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1. Introduction

Let O c Un be an open set and let Tp — (Tp(t))>0 be consistent semigroups on
LP(Q) for 1 ^p < oo, with generators Ap. Assume that Tp is an analytic semigroup
of angle <p for some />oe(l, oo). It is then natural to ask under which conditions the
semigroups Tp are analytic too. For the time being, suppose that Tp and Tp are
contraction semigroups for given p1,p2£[l, oo) and assume that Tp is an analytic
semigroup of contractions for some^0G(^15/J2). Then, by standard arguments, Tp is
analytic for all p&{py,p2)- Observe however that Tp is not analytic, in general.

In this paper we give a condition on the semigroup Tp which forces the 'endpoint'
semigroup Tv to be analytic. More specifically, we prove that Tp is analytic provided
that Tp satisfies an upper Gaussian estimate of order m. The case pl = \'\s of course
of special interest and several results on L1 holomorphy of semigroups have been
obtained recently (cf. [3, 15]). Our result generalizes in particular the above mentioned
theorem of Ouhabaz which says that Tx is an analytic semigroup on L*(Q) of angle
7r/2 whenever A2 is self-adjoint and T2 admits a Gaussian estimate of order 2.

Our result applies in particular to semigroups generated by second order elliptic
differential operators A subject to rather general boundary conditions. In fact, by a
famous result of Agmon, Douglis and Nirenberg [1], we know that the V realization
of such a boundary value problem generates an analytic semigroup on LP(Q) for
1 <p < oo, provided the top-order coefficients of A belong to BUC(Q). Observe,
however, that their method does not extend to the space Ll(Q). Assuming slightly
more regularity on the coefficients of A, namely Holder continuity, our result implies
that the solutions of this kind of problem are governed by analytic semigroups also
on the space /^(Q). We mention that our approach is based on the consequent use
of the theory of integral operators.

The validity of Gaussian estimates for consistent semigroups Tp is also of great
importance for the problem concerning the /^-independence of the spectrum a(Ap) of
Ap. Indeed, as proved by Arendt [5], a{Ap) is independent of pe[\, oo) whenever A2

is self-adjoint and T2 satisfies an upper Gaussian estimate of order 2. Applying his
method to our situation we see that a certain component of the resolvent set of Ap is
independent of p. The general case dealing with the ^-independence of a{Av) for
arbitrary generators of semigroups admitting Gaussian bounds remains, however, an
open question.

Gaussian estimates for semigroups are, generally speaking, rather difficult to
obtain. We therefore give in our second main result a characterization of analytic
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semigroups admitting a Gaussian estimate in terms of pointwise upper bounds on the
kernel of a certain power of the resolvent. Those estimates might be verified more
easily in concrete examples.

2. Main results and examples

Let Q c Un be an open set, p0 e [1, oo) and let Tbe a C0-semigroup on LP°(Q) with
generator A. In the following we always identify LP»(Q) with a subspace of Lp°(IRn)
by extending functions by zero. Let nsN, mel^\{l} and define a constant cmn > 0
such that

1 f (— exp
•mnJu" \

dx=\.

Moreover, define the family (GPo(t))t^0 of operators on LPa(Mn) by GPo(t)f:=kt*f,
where

Since fcteL\Un) for all / > 0 it follows from Young's inequality that ||GPo(0/llPo <
IÎ tHi ll/llPo- Furthermore, generalizing a notation of Arendt [5], we introduce the
following definition.

DEFINITION 2.1. We say that the semigroup T satisfies an upper Gaussian
estimate of order m if there exist constants a ̂  0, M, b > 0 such that

\T(t)f\ ̂  MeatGpO(bt)\f\ (t>0)
for all/eLpo(Q).

Notice that Gp coincides with the Gaussian semigroup on Lp*(U.n) provided
m = 2.

Furthermore, we assume that E and F are Banach spaces and that there exists a
topological vector space G such that E c> G and Fc+G. Then two operators SE e S£(E)
and SFE^{F) are called consistent if 5l

£.x = SFx for all xe£fli r . We call two
semigroups TE and TF on E and i7 consistent if TE(f) and 7̂ (7) are consistent for all
/ ^ 0. Assume now that T is a C0-semigroup on LP°(Q) which satisfies an upper
Gaussian estimate of order m ̂  1. Then it is not difficult to verify that there exist
consistent semigroups Tp on LP(Q) (with 1 ^ p < oo) such that T = TPo and

I Tp{t)f\ ^ MeatGp(bt) | / | (fe LP(Q), t>0) (2.1)

(cf. Lemma 3.1). In order to state our results we need some more notation. For
0e[O,7r)put

S,:={zeC\{0};|argz|<?}u{0} and S<>:={zeC\{O};|argz| < $}.

Moreover, we call an operator Se^(Lp(Q), IJ(Q)) for 1 ^p,q^ oo an integral
operator, if there exists a measurable function K: Q x Q -> C such that for all

Q), K(xt O y i O e ^ W x-a.e. and

(Sf)(x)= \ K{x,y)f{y)dy x-a.e.
Jn
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In that case S is represented by the kernel and we write S1 ~ K. If in addition |AT| also
defines an integral operator in if(LP(Q), L5(Q)), then S is called a regular integral
operator. It follows by standard arguments (cf. Proposition 3.3 below) that Tp(t) is an
integral operator, say Tp(t) ~ K(t, •, •). We denote by Ap the generator of Tp.
Considering e~atT{t) instead of T(t), we may always assume that (2.1) is satisfied with
a = 0.

In our first result we show that, roughly speaking, (X — Ap)~
l for /e N is a regular

integral operator for all X belonging to a certain sector of the complex plane, provided
that T is analytic. More precisely, the following holds.

THEOREM 2.2. Suppose that T is a bounded analytic C0-semigroup on LV{Q) of
angle <p satisfying a Gaussian estimate of order m with a = 0. Let leN, 0e[Q,(p + n/2)
and XeSg. Then (X — Ap)~

l is a regular integral operator and its kernel Kl
R(X, •, •) is

given by

Kl
R(X,x,y) = f

Jr

where T is the ray {zeC;z = \z\e 1?>} and <f>e[0,(p) is chosen such that 6—<j>< n/2.
Moreover, there exist constants C,y > 0 such that the following estimates hold true.

(a) If I < n/m, then

for all x,yeQ with x ^ y, all XeS°9, /?:= (yme\X\)1/m and m6:= cos (0 -0 ) .
(b) If I > n/m, then

for all x,yeQ, all XeS°e and all OLe(0,(yme\X\y/m).
(c) If I = n/m, then

\llm\x-y\

for all x, y e O with x ^ y and all X e Sg.

Theorem 2.2 has two important consequences. The first one deals in particular
with the Z^-analyticity of the consistent semigroup Tx on LX{Q).

THEOREM 2.3. Suppose that T is a bounded analytic C0-semigroup on LP»(O) of
angle (p satisfying a Gaussian estimate of order m. Then Tp is an analytic C0-semigroup
of angle (p on LP(Q) for all pe[\, oo).

REMARK. Theorem 2.3 generalizes in particular a recent result of Ouhabaz [15]
saying that Tp is an analytic semigroup of angle n/2 on LP(Q) for pe[l, oo) whenever
A2 is self-adjoint and T admits an upper Gaussian estimate of order 2.

The second consequence of Theorem 2.2 concerns the /7-independence of a(Ap),
where a(Ap) denotes the spectrum of Ap. Let 6e [0, n). Denote by pe(Ap) the connected
component of the resolvent set p(Ap) ofAp which contains the sector Sg. It was shown
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by Arendt [5, Theorem 4.2] that pn/2(Ap) is independent of pe[l, oo) provided that T
admits a Gaussian estimate of order 2. Applying his theorem to our situation we
obtain the following corollary.

COROLLARY 2.4. Suppose that T is a bounded analytic C0-semigroup on LP<>(Q) of
angle <p satisfying a Gaussian estimate of order 2. Let 0e[Q,q) + n/2). Then pe(Ap) is
independen t of p e [ 1, oo).

The above corollary needs some comment. Indeed, suppose that A2 is self-adjoint
and that T2 satisfies an upper Gaussian estimate of order 2. Then, trivially p(A2) is
connected and hence by Arendt's theorem, a(Ap) is independent of pe[\,co). The
general case dealing with the ^-independence of cr(Ap) for arbitrary generators of
semigroups admitting an upper Gaussian estimate, however, remains open.

Considering powers of the resolvent rather than the resolvent itself in Theorem 2.2
we are able to characterize analytic semigroups admitting a Gaussian bound in terms
of a pointwise upper bound on the kernel of a certain power of the resolvent.

THEOREM 2.5. Let T be a bounded analytic C0-semigroup on LP°(Q) of angle cp
with generator A. Then the following assertions are equivalent:

(a) T satisfies an upper Gaussian estimate of order m;
(b) there exist an even integer I > n/m +1 and constants M, c > 0 such that

(A — A)~l is a regular integral operator whose kernel Kl
R(X, •, •) satisfies

\Kl
R(X,x,y)\ ^ M\X\n/m~le-cWllm^-vl (2.2)

for all x,ye£l and all X e S°0, where 0 e {n/2, (p + n/2).

In the following we give three types of examples to which our theorems apply.

EXAMPLES 2.6.

(A) Schrddinger operators
Let A = A-V on L2(Un), where V: Un -• U is measurable and such that

V+ e L^CR") and V_ belongs to Kato's class (cf. [17]). Then A, equipped with a suitable
domain, is a self-adjoint operator which generates a C0-semigroup T on L\W). It
follows from [17; Proposition B.6.7] that T satisfies a Gaussian estimate of order 2.
Denoting the consistent semigroup on Lv by Tp, we conclude by Theorem 2.3 that Tp

is an analytic C0-semigroup on Lp(Un) of angle n/2 for all pe[\, oo).

(B) Elliptic operators on Lp(Un) with Holder continuous coefficients
L e t ^ = ZM<maa(x)D*,pe(0,\),aaeBUC<>(nnX)for\oi\=mSindaaeL«>(nn,C)

for |a| ^ m. Suppose that there exists a constant 8 > 0 such that

sup Re £ aa(jc) (i£)a < - 5 for all xeUn.
| < f | - l \a\-m

Given pe(\, oo) we define the Lp-realization jrfp of A by

Af for all/eZ>K). (2.3)

Then, as is well known, it follows that s/p generates an analytic C0-semigroup Tp on
Lp(Un) (for 1 < p < oo) of some angle <pe (0, n/2] (cf. [2]). Furthermore, it was shown
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by Friedman [9, Theorem 9.4.2] that Tp satisfies an upper Gaussian estimate of order
m. Denote by Tx the consistent semigroup on Ll(Un). Theorem 2.3 now implies that
7j is an analytic C0-semigroup on L\Un) of angle (p.

We remark that one can easily generalize the above statement to the case of elliptic
systems on L\Un)N. In fact, let pe(0,1) and aaeBUC(Un,&(CN)) for all a with
|a| = m. Assume that sup|{|=1 Rea(am(x, £)) < — S < 0 for some S > 0 and all x e i n ,
where am{ •, •) denotes the symbol of the principal part of A = Xiw < m a«(x) Da- Define
ja£ in Lp(Un)N for 1 < p< oo analogously to (2.3). It then follows from [4, Corollary
9.5], the above cited result of Friedman and the proof of Theorem 2.3 that the
consistent semigroup 7̂  on L^IR")^ is analytic.

(C) Elliptic boundary value problems on LX(Q)
Let Q be a bounded domain in Un such that dQe C2+p for some /?e(0,1). Consider

a differential operator A of the form

A(x,8):=- £ a^x)dtdf+ £ at{x)dt + ao{x\

where aipat,a0€BUCp(Q.) and

£ aii{x)^^c\^

for all XEUN, £ = (£V ...,£N)SRN and some constant c> 0. Let B(x,d):=
b(x)-V + bo(x) be boundary operators such that b = (61?...,^n),ftt,Z>0G CP(Q) and
b(x) • v(x) ^ c0 > 0, where V(JC) is the unit outward normal vector to dQ. at the point
xedQ.. Given pe(\, oo), the operator

is called the Lp-realization of the boundary value problem (A,B). Set

llm aJx, (5)1
^ : = max arctg1 ' ^ '

where aff denotes the symbol of the principal part of A. Let (pe((pA,n/2). Then
it is known (cf. [2]) that — $4V generates an analytic semigroup Tp on LP(Q) for
1 <p< oo of angle n/2 — (p. Furthermore, it is shown in [11] and [18] that the
semigroup Tp generated by — s#p satisfies an upper Gaussian estimate of order 2.
Denote by 7j the consistent semigroup on LX{£1). It then follows from Theorem 2.3
that Tx is an analytic semigroup on Ll{Q) of angle n/2 — <p.

3. Estimates for semigroup kernels

Throughout this section we assume that T is a C0-semigroup on LP°(Q) for some
/?0e[l,oo) which admits an upper Gaussian estimate of order m and a = 0.
Considering e~atT(t) instead of T(t), the latter may be assumed without loss of
generality.

We first prove two auxiliary results. The first one is a modification of an argument
due to Arendt [5, Assertion 4.3].
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LEMMA 3.1. Let 1 ^p < oo. Then there exists a consistent C^-semigroup Tp on
Lp(&) such that T = TPo and \Tp(t)f\ ^ MeatGp(bt)\f\ forf<=Lp(Q), t ^ 0.

Proof. Since kt€L\Un), the operators Gp(t) admit bounded extensions to
Lp(Un). Hence there exist consistent operators Tp(i) e if (Lp) such that Tp(j) = T{i) for
all t ^ 0. The semigroup property of Tp follows by density. We claim that Tp is
strongly continuous on V (for 1 ^ p < oo). Note first that it suffices to show that
TJLt)f-+f\iL Lp as t -> 0 forfeLp 0 V\ Therefore let/eLp n Lp« and let tn -> 0. Put
/n : = ^>(O/a nd gn '•— Meat«Gp(btn)f. Since it suffices to show that every subsequence
of/n has a subsequence which converges t o / we may assume that/n ->/a.e. Observe
that the family (Gp(t))t>0 is strongly continuous in 0. In fact, setting <p(x) :=
(\/cmn)Qxp{-\x\m/(m~l)/4} and s:=tl/m it follows that (l/en)p(;t/£)*/^/in Lp(Un)
as e-*0. Hence, by taking a subsequence, we may assume that \\gn—gn-illp ^ 2~n.
Set /*:= £n>2l£n~£n-il + l£il- Then h£Lp(Un) and |/J ^gn^h for all nel^l. The
claim finally follows now from the dominated convergence theorem.

LEMMA 3.2. Let E be a Banach space, q>e(0,n/2] and ae(0,<p\. Assume that B
generates an analytic C0-semigroup S on E of angle (p and suppose that eiaB is the
generator of a C0-semigroup U on E. Then S(seia + t) = S(t) U(s) for t > 0, s > 0.

Proof. Since the resolvents of B and eiaB commute, it follows that U(s) S(t) =
S(t) U(s) for all s, t > 0. Let a, b > 0. Then the family (V(t))t ^ 0 of operators on E given
by V(t) := U(bt) S(at) defines a C0-semigroup on E. Denote the generator of V by C.
If xeD(B), then

j V(t)x = beiaBU(bt)S(at)x+ U(bt)aBS(at)x = (beia + a)BV(t)x.

Hence d/dt V(t)x\t=0 = (beia + a)Bx for xeD(B) and therefore (beia + a) B <= C.
Consequently (beia + a)B = C and V(t) = S((^ia + a)0 for all / ^ 0. In particular,
F(l) = S(beia + a) = U(b)S(a) for all a,b > 0.

In the following proposition we collect some well-known facts on integral
operators which will be used later on (see [16, Chapter IV; 6; 12] for proofs and
references). For 1 ^p < oo, \/p + \/p' = 1, we put

{ ( f \1/p' )
Lco[Lp]:=\K:QxQ > C measurable; ess sup \K(x,y)\p dx\ < oo .

PROPOSITION 3.3. (a) Let l^p,q^co and let Se^(Lp,LQ) be an integral
operator represented by K. Let Soe&(Lp,LQ) such that \SJ\ ^ S\f\ for feLp(Q).
Then So is a regular integral operator and \K0(x,y)\ ^ K(x,y) x-a.e., where Ko ~ So.

(b) Let 1 ^ p < oo and consider the mapping

(SKf)(x)= { K(x,y)f{y)dy

Then the mapping K\-^ SK establishes an isometric isomorphism of L°°(Q x Q) onto
and of LX[LP] onto Se(Lp{Q),L™(Cl)) for 1 <p < oo.
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In the sequel we show how to obtain upper bounds on the semigroup kernel
K(z, x, y) for complex times z. We hereby extend the approach of Davies [8, Section 3.4]
to our situation.

LEMMA 3.4. Let ae(0, n/2] and a'e(0, a). Suppose that T may be extended to a
bounded, analytic C\f semigroup on LP°(Q) of angle a. Then there exists a constant
C > 0 such that the kernel K(z, •, •) of T(z) satisfies

\K(z, x, y)\ ^ C/(Re z)n/m for all z e Sa\{0] and all x,y<=Q.

Proof We denote by —A the generator of the semigroup T. Let <pe(<x',a). It
follows from [13, Theorem IX. 1.23] that — eiq>A and — e~iq>A generate bounded Co-
semigroups on LP«(Q). Denote these semigroups by U+ and U_, respectively. Without
of loss of generality we may assume that Im z ^ 0. For ze 5a-\{0} n [Im z ^ 0] set z =
seiip + t, where s,teU. Then by Lemma 3.2

T(z) = T(sel*+t) = T{t) U+(s) = T(t/2) U+(s) T(t/2) (3.1)

and therefore

By Proposition 3.3(a) we have that

} for a111 > ° and
>y)\

Hence it follows from Young's inequality that

for some constant C = C(M,pQ,n,m) and all / > 0. Similarly, we conclude by
Proposition 3.3(b) that \\T(t/2)\\!n^^Ct(nlm)(ll<-X) for some constant C =
C(M,po,n,m), all t > 0 and \/po+ l/p'o = 1. Hence there exist a constant C > 0 such
that

\\7lz)\L,x^ C/rlm for all / > 0.

Proposition 3.3(b) now implies that

\K{z,x,y)\^C/tnlm (3.2)

for all z e Sa,\{0} and all x, y e ft. Notice furthermore that t = Re z - (Im z/sin (p) cos (p.
Since Imz ^ Re z tan a' for all zeS^AJO} it follows that

_ /, .coscA _ /, tana'\ _
/ ^ Rez 1- tana '^-^- = Rez 1 ^ cRez (3.3)

\ sin #>/ \ tan (p)

for some constant c > 0 and all zeS^VO}. Combining this inequality with (3.2) we
obtain

\K(z,x,y)\^C/(Rcz)n'm

for all z G Sa\{0} and all x, y e Q.

In order to obtain sharp estimates on the semigroup kernel for complex times z,
we modify an idea of Davies (cf. [8, Theorem 3.4.8]).
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LEMMA 3.5. Let pe{b,n/2), y?'e(O,£), and let x,yeQ. Letf(-,x,y): Sp^Cbe a
function which is analytic in S^ and satisfies

^ (zeS,\{0},x,yeQ),

where C1 > 0 is a constant. Suppose that there exists a constant a > 0 such that

C ( a\x — V\™H™-D}

l / (w)l^exp|- ' ^ | (r>0,x,yeQ).

Then there exists a constant C2 = C2(C1,n,m,P,p/) such that

\x — v\m/(m

Proof. Set D := {z e C; 0 ^ arg z ̂  ft. For z e D and x,yeQ define the function

x v V = — — / T l / z x ) \ U n / 2 ~ m m ~ 1 ) ) i n m 1 ) \ \m/(m1)

Then \g(r,x,y)\ ^ C1 for all r > 0 and all x,yeQ. Moreover, for 0e[0,fi] we have

C i
We x y ) \ ^

for r > 0 , x j e Q . In particular, \g(r^tx,y)\ ^ CJ(cosfi)n/m for all r > 0 and all
A:, _y e Q. Observe that for x, y e Q and all e > 0 there exists C > 0 (depending on e, x, y)
such that \g(z,x,y)\ ^ Ce£|z|2 for all z = re1* with 0e(O,/J) and r sufficiently large. The
Phragmen-Lindelof theorem (cf. [7, Corollary VI.4.4]) implies now that

\g{z, x,y)\^ Cx / c o smw / m
 f o r

Since

it follows that for argze[—/?,0] we obtain

^ ir
n/m(cos^)n/r"eXP{ rV^-Vsinifi/im-l))

C, /cos0\n/m

< 7 5 7 3 i d : ^ 5 eXP
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Replacing z by z in the above argument we obtain

Cx (cos0\n/m

\Az,x,y)\ ^ (Rez)n/m[C0Sp) e x P

provided that \0\ ^ /?. Let now zeSp\{0}. Then there exists a constant C2

C2(C1,/2,m,/?,/O such that

<S

for all Z G ^ \ { 0 } and all x,yeQ.

Combining Lemmas 3.4 and 3.5 we immediately obtain an upper bound on the
semigroup kernel for complex times z.

PROPOSITION 3.6. Assume that the conditions of Lemma 3.4 are satisfied. Then
there exist constants M, c > 0 such that the kernel K(z, •, •) of T(z) satisfies

M r c\x_yimnm-

^ ' ^ ^(R^eXP( |z|i/<m-i>

for all zeSa,\{0} and all x

4. Proofs of the main results

We start the proof of Theorem 2.2 with an auxiliary result.

LEMMA 4.1. Let E be a Banach space and let S be a bounded holomorphic Co-
semigroup on E of angle cp e (0, n/2] with generator — B. Let 6e [0, cp 4- n/2) and choose
<pe[0,<p) such that d-<fx n/2. Denote by V the ray {zeC;z = \z\e~i<j>). Then

1= e~XzS{z)dz for aMeSg\{0} 0[lmz ^ 0].

The analogous result holds for XeS9\{0} n {ze C;argz ^ 0}.

Proof. Let n e Se n [Im z ^ 0] and put /?(//) := J r e-"*5(z) rfz. Then R(ji) is a well
defined element of S£(E). Moreover, the mapping SQ

e -*• C, X \—>R(X) is holomorphic.
Next, estimating the line-integral §yRe~XzS(z)dz, where yR = {ReiS; — (j) ^ 6 ^ 0}, and
letting R -> oo we see that

provided that A > 0. The identity theorem for holomorphic functions now implies the
assertion.
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Proof of Theorem 2.2. Let XeSg and assume without loss of generality that
argA ^ 0. Consider first the case where / < n/m. Setting me := cos(#—0) we obtain,
by Proposition 3.6,

r
e'i'(f^]y.KiZtXty)dz

n/m

Jr
M [ ( / ,.„ cix-^r-^

— c\x—v\m/(m-l)

XCXP

Setting p:={mme{c/2)m-1\X\flm and observing that me\zX\ + c\x-y\ml(m-1)/2|z|1/<m-1)

^ y?|;c—j| we conclude that

eXp -J-V^Jl L r»(i-i/m)+j(i-»)-i dr

,w_l m.
(4.2)

In particular we conclude by Young's inequality that

3), (4-3)

provided that ueLp(Q). Hence it follows from the assumption, Lemma 4.1, (4.3) and
Fubini's theorem that for weZ/°(fi) we have

JaJr

Hence (X — Ap)~
l is a regular integral operator for all pe[\, oo) and its kernel is given

by Kl
R(X,x,y) = fre~*'(zl-1/(l-\)\)K(z,x,y)dz. The estimate (a) follows from (4.2).
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In order to prove (b) we set u := |A| \z\ and deduce from (4.1) that

(/-l)!(cos0)n/*

exp 1 ,V- fa*
l-l-n/m e~Su

for any <5e(O,w9). Setting a ^ we obtain

- , -Az M

for all x,yeQ and all AeSg. The rest of the proof can now be copied from Part (a).
In order to prove (c) we set \z\ := \x—y\m s and deduce from (4.1) that

(4.4)

Consider first the case where |A|1 /m|x-^| < 1. Then v:={\X\\x-y\myl > 1 and the
integral on the right-hand side of (4.4) is bounded by

M

i
-exp( — sme)ds

C + logy ^ C+ralog

(4.5)

for some constant C > 0. Second, if 1, we set w:={\k\llm\x-y\f-m.
Then the integral on the right-hand side of (4.4) is bounded by

(4.6)
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for some y = y(0, c) > 0. Now, combining (4.5) with (4.6) we see that there exists a
constant C = C(m, 0, c, y, I) such that

;K(z,x,y)dz + log+ 1

for all x, veQ with x ^ v and all
Finally, observe that JR«»e~w Mdx = C/\X\ for all XeSg and that

1
|A|1/mr

dr

C (4.7)

for all XeS*. Hence one may apply Fubini's theorem as in Part (a) in order to
conclude that (X + Ap)~

l is an integral operator and that its kernel satisfies the required
estimates.

Proof of Theorem 2.3. Let 6 e [0, cp + n/2) and a be as in Definition 2.1. Then there
exists a constant M > 0 such that

for all XeS°g and all pe[l,co). In fact, assuming n^m, this follows easily from
Young's inequality and the estimates given in Theorem 2.2 (a) and (b), respectively.
If n = m, then the above norm estimate follows from Young's inequality and (4.7).
The claim follows now from the classical generation theorem for analytic semigroups
(cf. [10, Theorem 1.5.4] or [14, A-II, Theorem 1.12]).

The assertion of Corollary 2.4 follows from [5, Theorem 4.2].

Proof of Theorem 2.5. By Theorem 2.2 we only have to prove the assertion
(b) => (a). To this end note that by integration by parts, the theorem of residues and
the uniqueness theorem of Laplace transforms we have

^ 7 X 0 =
1)! f

(4.8)

Here F is defined by F := F_ U Fo U F+, where F ± := {re±ia; r ̂  R} and Fo := {Re10;
|0 | ^ a} for suitable R > 0 and <xe(n/2,<p + n/2). Clearly, the integral in (4.8) does
not depend on the particular choice of R and a. For t > 0 set

(x,yeQ).

The assumption (2.2) implies that

^ f | e"^(A,x,y)rfA
r°° i

^ ucosa n/m-lJu
 l

 r~cRllm\x-y\

('-!)!, , U [ , ,

idFl/^*^
._Le«i?-cfl1/m|a;-i/|

r1 1

for some constant K> 0, all t > 0 and x,^eQ. Choosing

,t - i
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we verify that there is a constant M > 0 such that

M [ (c\x v \ ) ]
\K(l,x,y)\ =S ^ e x p ) - ( C | X

4 f ^ _ , , ) (4.9)

for all r > 0 and all x,yeQ. Finally, by (4.8) we have

T{t)f[x) =

Since

M C i (c\x — vn7n/<7ra~1>

^ J e x p { '
*ZMtGrJ,c"«"-"t)\f\(x)

for some MX,M2 > 0, it follows from Fubini's theorem and Proposition 3.3(a) that
T(t) is a regular integral operator whose kernel K(t, •, •) satisfies (4.9). The proof is
complete.
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