], shows that unstable motion is fed by inhomogeneities in
electron density and temperature [29]. In the low-frequency limit (compared with
the ion plasma frequency), electron inertia is usually neglected, whereas in the high-
frequency limit it must be included and the ion motion can be neglected. We will
restrict ourselves to this limit. The mode does not depend on collisional effects or
heat flux [27,28]. In the collisionless regime, the source of instability is the baroclinic
vector in the electron fluid, which gives rise to finite vorticity. The electron inertia
manifests itself in the electron fluid vorticity and together with the temperature
perturbation is essential for these modes. In this approximation nonlinear effects
can be very important, since the generated magnetic field itself evolves through
an explicitly nonlinear equation. The basic nonlinear system of equations has been
derived in [30] and different nonlinear effects have been studied in [31–33].
In the present paper we focus on the derivation of the wave kinetic equation

for magnetic electron drift mode turbulence. We establish the generation of large-
scale flows by microscale turbulence via Reynolds stress and their counter-effect
on the small-scale wave turbulence. This leads us to the evolution equation for
the wave spectrum, the wave kinetic equation. Finally, shearing of small-scale
turbulence by large-scale structures is shown. The rest of the paper is organized
as follows. In the next section we give a brief reminder of the model equations for
the magnetic electron drift modes. In Sec. 3.1, the excitation of large-scale flows
is examined and the mechanism of large-scale flow generation via Reynolds stress
is clearly shown. In Sec. 3.2, the influence of the excited large-scale structures on
the parent small-scale turbulence is investigated and we sort out the evolution of
the wave amplitude due to interactions between small-scale turbulence and large-
scale flows. Furthermore, in Sec. 3.3, we show how to describe the small-scale
structures evolving in a medium with slowly changing variables and we introduce a
pseudo-action which leads directly to the wave kinetic equation. Then, in Sec. 3.4,
quasilinear analysis is used to describe the mechanism for the shearing of small-
scale turbulence by large-scale flows. In Sec. 4 we provide a short discussion of our
results and conclude the paper.

2. Basic equations
Magnetic electron drift modes are low-frequency motions fed by inhomogeneities
in electron density and temperature. These modes have typical frequencies of the
order of κvTe, where κ is the inverse characteristic length of the background inhomo-
geneity and vTe is the thermal electron velocity. For our description we consider a
non-uniform unmagnetized plasma with equilibrium density and temperature of n0
and T0 , respectively. The time scale of interest is in the range given by the inverse
ion and inverse electron plasma frequencies. Hence we consider an unpolarized
electron fluid and immobile ions. So, the ions play a passive role as a neutralizing
background and the dominant role in dynamics is played by the electron species.
Therefore, density perturbations can be neglected, i.e. n equals its equilibrium value
n0 , and we require ω � ωpi, where ωpi is the ion plasma frequency.
In order to derive our model equations, we use the momentum equation together

with Maxwell’s equations and the energy equation [30],(
∂

∂t
+ v · ∇

)
v+

e

m
(E+ v× B) +

1
mn

∇(n0T ) = 0, (2.1)
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∇ × E = −∂B
∂t

, (2.2a)

∇ × B = µ0j, (2.2b)

n0

(
∂

∂t
+ v · ∇

)
T +

2
3
n0T∇ · V = 0. (2.3)

We make the standard assumptions that we consider a two-dimensional case in the
x–y-plane. Then, all quantities are independent of z and the perturbed magnetic
field is directed along the z-axis. The length scales of the fluctuations are supposed
to be much smaller than those of the equilibrium quantities. The temperature will
be considered the sum of an equilibrium and a perturbed part, T0 + T , and the
perturbed magnetic field is denoted by B. As a last assumption we consider the
equilibrium density n0 and temperature T0 as functions of x only. Taking the curl
of the momentum equation one can show, with all the above assumptions, that the
basic system of equations describing both the linear and nonlinear properties of
magnetic electron drift modes becomes [30]

∂T

∂t
+ α

∂B

∂y
= −eλ2

m
{B, T }, (2.4a)

∂

∂t
(B − λ2∇2B) + β

∂T

∂y
=

eλ4

m
{B, ∇2B}. (2.4b)

Here α = λ2(eT0/m)( 2
3 κn − κT ) and β = κn/e. κn = |∇ ln n| and κT = |∇ ln T0 |

are the inverse length scales of the density and the temperature inhomogeneities,
respectively, and λ = c/ωpe is the skin depth.
Note that the evolution equation for the magnetic field is nonlinear in B. This

is intrinsically due to the convective derivative in the electron momentum equa-
tion. The order of perturbation of the right-hand side of (2.4a) (representing the
baroclinic vorticity source) shows that the perturbed temperature should not be
neglected.
Linearizing the evolution equations (2.4) for small perturbations in B, T ∝

exp(−iωt + ik · r), the dispersion relation for magnetic electron drift modes is
obtained with the linear wave eigenfrequency [28,30]

ωk = ky

√
αβ

1 + k2λ2 , (2.5)

where αβ = v2
Teλ

2κn ( 2
3 κn − κT ). There is a purely growing solution for κT > 2

3 κn

and the growth rate vanishes for modes with ky = 0. Another useful result from
the Fourier decomposition in the model equations is that one can find a relation
between the magnetic field Fourier amplitudes Bk and those of the temperature
Tk , which is

Tk =
αky

ωk
Bk . (2.6)

3. The wave kinetic equation
3.1. Excitation of large-scale flows

We have seen that the underlying magnetic electron drift mode turbulence is
driven by gradients of temperature and density. As already mentioned, this
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microturbulence can spontaneously generate large-scale flows. During this flow
generation, thermodynamic free energy stored in the gradients is converted into
flow kinetic energy by fluctuation-induced Reynolds stress and thus these gradients
constitute the energy source for the flow. In this section, we focus on the generation
of large-scale magnetic flows by turbulent Reynolds stress.
Our approach uses the ansatz of multiple-scale expansion between the spatio-

temporal scales of the flows and those of the microturbulence. We thus assume a
sufficient spectral gap separating large- and small-scale motions. The temperature
and the magnetic field are then decomposed into a large-scale, slowly varying
component (denoted with a bar) and a small-scale component, T̄ + T̃ and B̄ + B̃,
respectively. The system of equations (2.4) has a conserved quantity corresponding
to the energy integral given by [34]

E =
∫ (

(B̄2 + B̃2)+λ2((∇B̄)2 + (∇B̃)2)+
β

α
(T̄ 2 + T̃ 2)

)
dx dy = constant. (3.1)

In the following sections it is important to note that the conserved total energy
contains both small- and large-scale components. This means that the whole wave
spectrum and the interactions between different regions of the spectrum have to
be included in subsequent considerations.
Having considered the nonlinear model equation, we now want to describe the

interaction between small- and large-scale structures within the turbulence. This
means that we are going to separate the whole turbulent spectrum into two parts,
one describing large-scale structures with a wave vector denoted by q and the other
describing small-scale turbulence with a wave vector denoted by k. We therefore
have the relation |q| � |k|. Note that both q and k describe the same spectrum but
different parts of it.
We now suppose that the amplitudes vary slowly with time owing to wave–wave

interactions and apply to the system (2.4) the spatial Fourier transform with k and
q describing the two different parts of the spectrum:(

B
T

)
(r, t) =

∑
k

(
Bk (t)
Tk (t)

)
eik·r for small scales

+
(

Bq (t)
Tq (t)

)
eiq·r + c.c. for large scales. (3.2)

Using these decompositions, |k| � |q| and the result from (2.6), we obtain for the
qth Fourier components of equations (2.4)

∂Tq

∂t
+ iαqyBq = −eλ2

2m

∑
k

(k× q) · ẑ(TkBq−k − Tq−kBk ) = 0, (3.3a)

∂Bq

∂t
+

iβqy

1 + q2λ2 Tq = −λ4 e

m

1
1 + q2λ2

∑
k

(k× q) · ẑ(k · q)BkBq−k . (3.3b)

Note that in deriving these equations (and in contrast to [34]) we did not assume a
potential character of the flow (∇ × E = 0). The right-hand side of (3.3a) vanishes
with the assumption that |k| � |q| and for coherent interactions one can approx-
imate Tq−k ∼ T−k to leading order [34]. This corresponds to neglecting the noise
emitted into the flows by the incoherent coupling of magnetic electron drift modes.
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It is seen that a small-scale turbulence can indeed drive large-scale structures
characterized by Tq and Bq . For reasons of clarity, we will cease to call these
structures flows, but rather fields, since we are not dealing with particles but
magnetic fields and temperature ‘flows’. The system of equations (3.3) describes the
field structures and addresses both the zonal magnetic field and magnetic streamer
formation by small-scale magnetic drift turbulence on an equal footing.
In the limit of zonal magnetic fields (q = (q, 0, 0)), the above equations yield

∂Tq

∂t
= 0, (3.4a)

∂Bq

∂t
=

eλ2

m

q2λ2

1 + q2λ2

∑
k

kxkyBkB−k . (3.4b)

It is a direct consequence of these equations that the mean electron temperature
associated with zonal fields does not evolve with time.
For magnetic streamers (q = (0, q, 0)), (3.4) becomes

∂Tq

∂t
+ iαqBq = 0, (3.5a)

∂Bq

∂t
+ iβ

q

1 + q2λ2 Tq = −eλ2

m

q2λ2

1 + q2λ2

∑
k

kxkyBkB−k . (3.5b)

A clear difference between the evolution of streamers and zonal fields can immedi-
ately be stated: whereas the evolution equations for zonal fields are decoupled and
the temperature can even be considered as a constant, the equations for streamers
remain coupled and they always have a real frequency in contrast to the zero-
frequency zonal fields. Streamers have a linear eigenfrequency and therefore linear
instability is possible in this case.
There is, however, an important similarity between the two large-scale structures,

in that they are excited by the same small-scale turbulence via the magnetic Reyn-
olds stress

∑
k kxkyBkB−k . This is of course not unexpected, since the nonlinear

excitation of large-scale flows by Reynolds stress is already well established [35].
In order to describe the nonlinear evolution of the total wave spectrum in a self-
consistent way, we have to determine the ‘loop-back’, i.e. the response of small
scales to large-scale structure changes.

3.2. Influence of large-scale structures on small-scale turbulence

We now concentrate on the small-scale wave turbulence described by k (where, as
before, |k| � |q|), and consider the evolution of this microturbulence in a medium
which is slowly modulated by large-scale structures. This can conveniently be
described by the help of a wave kinetic equation for the wave action densityNk (r, t)
in r–k space [23]. As already stated, the standard expression for the wave action,
Nk = E/ωk (where E is the wave energy), is not suitable for a system with mean
flow [24,25]. Indeed, the latter expression can only be used when the total energy
is contained in the small-scale waves. However, (3.1) shows clearly that the total
energy is conserved and is composed of the part stored in small-scale and large-
scale structures. Thus we deal with a coupled system of two different parts of the
same wave spectrum and, owing to the generation of large-scale fields, one cannot
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consider the energy being stored in the microturbulence only. Hence a new method
has to be used.
The most consistent way of finding a generalized wave action Nk is first to

introduce a useful combination of field perturbations, a so-called ‘normal variable’
[36]

ψk ≡ Tk + δBk , (3.6)

where δ is a coupling coefficient to be determined.
Starting again from the model equations (2.4) together with the Fourier expan-

sion (3.2), but now looking for the set of equations for the small-scale quantities,
we obtain

∂Tk

∂t
+ iαkyBk = −eλ2

2m
(k× q) · z(BqTk−q − Bk−qTq ), (3.7a)

∂Bk

∂t
+

iβky

1 + k2λ2 Tk = −eλ4

2m
(k× q) · z (k − q)2 − q2

1 + k2λ2 BqBk−q . (3.7b)

Multiplying (3.7b) by δ, adding it to (3.7a) and assuming q2λ2 � 1 yields

∂ψk

∂t
+ iωkψk = −eλ2

4m
(k× q) · z ψk−q

(
Bq

1 + 2k2λ2

1 + k2λ2 − 1
δ
Tq

)
. (3.8)

If one recalls the linear results (2.5) and (2.6), one can show that δ = αky/ωk =√
α(1 + k2λ2)/β.
The terms on the right-hand side of (3.8) can be transformed to obtain the

equation for small-scale fluctuations,

∂ψk

∂t
+ iωkψk + ψk−q [Bq (P

(1)
q ,k + P

(2)
q ,k ) − TqP

(3)
q ,k ] = 0, (3.9)

where the following variables have been introduced:

P
(1)
q ,k ≡ eλ2

4m
(k× q) · ẑ 1

1 + k2λ2 , (3.10a)

P
(2)
q ,k ≡ eλ2

4m
(k× q) · ẑ 2k2λ2

1 + k2λ2 , (3.10b)

P
(3)
q ,k ≡ eλ2

4m
(k× q) · ẑ1

δ
. (3.10c)

The influence of the large-scale fields on the small-scale structures is contained
in the third term of this equation. In order to investigate the evolution of the wave
spectrum, we now have to find the wave kinetic equation.

3.3. The wave kinetic equation in the presence of mean ‘flow’

Let us now derive the equation describing the evolution of the wave spectrum, the
wave kinetic equation. To this end, we multiply (3.9) by ψk ′ and add the similar
equation obtained by reversing k and k′. If we consider the amplitudes ψk , ψk ′

varying slowly with time and a small imaginary contribution to ωk , denoted γk ,
and average the whole equation over the fast-small-scale perturbations (

∫
. . . dk ≡

〈. . . 〉), we obtain
∂

∂t
〈ψkψk ′ 〉 +

∂ωk

∂k
∂

∂r
〈ψkψk ′ 〉 − ∂ωk

∂r
∂

∂k
〈ψkψk ′ 〉 − 2γk 〈ψkψk ′ 〉 +S1 +S2 = 0, (3.11)
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where

S1 ≡ 〈ψk−qψk ′ 〉[Bq (P
(1)
q ,k + P

(2)
q ,k ) − TqP

(3)
q ,k ], (3.12a)

S2 ≡ 〈ψkψk ′−q 〉[Bq (P
(1)
q ,k ′ + P

(2)
q ,k ′) − TqP

(3)
q ,k ′ ]. (3.12b)

Let us now introduce the spectral Wigner function defined by

Ik (r, t) ≡
∫

d2p〈ψkψ−k+p〉eip·r. (3.13)

We set k′ = −k + p in (3.11), multiply it by eip·r and integrate over d2p. Thus, we
obtain the evolution equation for Ik

∂

∂t
Ik +

∂ωk

∂k
∂

∂r
Ik − ∂ωk

∂r
∂

∂k
Ik − 2γkIk + S1 + S2 = 0, (3.14)

with S1 and S2

S1 =
∫

d2peip·r〈ψ−k+pψk−q 〉[Bq (P
(1)
q ,k−q + P

(2)
q ,k−q ) − TqP

(3)
q ,k−q ], (3.15a)

S2 =
∫

d2peip·r〈ψ−k+p−qψk 〉[Bq (P
(1)
q ,−k+p + P

(2)
q ,−k+p) − TqP

(3)
q ,−k+p ]. (3.15b)

These quantities must now be calculated. Remembering that |k| � |q|, one can
expand Ik−q around q = 0, which leads to

S1 =
(

Ik (r, t) − q
∂Ik (r, t)

∂k

)
[Bq (P

(1)
q ,k−q + P

(2)
q ,k−q ) − TqP

(3)
q ,k−q ]e

iq·r. (3.16)

Within the calculations of S2 , one finds that the only contribution is for the case
p = 0, i.e. k′ = −k, and one can therefore expand Pq,−k+p around p = 0 and thus
obtain

S2 = −
(

Ik (r, t)Λq ,k + i
∂Λq ,k

∂k
∂Ik (r, t)

∂r

)
eiq·r, (3.17)

where

Λq ,k ≡ Bq (P
(1)
q ,k + P

(2)
q ,k ) − TqP

(3)
q ,k .

Furthermore, if we define

∆ ≡ −iΛq ,k eiq·r,

(3.14) becomes the wave kinetic equation

∂Ik

∂t
+

∂

∂k
(ωk + ∆)

∂Ik

∂r
− ∂

∂r
(ωk + ∆)

∂Ik

∂k
= 2γkIk . (3.18)

We still need to find the exact expression for ∆. Explicit calculation directly
yields

∆ =
1 + 2k2λ2

1 + k2λ2 k · v(q)
B − 1√

1 + k2λ2
k · v(q)

T , (3.19)

where

vB ≡ −eλ2

4m
(∇B × ẑ) (3.20a)

and

vT ≡ −eλ2

4m

√
β

α
(∇T × ẑ). (3.20b)
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Note that the only contributions to all the above calculations are due to p ≈ 0
and thus from the definition of the Wigner function (3.13), Ik ∼ |ψk |2 . Let us then
introduce the action-like invariant Nk ≡ Ik , i.e.

Nk = |ψk |2 = 4
α

β
(1 + k2λ2)|Bk |2 .

We finally obtain the wave kinetic equation for magnetic electron drift mode turbulence
with slowly varying parameters due to large-scale fields

∂Nk

∂t
+

∂ωNLk

∂k
∂Nk

∂r
− ∂ωNLk

∂r
∂Nk

∂k
= 2γkNk − St(Nk ). (3.21)

The linear frequency entering this equation is modified in the presence of large-
scale fields. The cause of this is the Doppler shift induced by the (large-scale) ‘flow’
velocity. Therefore the nonlinear frequency

ωNLk ≡ ωRek + ∆

has been introduced.
The collisional term St(Nk ) has been added and it symbolically accounts for the

wave damping by linear and nonlinear mechanisms, as well as local wave interac-
tions, and guarantees saturation in the absence of large-scale fields. It balances the
linear growth rate on the right-hand side of (3.21) and its form is not important
here.

3.4. Shearing of small-scale turbulence by large-scale fields

We nowwant to determine the dynamics of magnetic electron drift mode turbulence
under the influence of shearing fields. In the course of this analysis we will use
quasi-linear theory and show that the broad spectrum of large-scale structures
regulates turbulence by the process of random shearing, which will be represented
by a diffusion in k-space.
The linear part of the frequency ωk is given by

(ωRek )2 = k2
y

αβ

1 + k2λ2 ∼
k2

yλ2

1 + κ2λ2 κ2
nv2

th (3.22)

and it determines the group velocity

vg =
λ√

1 + λ2k2
κnvth .

In the limit kλ � 1, the group velocity takes the form vg 
 λκnvth and the
nonlinear part becomes

∆ 
 k · (vB − vT ) ≡ k · vf , (3.23)

so that

ωNLk = k · (vg + vf ), (3.24)

where vf denotes the ‘flow’ velocity, which is assumed to be much smaller than
the group velocity. Furthermore, we decompose the wave spectrum Nk into an
average and a perturbed value Nk = N0 + Ñ , where these quantities take the form
N0 = N0(t) and Ñ ∼ exp(−iΩN t + ip · r). The average N0 evolves in time only and
with a much larger time scale than the perturbed part, which additionally evolves
in space as well. The evolution of the perturbed wave spectrum Ñk can be seen
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as a modulation of the amplitude by large-scale fields. Thus p is of the order of
q used previously to describe the large-scale fields. Averaging (3.21) over the fast
small spatial scales and assuming that the collision term St(Nk ) balances the linear
instability 2γkNk yields

∂N0

∂t
− ∂

∂r
(k · vf )

∂Ñ

∂k
= 0. (3.25)

The equation for the perturbed part can then be found by subtracting (3.25) from
(3.21), and linearizing the dissipative terms,

∂Ñ

∂t
+ vg

∂Ñ

∂r
− ∂

∂r
(k · vf )

∂N0

∂k
= −γN Ñ. (3.26)

Note that we assume damping of the wave spectrum owing to the generation of
large-scale fields and the factor of two in (3.21) enters the linear damping rate.
Introducing the form of Ñ mentioned above into the latter equation and solving
the resulting algebraic equation yields

Ñ =
∂

∂r
(k · vf )

∂N0

∂k
i

ΩN − p · vg + iγN
. (3.27)

Defining the response function R(Ω, p) ≡ i/(ΩN − p · vg + iγN ), we find that (3.25)
takes the form

∂N0

∂t
− ∂

∂r
(k · vf )

∂

∂k

[
∂

∂r
(k · vf )

∂N0

∂k
R(Ω, p)

]
= 0. (3.28)

The condition for zonal magnetic fields is q = (q, 0, 0). To simplify calculation we
introduce the ‘flow vector’

B̄ ≡ eλ2

4m

(
Bq −

√
β

α
Tq

)
eiq·r. (3.29)

Note the similarity to the normal variable (3.6) defined to describe the small scales.
Together with (3.23) and (3.20), we obtain

∂

∂r
(k · vf ) = −q2ky B̄x̂. (3.30)

Finally, introducing this relation into (3.28) yields the diffusion equation in k-space

∂N0

∂t
− ∂

∂kx

[
Dkx

∂N0

∂kx

]
= 0, (3.31)

where we defined the diffusion coefficient

Dkx
≡ k2

y q4
x

e2λ4

16m2

(
|B|2 +

β

α
|T |2

)
R(Ω, p). (3.32)

This means that there is a diffusion of small-scale turbulence in k-space towards
even smaller scales (Dkx

> 0), where it will finally disappear because of dissipation.
All this is due to large-scale structures. However, we have to remember that it is the
small-scale structures that generate the large-scale fields in the first place. So by
destroying (shearing) the small-scale turbulence, the large-scale structures destroy
their life support and will be diminished as well. A reduced large-scale field gives
rise to the possibility of increased small-scale turbulence and the cycle starts again.
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We thus have a predator–prey-type behaviour exhibited by the system containing
large-(predator) and small-(prey) scale structures.
Using the same approach as for zonal magnetic fields, in the limit for magnetic

streamers, q = (0, q, 0), from (3.23) and (3.20) one obtains

∂

∂r
(k · vf ) = −q2kxB̄ŷ, (3.33)

with the same definition of B̄ as in (3.29). Finally, the diffusion equation for
magnetic streamers is obtained from (3.28) as before,

∂N0

∂t
− ∂

∂ky

[
Dky

∂N0

∂ky

]
= 0, (3.34)

with the diffusion coefficient

Dky
≡ k2

xq4
y

e2λ4

16m2

(
|Bq |2 +

β

α
|Tq |2

)
R(Ω, p). (3.35)

This is exactly the same mechanism as used for zonal fields. It is interesting to
note that the diffusion coefficient depends on the square of the large-scale field
amplitude.
Now, let us investigate the other limit, kλ � 1. The nonlinear frequency takes

another form in this limit and can be written as

ωNLk ≈ ωRek + 2k · vB .

This means that the temperature does not take part in the process of shearing. It
is therefore not necessary to introduce the ‘flow vector’ B̄. However, the rest of the
calculations are very similar to the above case and one can easily show that we
obtain the same diffusion equations (3.31) and (3.34) for zonal fields and streamers
but now with slightly different diffusion coefficients.
For zonal magnetic fields, shearing is described by the diffusion coefficient

Dkx
≡ k2

y q4
x

e2λ4

4m2 |Bq |2R(Ω, p), (3.36)

and the result for magnetic streamers corresponds exactly to that obtained for the
zonal fields (3.36), but with exchanged subscripts y and x,

Dky
≡ k2

xq4
y

e2λ4

4m2 |Bq |2R(Ω, p). (3.37)

Note that, in contrast to the limit kλ � 1, the large-scale temperature amplitude
does not appear in the diffusion coefficient, i.e. in the process of the shearing of
small-scale turbulence by large-scale structures.

4. Conclusions
In this paper we have presented the self-consistent theory of interactions between
large-scale fields and magnetic electron drift mode turbulence. The mechanism for
the generation of mean ‘flow’ by turbulence is identified and elucidated.
It has been shown that small-scale turbulence drives large-scale fields via mag-

netic Reynolds stress. The generated large-scale structures in turn form an en-
vironment for the parent waves, providing the modulation and regulation of the
turbulence dynamics. In order to investigate the evolution of the wave spectrum
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the wave kinetic equation was derived and an appropriate adiabatic invariant for
small-scale turbulence in the presence of mean ‘flow’ was found.
It was finally shown that the presence of large-scale structures leads to the

shearing of the turbulence. As a consequence, a predator–prey-like behaviour and
regulation of large- and small-scale turbulence have been found.
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