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The Term Structure of Variance Swap Rates
and Optimal Variance Swap Investments

Daniel Egloff, Markus Leippold, and Liuren Wu∗

Abstract

This paper performs specification analysis on the term structure of variance swap rates on
the S&P 500 index and studies the optimal investment decision on the variance swaps and
the stock index. The analysis identifies 2 stochastic variance risk factors, which govern the
short and long end of the variance swap term structure variation, respectively. The highly
negative estimate for the market price of variance risk makes it optimal for an investor to
take short positions in a short-term variance swap contract, long positions in a long-term
variance swap contract, and short positions in the stock index.

I. Introduction

The financial market is becoming increasingly aware of the fact that the re-
turn variance on stock indexes is stochastic (Engle (2004)) and the variance risk
is heavily priced (Carr and Wu (2009)). Associated with this recognition is the
development of a large number of variance-related derivative products. The most
actively traded is the variance swap contract. The contract has 0 value at inception.
At maturity, the long side of the variance swap contract receives the difference be-
tween a standard measure of the realized variance and a fixed rate, called the vari-
ance swap rate, determined at the inception of the contract. Traditional derivative
contracts such as calls, puts, and straddles also have variance risk exposure,
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but entering a variance swap contract represents the most direct way of achieving
exposure to or hedging against variance risk.

Variance swap contracts on major equity indexes are actively traded over
the counter. Variance swap rate quotes on such indexes are now readily available
from several broker dealers. In this paper, we obtain more than a decade’s worth
of variance swap rate quotes from a major investment bank on the Standard &
Poor’s (S&P) 500 index at 5 fixed times to maturity, from 2 months to 2 years.
With the data, we perform specification analysis on the variance risk dynamics
and the term structure of variance swap rates. We propose a class of models on the
variance risk dynamics and derive their pricing implications on the term structure
of variance swap rates. We estimate the model specifications by exploiting the
rich information embedded in both the time series and the term structure of the
variance swap rate quotes. Based on the estimated variance risk dynamics, we
study both theoretically and empirically how investors can use the term structure
of variance swap contracts to span the variance risk and to revise their dynamic
asset allocation decisions.

Our specification analysis and model estimation show that 2 stochastic vari-
ance risk factors are needed to explain the term structure variation of the variance
swap rates, with 1 factor controlling the instantaneous variance rate variation and
the other controlling the central tendency variation of the return variance. The
instantaneous variance rate is much more transient than the central tendency fac-
tor under both the risk-neutral and the statistical measures. Thus, the 2 factors
generate different loading patterns across the term structure of the variance swap
rates. The instantaneous variance rate factor dominates the short-term variance
swap rate dynamics, whereas the central tendency factor dominates the long-term
variance swap rate dynamics.

With the estimated variance risk dynamics, we study how the presence of
variance swap contracts across several maturities alters an investor’s optimal as-
set allocation decision. We consider a dynamic asset allocation problem, where an
investor equipped with a constant relative risk aversion (CRRA) utility function
allocates her initial wealth among the money market account, the S&P 500 stock
index, and variance swap contracts at different maturities on the index to maxi-
mize her utility of terminal wealth. We derive the optimal allocation decisions in
analytical forms for cases with and without the availability of the variance swap
contracts in the investment.

In the absence of the variance swap contracts, the presence of stochastic vari-
ance and its correlation with the index return creates an intertemporal hedging
demand for the stock index investment. However, with the variance swap con-
tracts directly spanning the variance risk, there no longer exists an intertemporal
hedging demand for the stock index investment. Under 2-factor variance risk dy-
namics, we can use 2 variance swap contracts at 2 distinct maturities to span
the variance risk. The optimal investments in the stock index and the 2 variance
swap contracts depend on the market prices of the 3 sources of risks: the return
risk, the instantaneous variance rate risk, and the variance central tendency risk.
The highly negative estimate for the market price of the instantaneous variance
risk makes it optimal to take short positions in a short-term variance swap con-
tract, long positions in a long-term variance swap contract, and short positions in
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the stock index. When we perform a historical analysis on different investment
strategies, we find that incorporating variance swap contracts into the portfolio
mix significantly increases the historical performance of the investment.

The remainder of the paper is organized as follows. Section II discusses the
literature that forms the background of our study. Section III introduces a class
of affine stochastic variance models, under which we value the term structure of
variance swap rates. Section IV discusses the data, estimation strategy, and es-
timation results on variance risk dynamics and variance risk premium, and their
effects on the variance swap term structure. Section V derives the optimal asset
allocation decisions with and without the variance swap contracts. Section VI cal-
ibrates the allocation decisions to the estimated risk dynamics and risk premiums
and studies the historical performance of different investment strategies. Section
VII concludes.

II. Background

Our study is related to several strands of literature. The first strand includes
all traditional studies that estimate the variance dynamics joint with the return
dynamics (see Engle (2004) for a review). More recently, a rapidly growing lit-
erature infers the variance dynamics based on realized variance estimators con-
structed from high-frequency returns. Important contributions include Andersen,
Bollerslev, Diebold, and Ebens (2001), Andreou and Ghysels (2002), Andersen,
Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2004a),
(2004b), Aı̈t-Sahalia, Mykland, and Zhang (2005), Andersen, Bollerslev, and
Meddahi (2005), Oomen (2005), Zhang, Mykland, and Aı̈t-Sahalia (2005), Bandi
and Russell (2006), Hansen and Lunde (2006), and Aı̈t-Sahalia and Mancini
(2008). The realized variance estimators make return variance almost an observ-
able quantity and hence sharpen the identification of variance dynamics. In this
paper, we also use realized variance in combination with our variance swap quotes
to enhance the identification of the variance risk dynamics and variance risk pre-
mium. Nevertheless, we do not construct the realized variance estimators using
high-frequency returns, but using daily returns in accordance with the specifica-
tion of a typical variance swap contract.

The second strand of literature combines information in time-series returns
and option prices to infer the variance dynamics and variance risk premium to-
gether with the return dynamics and return risk premium. Prominent examples
include Bates (1996), (2000), (2003), Chernov and Ghysels (2000), Jackwerth
(2000), Pan (2002), Jones (2003), Eraker (2004), Aı̈t-Sahalia and Kimmel (2007),
Broadie, Chernov, and Johannes (2007), and Carr and Wu (2008). Bergomi (2004)
highlights how traditional stochastic volatility and Lévy jump models impose
structural constraints on the relations between the Black and Scholes (1973) im-
plied volatility skew along the strike dimension, the spot-volatility correlation,
and the term structure of the volatility of volatility. With variance swap rate quotes,
we show that we can directly estimate the variance dynamics and variance risk
premium without specifying the underlying return dynamics.

Several studies form option portfolios to separate the variance risk expo-
sure from the return risk exposure. For example, Bakshi and Kapadia (2003a),
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(2003b) consider the profit and loss arising from delta-hedging a long position
in a call option. Carr and Wu (2009) use a portfolio of vanilla options to ap-
proximate the value of the 30-day variance swap rate on 5 stock indexes and 35
individual stocks. They compare the synthetic 30-day variance swap rates to the
ex post realized variance to determine the variance risk premium. Bondarenko
(2004) uses a similar procedure to synthesize variance swap rates on the S&P 500
index and link the variance risk premium to hedge fund behavior. Wu (2010) es-
timates the variance risk dynamics and variance risk premium by combining the
information in realized variance estimators from high-frequency returns and the
VIX, a volatility index on the S&P 500 index constructed by the Chicago Board
of Options Exchange to approximate the 30-day variance swap rate (Carr and Wu
(2006)). Unlike these studies, we obtain direct variance swap rate quotes and thus
avoid the approximation errors inherent in the procedure of synthesizing variance
swaps from vanilla options (Carr, Lee, and Wu (2010)). Furthermore, by having
variance swap rates across several maturities, we can more effectively identify the
multidimensional structure of the variance risk dynamics and their impacts on the
variance swap term structure and variance swap investment.

Our investment analysis is related to a strand of literature that studies as-
set allocation problems in the presence of derivative securities. Carr and Madan
(2001) and Carr, Jin, and Madan (2001) study how to use vanilla options across
different strikes to span the jump risk with random jump size, in the absence of
stochastic variance. Complementary to their study, we focus on how to use vari-
ance swap contracts of different maturities to span the multidimensional stochas-
tic variance risk. Liu and Pan (2003) analyze investments in vanilla options in
the presence of both jumps and stochastic variance. In this case, the allocation to
a vanilla option at a given strike and maturity is a result of mixed effects from
spanning the jump risk and the stochastic variance risk. To disentangle the ef-
fects, they assume a constant jump size and hence effectively seclude themselves
from the strike dimension analyzed in Carr, Jin, and Madan. Compared to the op-
tions contracts, variance swap contracts provide a more direct way of spanning
the variance risk. Since the variance swap is a linear contract in variance risk, by
trading these contracts, the investor does not create additional delta exposures to
the underlying stock index, as would be the case for strategies involving vanilla
options.

Finally, recognizing the virtue of the variance swap contract as a traded asset
with the most direct (and linear) exposure to variance risk, several researchers pro-
pose to directly model the dynamics of the variance swap rate (Duanmu (2004),
Carr and Sun (2007)) or the forward variance swap rate (Dupire (1993), Bergomi
(2005), (2008), and Buehler (2006)). In particular, Bergomi takes the initial for-
ward variance swap rate curve as given and models the dynamics of the loga-
rithm of forward variance rate as controlled by multiple factors. By contrast, we
start with the instantaneous variance rate as an affine function of a finite num-
ber of factors and derive the fair value for the variance swap term structure.
While Bergomi’s direct modeling of the forward variance swap rate curve can
prove useful for pricing volatility derivatives and exotic structures, our finite-
dimensional factor model provides fair valuation on the variance swap term
structure.
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III. Affine Models of Variance Swap Term Structure

We start with a complete stochastic basis (Ω,F , (Ft)t≥0,P), with P being
the statistical probability measure. We use Q to denote a risk-neutral measure
that is absolutely continuous with respect to P. No arbitrage guarantees that there
exists at least one such measure that prices all traded securities (Duffie (1992)).

We use vt to denote the time-t instantaneous variance rate, and use Vt,T ≡∫ T
t vsds to denote the aggregate return variance during the period [t,T], with
τ = T − t being the length of the horizon. We assume that the dynamics of the
instantaneous variance rate vt is controlled by a k-dimensional Markov process X,
satisfying the following stochastic differential equation under measure Q:

dXt = μ(Xt)dt +ΣX(X)dBX
t +
(
qdNX(λ(Xt))− q̄λ(Xt)dt

)
,(1)

where μ(Xt) ∈ Rk denotes the instantaneous drift function, BX denotes a k-
dimensional independent Brownian motion with ΣX(X)ΣX(X)� ∈ Rk×k being
the symmetric and positive definite instantaneous covariance matrix, and NX de-
notes k independent Cox (1955) processes with intensities λ(Xt) ∈ Rk and with
the random jump magnitudes q being a diagonal (k × k) matrix, characterized by
its 2-sided Laplace transform Lq(·) and with q= EQ[q].

To analyze the variance risk dynamics using variance swap rates, we adopt
the affine framework of Duffie, Pan, and Singleton (2000).

Definition 1. In affine stochastic variance models, the Laplace transform of the
aggregate variance Vt,T under the risk-neutral measure Q is an exponential-affine
function of the state vector Xt:

LV(u) ≡ EQ
[

e−uVt,T
∣∣Ft
]
= exp

(
−b(τ)�Xt − c(τ)

)
,(2)

where b(τ) ∈ Rk and c(τ) is a scalar.

We confine our attention to time-homogeneous models by constraining the
coefficients (b(τ), c(τ)) to depend only on the horizon τ = T − t but not on the
calendar time t. Proposition 1 presents a set of sufficient conditions for the affine
definition in equation (2) to hold.

Proposition 1. If the instantaneous variance rate vt, the drift vector μ(X), the
diffusion covariance matrixΣX(X)ΣX(X)�, and the jump arrival rate λ(X) of the
Markov process X are all affine in X under the risk-neutral measureQ, the Laplace
transform LV(u) is exponential affine in Xt.

We parameterize the affine conditions as

vt = b�v Xt + cv, bv ∈ Rk, cv ∈ R,(3)

μ(Xt) = κ (θ − Xt) , κ ∈ Rk×k, θ ∈ Rk,

ΣX(X)ΣX(X)� = diag [α + βXt] , α ∈ Rk, β ∈ Rk×k,

λ(Xt) = αλ + βλXt, αλ ∈ Rk, βλ ∈ Rk×k,

where we adopt the convention that diag [v] maps the vector v onto a diagonal
matrix and diag [M] maps the diagonal elements of the matrix M onto a vector.
We further constrain β and βλ to be diagonal matrices. Then, the coefficients

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022109010000463
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:28:08, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022109010000463
https:/www.cambridge.org/core


1284 Journal of Financial and Quantitative Analysis

(b(τ), c(τ)) for the Laplace transform in equation (2) are determined by the fol-
lowing ordinary differential equations:

b′(τ) = ubv − (κ + q̄βλ)
�
b(τ)− 1

2
βdiag

[
b(τ)b(τ)�

]
(4)

−βλ (Lq(b(τ))− 1) ,

c′(τ) = ucv + (κθ − q̄αλ)
�
b(τ)− 1

2
α�diag

[
b(τ)b(τ)�

]
−α�λ (Lq(b(τ))− 1) ,

with the boundary conditions b(0) = 0 and c(0) = 0.

A. The Term Structure of Variance Swap Rates

The terminal payoff of a variance swap contract is the difference between
the realized variance over a certain time period and a fixed variance swap rate,
determined at the inception of the contract. The variance difference is multiplied
by a notional amount that converts the difference into dollars. Since the contract is
worth 0 at inception, no arbitrage dictates that the time-t variance swap rate with
expiry date T , VSt(T), is equal to the risk-neutral expected value of the aggregate
return variance over the horizon [t,T],

VSt(T) =
1
τ
E
Q
t [Vt,T ] , τ = T − t,(5)

where the 1/τ scaling represents an annualization in the variance swap rate quote.
Under the affine class in equation (2), the expectation can be obtained from

the Laplace transform,

E
Q
t [Vt,T ] = LV(u)

([
∂b (τ)

∂u

]�
Xt +
∂c (τ)
∂u

)∣∣∣∣∣
u=0

= B (τ)
� Xt + C (τ) ,

which is affine in the current level of the state vector Xt. Note that LVt,T (u)
∣∣
u=0
=1

and the coefficientsB (τ) and C (τ) are defined as the partial derivatives of b (τ)
and c (τ) with respect to u.

Proposition 2. Under the affine stochastic variance framework as specified in
(3), the time-t variance swap rates are affine in the state vector Xt,

VSt(T) =
1
τ

[
B(τ)�Xt + C(τ)

]
,(6)

with

B (τ) =
(

I − e−κ
�τ
) (
κ�
)−1
bv,(7)

C (τ) =
(
cv + b�v θ

)
τ −B (τ)� θ.

Due to space constraints, we omit the proofs for this and subsequent propositions.
They are available from the authors. From Proposition 2, we obtain the following
corollary:
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Corollary 1. Under the affine stochastic variance framework, the term structure
of the return variance swap rate only depends on the specification of the drift of the
state vector but does not depend upon the type and specification of the martingale
component of these factors. Holding constant the long-run mean and the reverting
speed, the term structure remains the same whether the martingale component is
a pure diffusion, a pure jump martingale, or a mixture of both.

The corollary follows readily by inspecting the solutions of the coefficients
(B(τ),C(τ)) in equation (7). The parameters controlling the covariance matrix
of the diffusion component (α, β) and the parameters for the jump component
(αλ, βλ,Lq(·)) do not enter these coefficients. The corollary suggests that from
the term structure of the return variance swap, one can identify the risk-neutral
drift of the state vector that controls the dynamics of the return variance. Never-
theless, the innovation (martingale) specifications of the instantaneous variance
rate play little role in determining the term structure of the variance swap, al-
though they do affect the time-series behavior of the variance swap rates and the
pricing of variance swap options.

We use the affine specification to illustrate the corollary, but the variance
swap rate only depends on the risk-neutral drift of the instantaneous variance rate
μ(v) under any variance rate dynamics:

VSt(T) =
1
τ
E
Q
t

[∫ T

t
vsds

]
=

1
τ
E
Q
t

[∫ T

t
μ(vs)ds

]
,(8)

as the expectation of the martingale component equals 0. This conclusion is a re-
sult of the linear relation between the variance swap rate and future instantaneous
variance rates. It is also this linear relation that makes variance swap contracts the
most direct instruments for spanning variance risks.

B. Model Design

Proposition 1 identifies a set of conditions that generate the affine stochastic
variance class. Based on these conditions, we design both a 1-factor and a 2-factor
model for the variance risk dynamics and compare their empirical performance in
matching the time-series and term structure behaviors of variance swap rates.

1. A One-Factor Variance Rate Model

In the 1-factor setting, we let the variance rate follow the square-root dy-
namics as in Heston (1993). Under the risk-neutral measure Q, the instantaneous
variance rate dynamics are

dvt = κv (θv − vt) dt + σv
√

vtdBv
t .(9)

Comparing equation (9) to the general conditions in equation (3), we have bv =
1, cv=0, α=0, β=σ2

v , λ=0. Plugging these parameterizations into equation (7),
we have the variance swap rate as

VSt(T) = φv(τ)vt + (1− φv(τ)) θv,(10)

with φv(τ) = (1− e−κvτ )/(κvτ). With stationary risk-neutral variance rate dy-
namics (κv > 0), the coefficient φv(τ) is between 0 and 1, and the variance swap
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rate is a weighted average of the instantaneous variance rate vt and its risk-neutral
long-run mean θv. The weight depends on the time to maturity (τ ) of the swap
contract and the risk-neutral mean-reversion speed of the variance rate (κv). The
linear 1-factor structure also implies the same statistical persistence for variance
swap rates of all maturities.

Holding a fixed risk-neutral mean-reversion speed κv > 0, the coefficient
φv(τ) starts at 1 at τ = 0 and declines to 0 with increasing maturity. Hence, the
variance swap rate converges to the instantaneous variance rate as the maturity
goes to 0 and converges to the risk-neutral long-run mean as the maturity goes to
infinity. Holding the maturity fixed, as κv declines, the risk-neutral dynamics of
the instantaneous variance rate become more persistent, φv(τ) increases, and the
current variance rate vt has a larger impact on the variance swap rate of longer
maturities.

Taking expectations on both sides of equation (10) under the statistical mea-
sure P, we obtain the mean term structure of variance swap rates as

EP[VSt(T)] = φv(τ)θ
P
v + (1− φv(τ)) θv,(11)

which is a weighted average of the statistical mean θPv ≡ EP [vt] and the risk-
neutral mean θv of the instantaneous variance rate. Since φv(τ) declines mono-
tonically with increasing maturity, the risk-neutral mean has increasing weights at
longer maturities. Therefore, to generate an upward- or downward-sloping mean
term structure for the variance swap rates, we need the statistical mean and the
risk-neutral mean of the instantaneous variance rate to be different. The differ-
ence between the 2 mean values dictates the sign and magnitude of the variance
risk premium.

2. A Two-Factor Variance Rate Model

We consider 2-factor variance risk dynamics controlled by the following
stochastic differential equations under the risk-neutral measure Q:

dvt = κv (mt − vt) dt + σv
√

vtdBv
t ,(12)

dmt = κm (θm − mt) dt + σm
√

mtdBm
t , dBv

t dBm
t = 0,

where the instantaneous variance rate (vt) reverts to a stochastic mean level (mt).
The mean level follows another square-root process. Analogous to Balduzzi, Das,
and Foresi (1998) for interest rate modeling, we label mt as the stochastic central
tendency of the instantaneous variance rate, with θm being the unconditional long-
run mean for both vt and mt under the risk-neutral measure. Under the 2-factor
variance risk specification, the variance swap rates are given by

VSt(T) = φv(τ)vt + φm(τ)mt + (1− φv(τ)− φm(τ)) θm,(13)

with

φv(τ) =
1− e−κvτ

κvτ
,(14)

φm(τ) =
1 +

κm

κv − κm
e−κvτ − κv

κv − κm
e−κmτ

κmτ
.
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The variance swap rate in equation (13) is a weighted average of the instantaneous
variance rate vt, its stochastic central tendency mt, and the risk-neutral long-run
mean θm. The weight on the instantaneous variance rate is the same as in the 1-
factor case. The weight converges to 1 as the maturity goes to 0 and converges
to 0 as the maturity goes to infinity. The weight on mt also converges to 0 as the
maturity goes to infinity. Hence, the variance swap rate starts at the instantaneous
variance rate at 0 maturity and converges to the risk-neutral long-run mean θm

as maturity goes to infinity. The stochastic central tendency factor plays a role at
intermediate maturities, with the weighting coefficient φm(τ) showing a hump-
shaped term structure.

Under this 2-factor structure, swap rates at different maturities can show dif-
ferent degrees of persistence. The central tendency factor is usually more persis-
tent than the instantaneous variance rate, in which case the short-term swap rate
is less persistent than the long-term swap rate.

C. Market Prices of Variance Risks

For both models, we assume that the market price on each source of risk is
proportional to the square root of the risk level:

γ(Bv
t ) = γv√vt, γ(Bm

t ) = γm√mt.(15)

Under the 1-factor model, the statistical dynamics of the variance rate become

dvt = κPv
(
θPv − vt

)
dt + σv

√
vtdBv

t ,(16)

with κPv =(κv−γvσv) and θPv =κvθv/κ
P
v . Thus, a negative market price of variance

risk makes the statistical variance rate process more mean reverting than its risk-
neutral counterpart (κPv > κv) and makes the statistical mean variance rate lower
than its risk-neutral counterpart (θPv < θv).

Under the 2-factor model, the statistical dynamics of the variance rate
become

dvt = κPv

(
κv

κPv
mt − vt

)
dt + σv

√
vtdBv

t ,(17)

dmt = κPm
(
θPm − mt

)
dt + σm

√
mtdBm

t ,

with κPm = κm − γmσm and θPm = κmθm/κ
P
m. In this case, the long-run statistical

mean of the variance rate becomes θPv = κvθ
P
m/κ

P
v = κvκmθm/(κ

P
vκ

P
m). Similar to

the 1-factor case, negative market price of variance risk (γv) increases the mean-
reversion speed (κPv ) and reduces the long-run mean (θPv ) under the statistical mea-
sure. A negative market price of the central tendency risk (γm) has similar effects
on the central tendency dynamics and further reduces the long-run statistical mean
of the instantaneous variance rate.

IV. Estimating Variance Swap Term Structure Models

We estimate the variance risk dynamics using over-the-counter quotes on
term structure of variance swap rates on the S&P 500 index. From a major broker
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dealer, we obtain daily closing quotes on variance swap rates with fixed times
to maturity at 2, 3, 6, 12, and 24 months, starting January 10, 1996, and end-
ing March 30, 2007, spanning more than 11 years. To avoid the effect of weekday
patterns on the dynamics estimation, we sample the data weekly on every Wednes-
day. When Wednesday is a holiday, we use the quotes from the previous business
day. The data contain 586 weekly observations for each series.

To sharpen the variance risk premium identification, we also compute the
annualized realized return variance over different horizons based on daily log
returns on the S&P 500 index,

RVt,T =
365
D

D∑
d=1

(ln [St+d/St+d−1])
2
,(18)

where St denotes the index level at time t and D denotes the number of days
between time t and T . Following industry standard in variance swap payoff cal-
culations, we compute the realized variance using undemeaned log daily returns.
At each date t, we compute realized variance over fixed horizons of 7, 30, 60, 90,
120, and 150 days, and use these realized variance series together with the vari-
ance swap rates to identify the variance risk dynamics and variance risk premium.

A. Summary Statistics of Variance Swap Rates

Figure 1 plots in Graph A the time series of variance swap rates at 3 selected
maturities of 2 (solid line), 6 (dashed line), and 24 (dotted line) months. Per in-
dustry convention, we represent the variance swap rates in volatility percentage
points. The time-series plots show that the variance swap rates started at relatively
low levels but experienced a spike during the 1997 Asian crisis, and another even
larger spike during the hedge fund crisis in late 1998. The series witnessed another

FIGURE 1

Time Series and Term Structure of the Variance Swap Rates

Graph A of Figure 1 plots the time series of the variance swap rates in volatility percentage points at 3 selected times to
maturity: 2 months (solid line), 6 months (dashed line), and 24 months (dotted line). Graph B plots representative variance
swap rate term structures at different dates.

Graph A. Variance Swap Time Series Graph B. Variance Swap Term Structure
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2 spikes between 2001 and 2003, but otherwise has been declining to very low
levels. Over the course of the sample period, the variance swap rate level has
varied greatly, from 10.39% to 50.48%.

Graph B of Figure 1 plots the representative variance swap term structure
at different dates. The graph shows that the term structure of variance swap rates
can take a wide variety of shapes at different times, including upward-sloping,
downward-sloping, and hump-shaped term structures. A successful model of vari-
ance risk dynamics must capture not only the large variation in the volatility lev-
els, but also the different shapes of the term structure.

Table 1 reports the summary statistics of the variance swap rates across
different maturities. The mean variance swap rates increase with maturity from
20.804% at 2-month maturity to 22.866% at 2-year maturity, thus generating
an upward-sloping mean term structure. The standard deviation estimates de-
cline as maturity increases. The variance swap rates show positive skewness but
mild kurtosis. The weekly autocorrelation estimates are high and increasing with
swap maturities. According to the theoretical analysis in the previous section, the
upward-sloping mean term structure is evidence for nonzero market price of vari-
ance risk, the downward-sloping standard deviation term structure is evidence for
mean reversion in the variance rate dynamics, and the upward-sloping autocorre-
lation term structure points to the existence of multiple variance risk factors.

TABLE 1

Summary Statistics of Variance Swap Rates

Entries report the mean, standard deviation (Std), skewness (Skew), excess kurtosis (Kurt), and weekly autocorrelation
(Auto) of the variance swap rate quotes (in volatility percentage points) on the S&P 500 index at different maturities. Data
are weekly (every Wednesday) from January 10, 1996 to March 30, 2007 (586 observations for each series).

Maturity Mean Std Skew Kurt Auto

2 20.804 6.779 0.787 0.794 0.945
3 20.892 6.495 0.716 0.672 0.961
6 21.489 6.301 0.745 0.863 0.972

12 22.258 6.061 0.607 0.164 0.979
24 22.866 5.909 0.556 –0.218 0.983

B. Estimation Methodology

To estimate the variance risk dynamics, we cast the model into a state-space
form and extract the variance risk factors (vt and mt) from the observed variance
swap rates using the classic Kalman (1960) filter. We build the state propagation
equation based on the statistical dynamics of the variance rates. Under the 2-factor
model, we set Xt=[vt,mt]

� and construct the state propagation equation based on
the Euler approximation of the statistical dynamics in equation (17),

Xt = A + ΦXt−1 +Σ(Xt−1)
√
Δtεt,(19)

with ε denoting a 2-dimensional independent and identically distributed (i.i.d.)
standard normal innovation vector,
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A = (I − Φ) θP, Φ = e−κ
PΔt,

θP =

[
θPv

θPm

]
, κP =

[
κPv −κv

0 κPm

]
,

Σ(Xt−1) =

[
σv
√

vt−1 0
0 σm

√
mt−1

]
,

and Δt = 7/365 being the weekly time interval of the discretization. The
1-dimensional state propagation equation for the 1-factor model is defined analo-
gously.

We construct the measurement equation based on the observed variance swap
rates:

yt = VSt(T,Xt) + et, T − t = 2, 3, 6, 12, 24 months,(20)

where yt denotes the observed variance swap series, VSt(T,Xt) denotes their cor-
responding model values as a function of the variance risk factors Xt, and et

denotes the measurement error. We assume that the measurement error is inde-
pendent of the state vector and that the measurement error on each of the 5 series
is mutually independent but with distinct variance.

Since the state propagation equation is Gaussian linear and the measurement
equation is linear in the state vector, the Kalman filter provides efficient forecasts
and updates on the state vector and the observed variance swap rates. We build
the likelihood on the variance swap rates based on the forecasting errors from
the Kalman filter. Specifically, let (yt,Qt) denote the time-(t − 1) Kalman filter
forecasts on the conditional mean and conditional variance of the variance swap
rates at time t; then the time-(t − 1) conditional log likelihood on the variance
swap rates at time t is

lt−1(yt, Θ) = −1
2

[
log
∣∣Qt

∣∣ + ((yt − yt)
� (Qt

)−1
(yt − yt)

)]
,(21)

where Θ denotes the set of model parameters.
Furthermore, given the variance risk factors (Xt) extracted from the Kalman

filter, we can predict the annualized realized variance based on the statistical dy-
namics of the risk factors,

EPt [RVt,T ] =
1
τ

[(
B(τ)P

)�
Xt + C(τ)P

]
,(22)

where the coefficients are analogous to those defined in Proposition 2,

B (τ)
P
=
(

I − e−(κ
P)�τ
)((
κP
)�)−1

bv,(23)

C (τ)P =
(
cv + b�v θ

P
)
τ −
(
B (τ)

P
)�
θP.

Under the 2-factor model, we have bv = [1, 0]� and cv = 0. Under the 1-factor
model, we have bv = 1, cv = 0, θP = θPv , and κP = κPv .

Given the variance forecasts, we build the likelihood function on the re-
alized variances assuming that the forecasting errors on the realized variance,
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eRV
t+D = RVt,t+D − EPt [RVt,t+D] with D= 7, 30, 60, 90, 120, 150 days, are normally

distributed with constant covariance matrix QRV. Thus, the time-t conditional log
likelihood on the realized variance becomes

lt(e
RV
t+D, Θ) = −1

2

[
log |QRV| +

(
eRV

t+D

)�
(QRV)

−1 (eRV
t+D

)]
.(24)

For estimation, we assume that the forecasting errors on variance swaps and re-
alized variances are independent but with distinct variance. Thus, the aggregate
log likelihood becomes the summation of the log likelihood values on the 2 sets
of data series. We numerically maximize the aggregate log likelihood value to
estimate the model parameters.

C. Model Performance

Table 2 reports the summary statistics of the pricing errors, defined as the dif-
ference between the variance swap quotes and the model-implied values, both in
volatility percentage points. We report the mean error (Mean), root mean squared
error (RMSE), weekly autocorrelation (Auto), and maximum absolute pricing er-
ror (Max). The last column (R2) in each panel reports the explained variation,
defined as 1 minus the ratio of the pricing error variance to the variance of the
original swap series. The last row of Table 2 reports the maximized log likelihood
values.

TABLE 2

Summary Statistics of the Pricing Errors on the Variance Swap Rates

Entries report the summary statistics of the model pricing errors on the variance swap rates, including the sample average
(Mean), root mean squared error (RMSE), weekly autocorrelation (Auto), maximum absolute error (Max), and explained
percentage variation (R 2), defined as 1 minus the variance of the pricing error to the variance of the original swap rate
quotes. The pricing errors are defined as the difference between the variance swap rate quotes and the corresponding
model-implied values, both in volatility percentage points. The last row reports the maximized log likelihood values for the
2 models.

Panel A. One-Factor Panel B. Two-Factor
Variance Risk Model Variance Risk Model

Maturity Mean RMSE Auto Max R2 Mean RMSE Auto Max R2

2 –0.15 1.77 0.82 7.86 93.19 0.27 0.80 0.62 4.20 98.77
3 –0.20 1.13 0.89 4.49 97.05 –0.00 0.00 0.35 0.01 100.00
6 0.00 0.00 0.44 0.00 100.00 –0.09 0.40 0.75 2.59 99.61

12 0.04 1.08 0.90 3.88 96.82 0.00 0.00 0.18 0.00 100.00
24 –0.60 1.77 0.95 5.05 92.01 –0.05 0.49 0.68 3.39 99.32

Average –0.18 1.15 0.80 4.25 95.81 0.03 0.34 0.52 2.04 99.54

Likelihood –5,793.4 –3,318.4

The 1-factor model fits the 6-month variance swap to near perfection, but
the pricing errors increase at other maturities. The performance of the 2-factor
model is more uniform across different maturities. The explained variations range
from 98.77% to 100.00%. The root mean squared pricing errors range from prac-
tically 0 to 0.8 volatility percentage points, no larger than the average bid-ask
spreads for the over-the-counter variance swap rate quotes.1 The 2-factor model

1The bid-ask spreads on variance swap rate quotes from major broker dealers average around half
to 1 volatility percentage point for the S&P 500 index.
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also performs significantly better than the 1-factor model in terms of the log like-
lihood values. A formal likelihood ratio test rejects the 1-factor model over any
reasonable confidence level.

D. Variance Risk Dynamics and the Term Structure of Variance Swap
Rates

Exploiting the information in the time series and term structure of variance
swap rates and the realized variance, we can accurately identify the variance risk
dynamics under both the statistical and the risk-neutral measures. Table 3 reports
the parameter estimates and the absolute magnitudes of the t-statistics in parenthe-
ses. Focusing on the 2-factor model specification, we observe that the risk-neutral
mean-reversion speed for the instantaneous variance rate (κv = 4.373) is much
higher than that for the central tendency risk factor (κm=0.1022). To gain more in-
tuition, we define the half-life H of a first-order autoregressive process as the num-
ber of weeks for the autocorrelation of the process to decay to half of its weekly
autocorrelation level, H = ln(φ/2)/ ln(φ), with φ = exp(−κΔt), Δt = 7/365
denoting the weekly autocorrelation of a series. Under the risk-neutral measure,
the mean-reversion speed estimates imply a half-life of less than 10 weeks for
the instantaneous variance rate vt, but almost 7 years for the central tendency
factor mt.

TABLE 3

Parameter Estimates of Affine Stochastic Variance Models

Entries report the maximum likelihood parameter estimates and the absolute magnitudes of t-values (in parentheses) of the
1-factor (Panel A of Table 3) and the 2-factor (Panel B) affine stochastic variance models. The estimation employs weekly
data on variance swap rates at maturities of 2, 3, 6, 12, and 24 months and ex post realized variances at maturities of 7,
30, 60, 90, and 150 days. The sample is from January 10, 1996 to March 28, 2007 (586 observations for each series).

Xt κ θ σ γ κP θP

Panel A. One-Factor Variance Risk Model

vt 0.1547 0.1220 0.2550 –17.0141 4.4929 0.0042
(13.81) (32.55) (47.47) (43.06) (71.42) (21.52)

Panel B. Two-Factor Variance Risk Model

vt 4.3730 — 0.4221 –16.3746 11.2851 0.0158
(38.72) (44.10) (37.70) (51.96) (3.71)

mt 0.1022 0.0838 0.1581 –0.6844 0.2104 0.0407
(9.30) (24.31) (47.64) (1.84) (3.40) (3.68)

The different risk-neutral persistence dictates that the 2 risk factors have dif-
ferent impacts across the term structure of the variance swap rates. We can con-
vert the risk-neutral persistence estimates into factor loading coefficients φv(τ)
and φm(τ) as in equation (14):

φv(τ) =
1− e−κvτ

κvτ
,(25)

φm(τ) =
1 +

κm

κv − κm
e−κvτ − κv

κv − κm
e−κmτ

κmτ
,
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with which the variance swap rates of different maturities are linked to the 2 risk
factors:

VSt(T) = φv(τ)vt + φm(τ)mt + (1− φv(τ)− φm(τ)) θm.(26)

The loading coefficients measure the contemporaneous responses of the variance
swap term structure to unit shocks in the 2 variance risk factors vt and mt. Figure 2
plots the term structure of the 2 responses in Graph A, with the solid line denoting
the response to vt and the dashed line denoting the response to mt. The dash-dotted
line captures the remaining weight on the risk-neutral mean (θm) of the variance
rate and the central tendency. The impact of the transient variance rate factor (vt) is
mainly at short maturities. Its impact declines as maturity increases. On the other
hand, the contribution of the persistent central tendency factor (mt) starts at 0 but
increases progressively as the variance swap maturity increases. The remaining
weight on the risk-neutral mean also starts at 0 and increases monotonically with
increasing maturity. This increasing weight on a constant is responsible in gener-
ating a downward-sloping term structure on the standard deviation of the variance
swap rate, observed in Table 1.

FIGURE 2

Factor Loadings and the Mean Term Structure of Variance Swap Rates

Graph A of Figure 2 plots the contemporaneous response of the variance swap term structure to unit shocks on the
instantaneous variance rate vt (solid line) and the central tendency factor mt (dashed line). The dash-dotted line represents
the remaining loading on the common unconditional risk-neutral mean (θm) of the variance rate and the central tendency.
Graph B plots the mean term structure of the variance swap rate in volatility percentage points. The circles are sample
averages of the data, and the solid line represents values computed from the estimated 2-factor variance risk model.

Graph A. Factor Loading Graph B. Mean Variance Swap Term Structure

Graph B of Figure 2 plots the mean variance swap term structure. The 5
circles represent the sample averages of the 5 data series, and the solid lines are
computed from the estimated 2-factor variance risk model. The upward-sloping
mean term structure is consistent with the negative market price estimates (γ) on
the variance risks in Table 3. The market price of the instantaneous variance rate is
strongly negative; the market price of the central tendency factor is also negative,
but with smaller absolute magnitude. The negative market prices on the 2 risk
factors make the statistical mean-reversion speeds (κP) larger and the statistical
long-run means (θP) lower than their risk-neutral counterparts. The 3 long-run
means show the following ranking: θPv < θ

P
m < θm. The statistical mean of the
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variance rate is lower than the statistical mean of the central tendency factor. Both
are lower than their common risk-neutral mean θm.

Taking unconditional expectations on both sides of equation (13) under the
statistical measure P, we obtain the mean term structure of variance swap rates as

EP[VSt(T)] = φv(τ)θ
P
v + φm(τ)θ

P
m + (1− φv(τ)− φm(τ)) θm,(27)

which is a weighted average of the statistical mean of the instantaneous variance
rate θPv , the statistical mean of the central tendency factor θPm, and the common
risk-neutral mean of the variance rate and the central tendency θm. The factor
loading in Graph A of Figure 2 suggests that θPv has the highest weighting at
short maturities, whereas both θPm and θm have increasing weights as the swap
maturity increases. The factor loadings and the ranking of the 3 long-run mean
values generate the upward-sloping mean term structure shown in Graph B of
Figure 2.

The 2-factor variance risk structure also generates different statistical per-
sistence for swap rates at different maturities. Table 3 shows that the statistical
mean-reversion speed for the instantaneous variance rate is much larger than that
for the central tendency factor. The statistical half-life of the instantaneous vari-
ance rate is just about 4 weeks, whereas the statistical half-life of the central ten-
dency factor is over 3 years. The increasing weight on the central tendency factor
for longer maturity swaps suggests that the variance swap rate becomes increas-
ingly persistent as the swap maturity increases. This observation is consistent with
the weekly autocorrelation estimates reported in Table 1.

E. Model Stability and Out-of-Sample Performance

To gauge the stability of the 2-factor variance risk model and its out-of-
sample performance, we divide the data into 2 subsample periods. The 1st sub-
sample is from January 10, 1996 to June 27, 2001, 286 weekly observations for
each series. The 2nd subsample is the remaining sample period from July 4, 2001
to March 28, 2007, 300 weekly observations for each series. Each sample contains
about 5.5 years of data.

We repeat the model estimation on the 2 subsamples. Table 4 reports the
subsample model parameter estimates. The estimates are largely in line with the
whole-sample estimates. Comparing the parameter estimates during the 2 subsam-
ples, we observe that the risk-neutral mean-reversion speed for the instantaneous
variance rate is smaller during the 1st subsample than during the 2nd subsam-
ple. The opposite is true for the central tendency factor, as the estimate for its
mean-reversion speed is no longer significantly different from 0 during the 2nd
subsample. The different estimates suggest that the roles of the 2 risk factors be-
come more separated during the 2nd subsample. The impacts of the instantaneous
variance rate are mainly at short maturities and die out quickly as the maturity
increases. The impacts of the central tendency factor become even more persis-
tent across the variance swap term structure. On the other hand, the market price
estimates are relatively stable over the 2 sample periods.

To gauge the out-of-sample pricing performance of the 2-factor variance
risk model, we use the parameters estimated from the 1st subsample to price
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TABLE 4

Subsample Parameter Estimates of the 2-Factor Variance Risk Model

Entries report the maximum likelihood parameter estimates and the absolute magnitudes of t-values (in parentheses) of the
2-factor variance risk model over 2 subsample periods. The 1st subsample (Panel A of Table 4) is from January 10, 1996
to June 27, 2001, 286 weekly observation for each series. The 2nd subsample (Panel B) is from July 4, 2001 to March 28,
2007, 300 weekly observations for each series. The estimation employs weekly data on variance swap rates at maturities
of 2, 3, 6, 12, and 24 months and ex post realized variances at maturities of 7, 30, 60, 90, and 150 days.

Xt κ θ σ γ κP θP

Panel A. Subsample Period: 1996–2001

vt 3.3945 — 0.4635 –16.2472 10.9250 0.0153
(16.53) (27.27) (25.12) (29.84) (3.88)

mt 0.1857 0.0715 0.2086 –0.4029 0.2697 0.0492
(7.61) (15.14) (26.98) (1.11) (3.17) (3.84)

Panel B. Subsample Period: 2001–2007

vt 5.3789 — 0.3476 –15.6418 10.8160 0.0239
(33.83) (27.86) (19.44) (33.91) (0.46)

mt 0.0010 4.2187 0.1058 –0.8444 0.0903 0.0480
(0.06) (0.06) (24.42) (0.46) (0.46) (0.46)

the variance swap rates during the 2nd subsample. Table 5 reports the summary
statistics on the out-of-sample pricing errors. Compared with the in-sample pric-
ing error statistics in Table 2, the out-of-sample errors are not much different.
The average explained variation is 99.49% compared to the in-sample estimate of
99.54%. These statistics show that the model generates stable performance over
time.

TABLE 5

Out-of-Sample Pricing Performance of the 2-Factor Variance Risk Model

We estimate the model during the 1st subsample from January 10, 1996 to June 27, 2001, and use the model parameters to
price variance swap rates out of sample from July 4, 2001 to March 28, 2007. The pricing errors are defined as the difference
between the variance swap rate quotes and the corresponding model-implied values, both in volatility percentage points.
Entries report the summary statistics of the model pricing errors on the variance swap rates, including the sample average
(Mean), root mean squared error (RMSE), weekly autocorrelation (Auto), maximum absolute error (Max), and explained
percentage variation (R 2), defined as 1 minus the variance of the pricing error to the variance of the original swap rate
quotes.

Maturity Mean RMSE Auto Max R 2

2 0.20 0.64 0.56 2.68 99.23
3 –0.00 0.00 0.18 0.00 100.00
6 –0.03 0.20 0.73 0.65 99.87

12 0.00 0.00 0.49 0.00 100.00
24 –0.21 0.60 0.89 2.39 98.33

Average –0.01 0.29 0.57 1.14 99.49

V. Optimal Variance Swap Investment Decisions

The availability of variance swap contracts makes it convenient for investors
to either hedge away variance risk or achieve additional exposures in it and receive
variance risk premium. How does this availability alter an investor’s asset al-
location decision? To answer this question, we study the optimal asset alloca-
tion problem for an investor who has access to the money market account, the
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stock index, and a series of return variance swaps on the index across different
maturities.

We assume that investment in the money market generates a constant risk-
free interest rate r, and that the stock index evolves under the statistical measure
P as

dSt/St =
(
r + γSvt

)
dt +
√

vtdBS
t ,(28)

where BS
t denotes a Brownian motion that measures the stock index return risk

and γSvt denotes the instantaneous risk premium on the index return, which we
assume is proportional to the instantaneous variance rate level.

We analyze the allocation problem under the 2-factor variance risk specifi-
cation that we have estimated in the previous section. Under a 2-factor variance
risk structure, the model values of the variance swap rates across all maturities
are determined by 2 sources of variations. An investor can choose any 2 variance
swap contracts of distinct maturities (T1 and T2) to span the 2 sources of variance
risk. The statistical evolution of the value of a variance swap contract with expiry
date T , VSt(T), is given by

dVSt(T) = (φv(T − t)σvγ
vvt + φm(T − t)σmγ

mmt) dt(29)

+ φv(T − t)σv
√

vtdBv
t + φm(T − t)σm

√
mtdBm

t .

To capture the well-known leverage effect, we decompose the Brownian mo-
tion in the instantaneous variance rate dynamics into 2 components,

dBv
t = ρdBS

t +
√

1− ρ2dBz
t ,(30)

where ρ measures the instantaneous correlation between the return risk and the
variance risk and Bz

t denotes the independent component of the variance risk.
Assuming that the market price of the independent variance risk is also propor-
tional to the square root of the instantaneous variance rate level, γ(Bz

t ) = γ
z√vt,

we can decompose the instantaneous total variance risk premium into 2 compo-
nents, one from the return risk and the other from the independent variance risk,
γvvt = ργ

Svt +
√

1− ρ2γzvt.
We assume that an investor allocates her initial wealth Wt at time t among

the money market account, the stock index St, and 2 variance swap contracts of
distinct expiry dates T1 and T2. Let WS

t and WB
t denote the amount of money

invested in the stock index and the money market, respectively, and let N1 and
N2 denote the dollar notional amount invested in the 2 variance swap contracts,
respectively. The investor’s budget constraint becomes

Wt = WS
t + WB

t + N1 (VSt(T)− K1) + N2 (VSt(T2)− K2) ,(31)

where K1 and K2 are the delivery prices of the 2 variance swap contracts. A neg-
ative notional amount implies a short position on the variance swap contract. We
assume that at the time of decision making t, we initiate new variance swap con-
tracts with the delivery price set to the prevailing variance swap rate: K1=VSt(T1)
and K2 = VSt(T2). In this case, the variance swap contracts have 0 initial values,
and we have WB

t = Wt − WS
t . In reality, margin requirements and leverage con-

straints can limit the actual notional amount of variance swap contracts that an
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investor can sign on. We do not directly consider this and other financial market
constraints in our optimization.

If we use share prices and wealth fractions instead of dollar amounts, we can
write the wealth dynamics as

dWt

Wt
= wt

dSt

St
+ (1− wt) rdt + n1tdVSt(T1) + n2tdVSt(T2),(32)

where wt denotes the fraction of wealth invested in the stock index and (n1t, n2t)
denote the fractions of wealth invested as notional invested in the 2 variance swap
contracts.

The investor chooses the allocation weights to maximize her utility of wealth
WT at the terminal time T ≤ min(T1,T2). Assuming CRRA utility with relative
risk aversion coefficient η > 0, we can write the indirect utility function as

J(t,W, v) = sup
(wt,n1t,n2t)

E

(
W1−η
T

1− η

∣∣∣∣∣Wt =W, vt = v

)
, η ≠ 1,(33)

subject to the budget constraint in equation (32).
We can solve the indirect utility function J and the optimal allocation weights

in analytical forms:

Proposition 3. Given the optimization problem in equation (33) under the bud-
get constraint in equation (32), the stock index dynamics in equation (28), and
the variance swap dynamics in equation (29), the indirect utility function has the
analytical representation

J(t,W, v) =
W1−η

t

1− η exp (hv(u)vt + hm(u)mt + k(u)) ,(34)

with u ≡ T − t denoting the investment horizon and the coefficients solving the
following ordinary differential equations:

h′v(u) =
1

2η
σ2

v hv(u)
2 +

(
1− η
η
σvγ

v − κPv
)

hv(u)(35)

+
1− η

2η

(
(γS)2 + (γz)2

)
,

h′m(u) =
1

2η
σ2

mhm(u)
2 + κvhv(u) +

(
1− η
η
σmγ

m − κPm
)

hm(u)(36)

+
1− η

2η
(γm)2,

k′(u) = r(1− η) + θPmκ
P
mhm(u),(37)

starting at hv(0) = hm(0) = k(0) = 0. The optimal allocations to the stock index
(wt) and the 2 variance swap contracts (n1t, n2t) are

wt =
1
η

(
γS − ρ√

1− ρ2
γz

)
,(38)
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n1t =
1
ηD

[(
γz

σv

√
1− ρ2

+ hv(u)

)
φm(T2 − t)(39)

−
(
γm

σm
+ hm(u)

)
φv(T2 − t)

]
,

n2t =
1
ηD

[
−
(

γz

σv

√
1− ρ2

+ hv(u)

)
φm(T1 − t)(40)

+

(
γm

σm
+ hm(u)

)
φv(T1 − t)

]
,

with D= φv(T1 − t)φm(T2 − t)− φv(T2 − t)φm(T1 − t).

For comparison, we also derive the optimal allocation decisions when the in-
vestor can only invest in the stock index alone or the 2 variance swap contracts alone:

Proposition 4. If the investor can only invest in the money market account and
the stock index, the optimal fraction of wealth invested in the stock index is

wt =
1
η

(
γS + ρσvh(u)

)
,(41)

where the intertemporal hedging demand coefficient h(u) solves

h′ (u) =
ρ2(1− η) + η

2η
σ2

v h (u)2 +

(
1− η
η
σvργ

S − κPv
)

hv (u)(42)

+
1− η

2η
(γS)2,

starting at h(0) = 0. If the investor can only invest in the money market account
and the variance swap contract, the optimal fractions of wealth invested as
notional in the 2 variance swap contracts are

n1t =
1
ηD

[(
γv

σv
+ hv(u)

)
φm(T2 − t)(43)

−
(
γm

σm
+ hm(u)

)
φv(T2 − t)

]
,

n2t =
1
ηD

[
−
(
γv

σv
+ hv(u)

)
φm(T1 − t)(44)

+

(
γm

σm
+ hm(u)

)
φv(T1 − t)

]
,

with D= φv(T1 − t)φm(T2 − t)− φv(T2 − t)φm(T1 − t). The intertemporal hedg-
ing demand coefficients hv(u) and hm(u) solve the following ordinary differential
equations:

h′v(u) =
1

2η
σ2

v hv(u)
2 +

(
1− η
η
σvγ

v − κPv
)

hv(u)(45)

+
1− η

2η
(γv)2,
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h′m(u) =
1

2η
σ2

mhm(u)
2 + κvhv(u) +

(
1− η
η
σmγ

m − κPm
)

hm(u)(46)

+
1− η

2η
(γm)2,

starting at hv(0) = hm(0) = 0.

As shown in Merton (1971), the optimal allocation to risky assets includes
2 components: a myopic component that is proportional to the mean excess re-
turn, and an intertemporal hedging demand that is proportional to the covariance
between the risky asset returns and the state variables that govern the stochastic
investment opportunity, both scaled by the covariance matrix of the asset return.
In our application, the stochastic variance risk represents the stochastic investment
opportunity, which induces an intertemporal hedging demand when we invest in
either the stock index alone as in equation (41) or the variance swap contracts
alone as in equations (43) and (44).

Interestingly, when we invest in both the stock index and the 2 variance swap
contracts to span both the return risk and the variance risks, the optimal investment
in the stock index in equation (38) no longer includes an intertemporal hedging
demand. Stochastic investment opportunities ask for intertemporal hedging de-
mand; yet an appropriately designed derivative contract can be used to span the
risk inherent in the stochastic investment opportunities and to eliminate the need
for intertemporal hedging with the primary security.

Inspecting the optimal investment decisions in the variance swap contracts in
equations (39) and (40), we observe that at short investment horizons, the optimal
allocations in the 2 variance swap contracts depend on the market prices of the
independent variance rate risk (γz) and the central tendency risk (γm), as well as
the exposures of the 2 contracts to the 2 sources of risk, φv(Ti− t) and φm(Ti− t),
with i = 1, 2. If we assume T1 < T2 such that the 1st contract is a short-term
variance swap contract and the 2nd is a long-term contract, we have φv(T1 − t) >
φv(T2− t) and φm(T1− t) < φm(T2− t). The common denominator D is a positive
quantity. Thus, investment in the long-term contract depends more on the market
price of the central tendency factor, and investment in the short-term contract
depends more on the market price of the independent variance rate risk.

When the 2nd variance swap contract has a sufficiently long maturity, its
loading on the central tendency factor dominates its loading on the instantaneous
variance rate, φm(T2 − t) � φv(T2 − t). In this case, investment in the 1st vari-
ance swap contract is mainly determined by the market price of the independent
variance rate risk γz. Analogously, when the 1st variance swap contract has a suf-
ficiently short maturity, its loading on the instantaneous variance rate dominates
its loading on the central tendency factor, φv(T1 − t) � φm(T1 − t). In this case,
investment in the 2nd variance swap contract is mainly determined by the market
price of the central tendency risk γm. Negative market prices on the 2 sources of
risks lead to short positions in both variance swap contracts.

When the maturity separation between the 2 contracts is moderate, optimal
allocations to the 2 variance swap contracts also depend on the relative magnitude
of the 2 market prices γz and γm. For example, our estimate for γz is much larger
than our estimate for γm in absolute magnitude. In this case, the γz term can
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dominate the investment decision, and the optimal allocations can include short
positions in the short-term variance swap contract, but long positions in the long-
term variance swap contract.

The intertemporal hedging demands for the 2 variance swap contracts are
determined by the 2 coefficients hv(u) and hm(u) for the 2 variance risk exposures,
which start at 0 for a myopic investor (u = 0). Since the constant terms in the 2
ordinary differential equations (35) and (36) are negative, the hedging demand
coefficients become negative as the investment horizon increases.

VI. Empirical Analysis of Variance Swap Investments

In this section, we combine the theoretical results on optimal allocations in
Section V with the parameter estimates on the variance risk dynamics in Section
IV to analyze the optimal allocations to the stock index and the variance swap
contracts. We also perform historical analysis on the investment performance of
different investment strategies.

A. Optimal Allocation Weights

Section IV estimated the variance risk dynamics during different subsample
periods. To compute the optimal allocation weights, we also need to estimate the
index return dynamics. Through an Euler approximation of the dynamics, we have

ERt+1 =

(
γS − 1

2

)
vtΔt +

√
vtΔtεSt+1,(47)

vt+1 =
(
κvmt − κPv vt

)
Δt + σv

√
vtΔtεvt+1,

mt+1 = κPm
(
θPm − mt

)
Δt + σm

√
mtΔtεmt+1,

where ERt+1 denotes the weekly log excess return on the S&P 500 index, Δt =
7/365 denotes the weekly sampling interval, and (εSt+1, ε

v
t+1, ε

m
t+1) denotes 3 stan-

dard normal variables with cov(εSt+1, ε
v
t+1) = ρ and with εmt+1 independent of the

other 2 normal variables. We obtain the total returns on the index from Bloomberg
and compute the excess return against the corresponding 1-week U.S. dollar
London Interbank Offered Rate (LIBOR) interest rate. Holding fixed the previous
estimates on the parameters that govern the variance dynamics, we can estimate
γS and ρ with a simple maximum likelihood method by regarding the extracted
time series on (vt,mt) as observables. The conditional likelihood for each set of
observation is given by

lt(yt+1, Θ) = −1
2

[
ln |Σt| + (yt+1 − μt)

�(Σt)
−1(yt+1 − μt)

]
,(48)

with

yt+1 =

⎡
⎣ ERt+1

vt+1

mt+1

⎤
⎦ , Σt =

⎡
⎣ vt vtσvρ 0

vtσvρ σ2
v vt 0

0 0 σ2
mmt

⎤
⎦Δt,(49)

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022109010000463
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:28:08, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022109010000463
https:/www.cambridge.org/core


Egloff, Leippold, and Wu 1301

μt =

⎡
⎣
(
γS − 1

2

)
vt(

κvmt − κPv vt
)

κPm
(
θPm − mt

)
⎤
⎦Δt.

Table 6 reports the estimates on γS and ρ during different sample periods. For
the full sample period, the market price of return risk (γS) is estimated at 1.6886
and the correlation (ρ) is estimated at−0.7463. From the estimates, we also com-
pute the market price of the independent variance risk γz = (γv − ργS)/

√
1− ρ2

and report the value in the last row. For the full sample period, the market price
of the independent variance risk is strongly negative at −22.7105. When we rees-
timate the dynamics for 2 subsamples, we obtain a higher market price of return
risk estimate but a slightly lower correlation estimate for the 1st subsample than
for the 2nd subsample. Accordingly, the market price of the independent variance
risk becomes larger during the 2nd subsample period.

TABLE 6

Market Price of Return Risk and Correlation

Entries report the maximum likelihood parameter estimates and the absolute magnitudes of t-values (in parentheses) of
the market price of return risk (γS) and the instantaneous correlation (ρ) between the return risk and the instantaneous
variance rate risk. The estimation is performed on weekly returns, with the extracted variance risk factors (vt,mt) treated
as observables. We perform the estimation at both 2 subsamples and the full sample. The 1st subsample is from January
10, 1996 to June 27, 2001, 286 weekly observation for each series. The 2nd subsample is from July 4, 2001 to March 28,
2007, 300 weekly observations for each series. The last row reports the market price of independent risk

γ
z
= (γ

v − ργS
)/
√

1− ρ2,

where the corresponding estimates for γv are from Tables 3 and 4.

Parameters 1996–2001 2001–2007 1996–2007

γS 2.1386 0.8125 1.6886
(0.99) (1.33) (1.68)

ρ –0.7339 –0.7924 –0.7463
(11.29) (0.27) (14.11)

γz –21.6082 –24.5863 –22.7105

The market price of variance risk has been found to be highly negative in sev-
eral studies (e.g., Bakshi and Kapadia (2003a), Bondarenko (2004), and Carr and
Wu (2009)). A new stream of literature tries to rationalize the magnitude of the
risk premium based on biased beliefs and peso problems (Bondarenko (2003)),
path-dependent preferences (Bates (2008)), ambiguity aversion (Liu, Pan, and
Wang (2005)), net-buying and demand pressure (Bollen and Whaley (2004),
Gârleanu, Pedersen, and Poteshman (2009)), short-selling constraints (Isaenko
(2007)), and margin requirements (Santa-Clara and Saretto (2009)). In this pa-
per, we do not attempt to rationalize the magnitude of the variance risk premium.
Instead, we study how an investor alters her asset allocation decision to benefit
from the risk premium by including variance swap contracts in her investment
portfolios.

Given the parameter estimates, we compute the allocation weights to the
stock index and the variance swap contracts. The key determinants of the alloca-
tion weights are the market prices of the 3 sources of risk: the return risk (γS), the
independent variance risk (γz), and the central tendency risk (γm). Intuitively, the
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market price of the return risk determines the position in the stock index, the mar-
ket price of the independent variance risk determines the position in the short-term
variance swap contract, and the market price of the central tendency determines
the allocation to the long-term variance swap contract. Through cross correlations
in the risky assets, the market price of variance risk also enters the allocation in
the stock index, and the market prices on the 2 sources of variance risks both enter
the investments in the 2 variance swap contracts, the relative degree of which is
determined by the maturity differences.

To study how the allocation weights vary with the market price estimates,
we fix an investment horizon of 2 months, and we take the full-sample parameter
estimates in Tables 3 and 6 as our benchmarks. We vary the market prices of the 3
sources of risks (γS, γz, and γm) around their respective estimates and investigate
how the allocation weights change with the varying market prices. In our calcula-
tion, we choose a high relative risk aversion (η=200) to counter the high negative
market price of variance risk so that the investments are not overly levered.

Figure 3 plots the optimal portfolio weights on the stock index (w) as a func-
tion of the market prices of return risk (γS) and independent variance risk (γz).
Graph A plots the optimal allocation in the absence of variance swap contracts
in the decision. In this case, the fraction of wealth invested in the stock index
is mainly determined by the market price of return risk. The positive market price
of return risk (γS) generates long positions in the stock index. The fraction of
wealth invested in the stock index increases as the market price of return risk
γS increases. The market price of variance risk affects the intertemporal hedging
demand through its impact on κPv =κv− (ργS +

√
1− ρ2γz)σv. The negative mar-

ket price of variance risk makes the hedging demand more negative and hence
reduces the investment in the stock index. Nevertheless, as Chacko and Viceira
(2005) have observed, the intertemporal hedging demand on the stock index in-
duced by stochastic volatility is small. Therefore, when the stock index is the only
risky asset in the investment decision, its allocation is mainly determined by the
market price of return risk.

FIGURE 3

Optimal Investment in the Stock Index With and Without Variance Swap Contracts

Graphs A and B of Figure 3 plot the optimal fractions of wealth invested in the stock index (w) as the market prices of
return risk (γS) and the market price of variance risk (γz) vary. Graph A plots the optimal investment without the presence
of variance swap contracts. Graph B plots the investment with the presence of 2 variance swap contracts at 2-month and
2-year maturities.

Graph A. Without Variance Swaps Graph B. With Variance Swaps
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The dependence structure changes dramatically when the variance swap con-
tracts become available to the investor. Graph B of Figure 3 plots the optimal
fraction of wealth invested in the stock index when 2 variance swap contracts (at
2-month and 2-year maturities) are also part of the investment portfolio. In this
case, both the market price of return risk (γS) and the market price of variance
risk (γz) enter the investment decision in the stock index. With 0 market price
on the variance risk, it remains optimal to take long positions in the stock index
and to increase the long position with increasing market price of the return risk.
However, our estimate of the market price of variance risk is strongly negative.
The strongly negative market price of variance risk makes it optimal to take short
positions in the stock index. The short position in the stock index increases as the
market price of variance risk γz becomes more negative.

Figure 4 shows the dependence of the optimal variance swap investments on
the market prices of the 2 sources of variance risks. Signing variance swap con-
tracts has 0 initiation costs. We measure the investment by the notional value as
fractions of the total wealth (n). Under the 2-factor variance risk model, any 2
variance swap contracts of different maturities can span the 2 sources of variance
risks. We choose the 2 variance swap contracts at 2-month and 2-year maturities
in Graph A, and at 6-month and 1-year maturities in Graph B. Since the market
price estimate of the instantaneous variance risk (γz) is much more negative at
around −20 than the market price estimate of the central tendency factor (γm) at
less than −1, it is generally optimal to take short positions in the short-term vari-
ance swap contract and long positions in the long-term variance swap contract.
Hence, in Figure 4, the surface on top in each graph represents the optimal al-
location weights to the long-term variance swap contract, and the surface below
represents the optimal allocation weights to the short-term variance swap con-
tract. The distance between the 2 surfaces increases as the difference between
the market prices of the 2 sources of risks increases. When the market price of the

FIGURE 4

Optimal Investment in Variance Swap Contracts

Graphs A and B of Figure 4 plot the optimal investment in variance swap contracts (notional in fractions of total wealth,
n) as a function of the market price of the instantaneous variance risk (γz) and the market price of the central tendency
risk (γm). Graph A plots the investment in 2-month and 2-year variance swap contracts. Graph B plots the investment in
6-month and 1-year variance swap contracts.

Graph A. T1 = 2 Months, T2 = 2 Years Graph B. T1 = 6 Months, T2 = 1 Year

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022109010000463
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:28:08, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022109010000463
https:/www.cambridge.org/core


1304 Journal of Financial and Quantitative Analysis

instantaneous variance risk becomes less negative than the market price of the
central tendency factor, the 2 surfaces start to cross with each other, and it be-
comes optimal to take short positions in the long-term contract and long positions
in the short-term contract. With the market prices fixed, comparing the 2 graphs
shows that the maturity differences between the 2 variance swap contracts also af-
fect the distance between the 2 surfaces. The distance is larger when the maturity
difference between the 2 contracts is smaller. Therefore, in practice, it is often
appropriate to choose the 2 maturities to be wide apart to reduce the absolute
positions (and hence leverage) in the investments.

Compared with the traditional stock-only portfolio, the optimal allocation
decision in the presence of variance swap contracts reacts strongly to the highly
negative variance risk premium. The investor reaps the large variance risk pre-
mium by taking short positions in the short-term variance swap contract. To hedge
part of the variance risk, the investor goes long on the long-term variance swap
contract and short on the stock index. The long position in the long-term variance
swap contract helps to dampen the effect of persistent increases in the volatil-
ity level. Furthermore, given the large negative correlation between index returns
and return variance, a short position in the stock index serves as an additional
hedge against adverse movements in the short-term variance factor. This hedge is
particularly effective against volatility spikes during sharp market downturns.

B. Historical Investment Performance

To gauge the historical performance of different investment strategies, we
perform the following investment exercise: First, we compute the optimal port-
folio weights for 3 investment strategies using parameter estimates from the first
half of the sample from January 10, 1996 to June 27, 2001. The 3 strategies are

S1: Invest in the stock index and 2 variance swap contracts.
S2: Invest in 2 variance swap contracts only.
S3: Invest in the stock index only.

In all 3 strategies, we have access to the money market account to balance out
the investments. We assume that cash saved in the money market account makes
a risk-free return given by the corresponding U.S. dollar LIBOR interest rate. For
the first 2 strategies, S1 and S2, we choose the 2 variance swap contracts that have
the largest maturity differences at 2-month and 2-year maturities. As we have
shown in the previous subsection, choosing swap contracts with wider maturity
spreads lead to smaller absolute positions in both contracts.

Given the fixed model parameters, the optimal allocation weights as fractions
of the total wealth are fixed. For all 3 strategies, we choose an investment horizon
of 2 months. For the first 2 strategies that involve variance swap investments,
we use a high relative risk aversion of η = 200 to counteract the highly negative
variance risk premium. Under these conditions, the portfolio for the 1st strategy
S1 includes a short position in the stock of w=−0.1061, a short position in the 2-
month variance swap of n1 =−0.6717, and a long position in the 2-year variance
swap of n2= 0.1397. The portfolio for strategy S2 includes a short position in the
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2-month variance swap contract of n1=−0.3513 and a long position in the 2-year
variance swap contract of n2=0.0644. For the stock-index-only strategy S3, since
the market price of the return risk is relatively low, we use a lower relative risk
aversion of η = 3 to generate an allocation in the stock index at w= 0.7265. The
relative risk aversion coefficient controls the size and hence financial leverage of
the risky investment, but it has little effect on normalized performance measures
such as the Sharpe (1966) ratio.

Chacko and Viceira (2005) argue that the presence of stochastic volatility
has only a small effect on the asset allocation decision. They are correct when
the investor can only invest in the stock index. In our 3rd strategy S3 with the
stock index as the only available risky asset, the fraction of wealth invested in the
index is 0.7265, of which 0.7129 is from the myopic demand and only 0.0136
is from the intertemporal hedging demand induced by the presence of stochastic
volatility. However, the picture changes drastically when the investor has access
to variance swap contracts. In this case, the investor can use the variance swap
contracts to gain access to the large variance risk premium. Without stochastic
volatility and variance risk premium, there is no need to invest in the variance
swap contract, and the allocation to the stock index is positive given the positive
return risk premium. With stochastic volatility and highly negative variance risk
premium, it becomes optimal to take short positions in a short-term variance swap
contract and also short positions in the stock index. With access to variance swap
contracts, the presence of stochastic volatility and variance risk premium alter the
investment decision drastically.

For each strategy, we perform an investment exercise starting on January
10, 1996 with an investment horizon of 2 months. After 2 months, we liquidate
the portfolio at the available market prices, calculate the corresponding portfolio
returns, and then start a new investment. This exercise generates a nonoverlapping
time series of 2-month returns for each strategy. To make full use of the data series,
we repeat this investment exercise starting on the 8 different Wednesdays during
the first 2 months of the sample. We compare the statistics of the 8 nonoverlapping
return series generated from different starting dates.

The return calculation on the stock index and the money market account is
straightforward. The first 2 strategies S1 and S2 also include investments in 2
variance swap contracts. The 1st variance swap contract has a 2-month maturity
and hence expires at the end of each 2-month investment horizon. The profit and
loss can be calculated based on the difference between the annualized realized
variance over the 2-month horizon and the variance swap rate at the start of the
exercise. Multiplying the variance difference by the dollar notional amount in-
vested in the contract generates the dollar profit and loss,

PL1 = N1 (RVt,T1 − VSt(T1)) ,(50)

where RVt,T1 denotes the annualized realized variance during the 2-month period
[t,T1], with t being the investment time and T1 being the end of the investment
horizon. Given the fixed allocation fraction (n1) in terms of the total wealth, the
dollar notional invested at time t is N1 = n1Wt, where Wt denotes the wealth level
at time t.
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The 2nd variance swap contract has a 2-year maturity. The profit and loss at
the end of the 2-month investment horizon can be computed as

PL2 = N2 (ωRVt,T1 + (1− ω)VST1(T2)− VSt(T2)) ,(51)

where ω = (T1 − t)/(T2 − t) denotes the fraction of time passed over the original
maturity of the swap contract and VST1(T2) is the time-T1 variance swap rate that
expires at T2. In this case, the profit and loss come from 2 sources: One is the
realization of return variance over the past 2 months, the other is the new variance
swap rate at the same expiry date VST1(T2). Since the variance swap rates are
quoted at fixed times to maturity, we perform piece-wise linear total variance
interpolation on the time-T1 variance swap rate term structure to obtain the value
for VST1(T2).

For each strategy, we repeat the exercise 8 times with different starting dates
to generate 8 nonoverlapping time series of 2-month returns. We compute the
summary statistics on the excess returns for each series and report the average
statistics over the 8 time series for each strategy in Table 7. Both the mean excess
return and the standard deviations are reported in annualized percentages. For the
1st strategy S1, which includes both the stock index and variance swaps, the mean
excess return over the whole sample period averages 5.153%, the standard devi-
ation averages 3.705%, and the Newey-West (1987) serial dependence-adjusted
standard deviation averages larger at 3.886%. The annualized Sharpe (1966) ratio,
which is computed as the mean excess return over the Newey-West standard devi-
ation, averages 1.461. The excess return shows large excess kurtosis and positive
skewness.

TABLE 7

Summary Statistics of Investment Strategies

Entries report the sample averages of the mean, standard deviation (Std), skewness (Skew), excess kurtosis (Kurt), and
Newey-West (1987) serial dependence-adjusted standard deviation (Newey) of the excess returns from 3 different invest-
ment strategies. The mean and standard deviations are in annualized percentages. The last column reports the annualized
Sharpe (1966) ratio defined as the mean excess return divided by the Newey-West standard deviation. The 1st strategy
S1 invests in both the stock index and 2 variance swap contracts at 2-month and 2-year maturities, respectively. The 2nd
strategy S2 invests in the 2 variance swaps only. The 3rd strategy S3 invests in the stock index only. All strategies have an
investment horizon of 2 months. We start each strategy at 8 different Wednesdays during the first 2 months of our sample to
generate 8 time series of nonoverlapping 2-month excess returns. The statistics in Table 7 represent the average statistics
of the 8 series for each strategy. We report the full-sample statistics in Panel A, the in-sample statistics from January 1996
to June 2001 in Panel B, and the out-of-sample statistics for the remaining sample period in Panel C.

Strategy Mean Std Skew Kurt Newey Sharpe

Panel A. Whole Sample Period (January 1996–March 2007)

S1 5.153 3.705 1.210 7.552 3.886 1.461
S2 2.922 2.263 1.083 7.978 2.338 1.376
S3 2.842 10.130 −0.175 0.678 9.601 0.325

Panel B. In-Sample Period (January 1996–June 2001)

S1 6.369 4.331 1.365 5.796 4.141 1.716
S2 3.694 2.611 1.405 6.418 2.492 1.664
S3 4.575 10.958 −0.035 0.383 9.881 0.509

Panel C. Out-of-Sample Period (July 2001–March 2007)

S1 3.996 2.878 0.015 4.512 3.429 1.287
S2 2.188 1.806 −0.214 5.721 2.015 1.203
S3 1.193 9.361 −0.516 1.005 9.262 0.142
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For the variance swap-only strategy S2, the mean excess return over the
whole sample period averages 2.922%, the standard deviation averages 2.263%,
and the annualized Sharpe (1966) ratio averages 1.376, lower than the average
Sharpe ratio from S1. For the stock index-only strategy S3, the mean excess re-
turn averages lower at 2.842%, but the standard deviation averages much higher
at 10.13%. As a result, the Sharpe ratio of 0.325 is much lower than that from the
other 2 strategies.

The Sharpe (1966) ratio difference between the stock-only strategy S3 and
the other 2 strategies shows the benefit of exploiting the large variance risk pre-
miums. The Sharpe ratio difference between S1 and S2 further shows that it is
beneficial to use the stock index to hedge against the variance risk.

Since the portfolio weights are computed based on the parameter estimates
from the first half of the data sample, returns during the 1st half of the sample
represent in-sample returns, and returns during the 2nd half are out of sample. In
Panels B and C of Table 7, we separately compute the summary statistics for the
in-sample and the out-of-sample excess returns. For all 3 strategies, both the mean
excess returns and the standard deviations are lower during the more recent out-
of-sample period. The Sharpe (1966) ratio estimates are also lower. Nevertheless,
the performance rankings among the 3 strategies remain the same during the in-
sample and the out-of-sample periods.

VII. Concluding Remarks

Using more than a decade worth of variance swap quotes on the S&P 500
index across 5 fixed times to maturity, we design and estimate affine models of
variance risk dynamics to capture the historical behavior of the term structure of
variance swap rates. We find that 2 stochastic variance risk factors are needed
to explain the term structure variation of the variance swap rates, with 1 factor
controlling the instantaneous variance rate while the other controls the central
tendency of the variance rate movements. The variance rate factor is much more
transient than the central tendency factor under both the risk-neutral and the statis-
tical measures, thus generating different loading patterns across the term structure
from the 2 risk factors and different autocorrelation patterns for variance swap
rates of different maturities. We also find that the market prices of both variance
risk factors are negative, but the absolute magnitude of the market price is much
higher for the instantaneous variance rate risk than for the central tendency factor.

Embedding variance swaps into an optimal investment strategy, an investor
drastically changes her asset allocation decision. The intertemporal hedging de-
mand is completely removed from the stock investment. Moreover, given the large
and negative estimate for the market price of variance risk, it becomes optimal for
the investor to take a short position in both a short-term variance swap contract
and the stock index, while taking a long position in a long-term variance swap
contract. A historical investment exercise shows that incorporating both the stock
index and the variance swap contracts in the investment portfolio markedly im-
proves the investment performance, both in sample and out of sample.

Compared to traditional mean variance analysis on primary securities, the
modern financial industry has recognized the important impacts that stock price
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jumps and stochastic variance can have on an investor’s welfare. Accordingly,
derivative securities such as options and variance swaps have been developed to
span risks along these 2 dimensions. To simplify the problem and to gain a clear
picture of their separate effects, the academic literature either assumes constant
volatility and focuses on how to choose options at different strikes to span the ran-
dom jump risk in the stock price (Carr and Madan (2001), Carr and Wu (2002)), or
assumes purely continuous dynamics (or jumps of fixed size) and focuses on how
to choose options to span the stochastic variance risk (Liu and Pan (2003)). We
contribute to the latter literature by showing that using variance swap contracts
across different maturities represents a more direct way of identifying variance
risk dynamics and spanning the variance risks. Integrating these 2 dimensions
can be a challenging but interesting direction for future research.
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