Growth rates of amenable groups

G. N. Arzhantseva, V. S. Guba and L. Guyot*
(Communicated by A. Yu. Olshanskii)

Abstract

Let F_{m} be a free group with m generators and let R be a normal subgroup such that F_{m} / R projects onto \mathbb{Z}. We give a lower bound for the growth rate of the group F_{m} / R^{\prime} (where R^{\prime} is the derived subgroup of R) in terms of the length $\rho=\rho(R)$ of the shortest non-trivial relation in R. It follows that the growth rate of F_{m} / R^{\prime} approaches $2 m-1$ as ρ approaches infinity. This implies that the growth rate of an m-generated amenable group can be arbitrarily close to the maximum value $2 m-1$. This answers an open question of P. de la Harpe. We prove that such groups can be found in the class of abelian-by-nilpotent groups as well as in the class of virtually metabelian groups.

1 Introduction

Let G be a finitely generated group and A a fixed finite set of generators for G. We denote by $l(g)$ the word length of an element $g \in G$ in the generators A, i.e. the length of a shortest word in the alphabet $A^{ \pm 1}$ representing g. Let $B(n)$ denote the ball $\{g \in G \mid l(g) \leqslant n\}$ of radius n in G with respect to A. The growth rate of the pair (G, A) is the limit

$$
\omega(G, A)=\lim _{n \rightarrow \infty} \sqrt[n]{|B(n)|} .
$$

(Here $|X|$ denotes the number of elements of a finite set X.) This limit exists due to the submultiplicativity property of the function $|B(n)|$; see for example [5, VI.C, Proposition 56]. Clearly $\omega(G, A) \geqslant 1$. A finitely generated group G is said to be of exponential growth if $\omega(G, A)>1$ for some (and hence in fact for any) finite generating set A. Groups with $\omega(G, A)=1$ are groups of subexponential growth.

Let $|A|=m$. It is known that $\omega(G, A)=2 m-1$ if and only if G is freely generated by A; see [3, Section V]. In this case G is non-amenable whenever $m>1$.

A finitely generated group which is non-amenable is necessarily of exponential growth [1]. The following interesting question is due to P. de la Harpe.

[^0]Question (see [5, VI.C, 62]). For an integer $m \geqslant 2$, does there exist a constant c_{m} with $1<c_{m}<2 m-1$, such that G is not amenable whenever $\omega(G, A) \geqslant c_{m}$?

We show that the answer to this question is negative. Thus, given $m \geqslant 2$, there exists an amenable group on m generators with growth rate as close to $2 m-1$ as one likes.

It is worth noticing that for every $m \geqslant 2$ there exists a sequence of non-amenable groups (even containing non-abelian free subgroups) whose growth rates approach 1 (see [4]).

For a group H, we denote by H^{\prime} its derived subgroup, that is, $H^{\prime}=[H, H]$.
The authors thank A. Yu. Ol'shanskii for helpful comments.

2 Results

Let F_{m} be a free group of rank m with free basis A. Suppose that R is a normal subgroup of F_{m}. Assume that there is a homomorphism ϕ from F_{m} onto an infinite cyclic group whose kernel contains R (that is, F_{m} / R has the additive group \mathbb{Z} as a homomorphic image). By a we denote a letter from $A^{ \pm 1}$ such that

$$
\phi(a)=\max \left\{\phi(x) \mid x \in A^{ \pm 1}\right\} .
$$

Clearly $\phi(a) \geqslant 1$.
Throughout the paper, we fix a homomorphism ϕ from F_{m} onto \mathbb{Z}, the letter a described above and the value $C=\phi(a)$. By R we will usually denote a normal subgroup of F_{m} that is contained in the kernel of ϕ.

A word w over $A^{ \pm 1}$ is called good whenever it satisfies the following conditions:
(1) w is freely irreducible;
(2) the first letter of w is a;
(3) the last letter of w is not a^{-1};
(4) $\phi(w)>0$.

Let D_{k} be the set of all good words of length k and let $d_{k}=\left|D_{k}\right|$.
Lemma 1. The number of good words of length $k \geqslant 4$ satisfies the following inequality:

$$
\begin{equation*}
d_{k} \geqslant 4 m(m-1)^{2}(2 m-1)^{k-4} \tag{1}
\end{equation*}
$$

In particular, $\lim _{k \rightarrow \infty} d_{k}^{1 / k}=2 m-1$.
Proof. Let Ω be the set of all freely irreducible words v of length $k-1$ satisfying $\phi(v) \geqslant 0$. The number of freely irreducible words of length $k-1$ equals $2 m(2 m-1)^{k-2}$. At least half of them have non-negative image under ϕ, and so $|\Omega| \geqslant m(2 m-1)^{k-2}$.

Let Ω_{1} be the subset of Ω that consists of all words whose initial letter is different from a^{-1}. We show that $\left|\Omega_{1}\right| \geqslant((2 m-2) /(2 m-1))|\Omega|$. It is sufficient to prove that $\left|\Omega_{1} \cap A^{ \pm 1} u\right| \geqslant((2 m-2) /(2 m-1))\left|\Omega \cap A^{ \pm 1} u\right|$ for any word u of length $k-2$. Suppose that $a^{-1} u$ belongs to Ω. For every letter b one has $\phi(b) \geqslant \phi\left(a^{-1}\right)$. Therefore $b u \in \Omega_{1}$ for every letter $b \neq a^{-1}$ if $b u$ is irreducible. There are exactly $2 m-2$ ways to choose a letter b with the above properties. Hence $\left|\Omega_{1} \cap A^{ \pm 1} u\right|$ and $\left|\Omega \cap A^{ \pm 1} u\right|$ have $2 m-2$ and $2 m-1$ elements, respectively. If $a^{-1} u \notin \Omega$, then the two sets coincide.

Now let Ω_{2} denote the subset of Ω_{1} that consists of all words whose terminal letter is different from a^{-1}. A similar argument implies that

$$
\left|\Omega_{2}\right| \geqslant((2 m-2) /(2 m-1))\left|\Omega_{1}\right|
$$

It is obvious that $a v$ is good if $v \in \Omega_{2}$. Therefore the number of good words is at least

$$
\left|\Omega_{2}\right| \geqslant \frac{2 m-2}{2 m-1}\left|\Omega_{1}\right| \geqslant\left(\frac{2 m-2}{2 m-1}\right)^{2}|\Omega| \geqslant 4 m(m-1)^{2}(2 m-1)^{k-4}
$$

To every word w in $A^{ \pm 1}$ one can uniquely assign a path $p(w)$ in the Cayley graph $\mathscr{C}=\mathscr{C}(F / R, A)$ of the group F / R with A the generating set. This is the path that has label w and starts at the identity. We say that a path p is self-avoiding if it never visits the same vertex more than once.

Let $\rho=\rho(R)$ be the length of the shortest non-trivial element in a normal subgroup R of F_{m}.

Lemma 2. Let R be a normal subgroup of F_{m} that is contained in the kernel of a homomorphism ϕ from F_{m} onto \mathbb{Z}. Suppose that $k \geqslant 2$ is chosen in such a way that the following inequality holds:

$$
\begin{equation*}
\rho(R)>C k(2 k-3)+2 k-2 \tag{2}
\end{equation*}
$$

Then any path in the Cayley graph \mathscr{C} of F_{m} / R labelled by a word of the form $g_{1} g_{2} \ldots g_{t}$, where $t \geqslant 1$ and $g_{s} \in D_{k}$ for all $1 \leqslant s \leqslant t$, is self-avoiding.

Proof. Suppose that p is not self-avoiding, and consider a minimal subpath q between two equal vertices. Clearly $|q| \geqslant \rho \geqslant k$. Therefore q can be represented as $q=g^{\prime} g_{i} \ldots g_{j} g^{\prime \prime}$, where g_{i}, \ldots, g_{j} are in D_{k}, the word g^{\prime} is a proper suffix of some word in D_{k} and $g^{\prime \prime}$ is a proper prefix of some word in D_{k}. We have $\left|g^{\prime}\right|,\left|g^{\prime \prime}\right| \leqslant k-1$ so that $\left|g_{i} \ldots g_{j}\right|>C k(2 k-3)$. This implies that $j-i+1$ (the number of sections that are completely contained in q) is at least $C(2 k-3)+1$. Obviously $\phi\left(g^{\prime}\right) \geqslant-C(k-1)$ and $\phi\left(g^{\prime \prime}\right) \geqslant-C(k-2)$ (we recall that $g^{\prime \prime}$ starts with a if it is non-empty). On the other hand, $\phi\left(g_{s}\right) \geqslant 1$ for all s. Hence

$$
\phi\left(g_{i} \ldots g_{j}\right) \geqslant j-i+1 \geqslant C(2 k-3)+1
$$

and so $\phi\left(g^{\prime} g_{i} \ldots g_{j} g^{\prime \prime}\right) \geqslant 1$, which is obviously impossible because for every $r \in R$ one has $\phi(r)=0$.

Theorem 1. Suppose that R is a normal subgroup of the free group F_{m} that is contained in the kernel of a homomorphism ϕ from F_{m} onto \mathbb{Z}. Let C be the maximum value of ϕ on the generators and their inverses. Let $\rho=\rho(R)$ be the length of the shortest cyclically irreducible non-empty word in R. If the number $k \geqslant 4$ satisfies the inequality

$$
\begin{equation*}
\rho \geqslant C k(2 k-3)+2 k-1 \tag{3}
\end{equation*}
$$

then the growth rate of F_{m} / R^{\prime} with respect to the natural generators is at least

$$
(2 m-1) \cdot\left(\frac{4 m(m-1)^{2}}{(2 m-1)^{4}}\right)^{1 / k}
$$

Proof. We use the following known fact [2, Lemma 1]: a word w belongs to R^{\prime} if and only if, for any edge e, the path labelled by w in the Cayley graph of the group F_{m} / R has the same number of occurrences of e and e^{-1}. Hence distinct self-avoiding paths of length n in the Cayley graph of F_{m} / R represent distinct elements of the group F_{m} / R^{\prime}. Moreover, all of the corresponding paths in the Cayley graph of F_{m} / R^{\prime} are geodesic and so these elements have length n in the group F_{m} / R^{\prime}.

Suppose that the conditions of the theorem hold. For every n, one can consider the set of all words of the form $g_{1} g_{2} \ldots g_{n}$, where each g_{i} belongs to D_{k}. By Lemma 2 these elements give us distinct self-avoiding paths in the Cayley graph of F_{m} / R. Hence for any n we have at least d_{k}^{n} distinct elements in F_{m} / R^{\prime} that have length $k n$. Therefore the growth rate of F_{m} / R^{\prime} is at least $d_{k}^{1 / k}$. It remains to apply Lemma 1.

One can summarize the statement of Theorem 1 as follows: if all relations of F_{m} / R are long enough, then the growth rate of the group F_{m} / R^{\prime} is big enough. Notice that we cannot avoid the assumption that F_{m} / R projects onto \mathbb{Z}. Indeed, for any number ρ, there exists a finite index normal subgroup in F_{m} all of whose non-trivial elements have length greater than ρ. If R were such a subgroup, then F / R^{\prime} would be a finite extension of an abelian group and its growth rate would be equal to 1 .

Theorem 2. Let F_{m} be a free group of rank m with free basis A and let ϕ be a homomorphism from F_{m} onto \mathbb{Z}. Suppose that

$$
\operatorname{ker} \phi \geqslant R_{1} \geqslant R_{2} \geqslant \cdots \geqslant R_{n} \geqslant \cdots
$$

is a sequence of normal subgroups in F_{m} with trivial intersection. Then the growth rates of the groups F_{m} / R_{n}^{\prime} approach $2 m-1$ as n approaches infinity, that is,

$$
\lim _{n \rightarrow \infty} \omega\left(F_{m} / R_{n}^{\prime}, A\right)=2 m-1
$$

Proof. Since the subgroups R_{n} have trivial intersection, the lengths of their shortest non-trivial relations approach infinity, that is, $\rho\left(R_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Let

$$
k(n)=\left[\sqrt{\rho\left(R_{n}\right) / 2 C}\right]
$$

where C is defined in terms of ϕ as above. Obviously the inequality (3) holds and $k(n) \rightarrow \infty$. Theorem 1 implies that the growth rates of the groups F_{m} / R_{n}^{\prime} approach $2 m-1$.

Now we show that for every m there exists an amenable group with m generators whose growth rate is arbitrarily close to $2 m-1$.

Theorem 3. For every $m \geqslant 1$ and for every $\varepsilon>0$, there exists an m-generated amenable group G, which is an extension of an abelian group by a nilpotent group such that the growth rate of G is at least $2 m-1-\varepsilon$.

Proof. It suffices to take the lower central series in the statement of Theorem 2 (that is, $R_{1}=F_{m}^{\prime}, R_{i+1}=\left[R_{i}, F_{m}\right]$ for all $i \geqslant 1$). The subgroups R_{n} have trivial intersection and they are contained in F_{m}^{\prime} and hence certainly lie in kernels of epimorphisms to \mathbb{Z}. The groups $G_{n}=F_{m} / R_{n}^{\prime}$ are extensions of (free) abelian groups R_{n} / R_{n}^{\prime} by (free) nilpotent groups F_{m} / R_{n} and so they are all amenable. Their growth rates approach $2 m-1$.

One can take instead the sequence $R_{n}=F_{m}^{(n)}$ of iterated derived subgroups (that is, $R_{1}=F_{m}^{\prime}, R_{i+1}=R_{i}^{\prime}$ for all $\left.i \geqslant 1\right)$. It is not hard to show that $\rho\left(R_{n}\right)$ grows exponentially. The groups $F_{m} / R_{n}^{\prime}=F_{m} / R_{n+1}$ are free soluble. Their growth rates approach $2 m-1$ very quickly. For instance, the growth rate of the free soluble group of degree 15 with 2 generators is greater than 2.999.

One more application of Theorem 3 can be obtained as follows. The group F_{m} has countably many finite index normal subgroups and so one can enumerate them as $N_{1}, N_{2}, \ldots, N_{i}, \ldots$ Let $M_{i}=N_{1} \cap N_{2} \cap \cdots \cap N_{i}$ and let $R_{i}=M_{i}^{\prime}$ for all $i \geqslant 1$. Obviously the subgroups M_{i} (and thus the subgroups R_{i}) have trivial intersection since F_{m} is residually finite. As above, all subgroups R_{i} are contained in F_{m}^{\prime} and so in kernels of epimorphisms to \mathbb{Z}. Hence the growth rates of the groups $F_{m} / R_{i}^{\prime}=F_{m} / M_{i}^{\prime \prime}$ approach $2 m-1$. These groups are extensions of $M_{i} / M_{i}^{\prime \prime}$ by F_{m} / M_{i}, that is, they are finite extensions of (free) metabelian groups.

Therefore there exist m-generated groups with growth rates approaching $2 m-1$ in each of the following: (1) the class of extensions of abelian groups by nilpotent groups, and (2) the class of finite extensions of metabelian groups.

Remark. A. Yu. Ol'shanskii suggested the following improvement. Let p be a prime. Since F_{m} is residually a finite p-group, there is a chain $M_{1} \geqslant M_{2} \geqslant \cdots$ of normal subgroups with trivial intersection, where each F_{m} / M_{i} is a finite p-group. Let $R_{i}=\operatorname{ker} \phi \cap M_{i}$. The group F_{m} / R_{i} is a subdirect product of \mathbb{Z} and a finite p-group. In particular, it is nilpotent. Moreover, it is also an extension of \mathbb{Z} by a finite p-group and an extension of a finite p-group by \mathbb{Z}. So F_{m} / R_{i}^{\prime} will be both abelian-by-nilpotent and metabelian-by-finite. (In fact, the metabelian part is an extension of an abelian group by \mathbb{Z}.) Also F_{m} / R_{i}^{\prime} is an extension of a virtually abelian group by \mathbb{Z}.

References

[1] G. M. Adel'son-Vel'skii and Yu. A. Sreider. The Banach mean on groups. Uspekhi Mat. Nauk (N.S.) 12, 131-136.
[2] C. Droms, J. Lewin and H. Servatius. The length of elements in free solvable groups. Proc. Amer. Math. Soc. 119 (1993), 27-33.
[3] R. Grigorchuk and P. de la Harpe. On problems related to growth, entropy, and spectrum in group theory. J. Dynam. Control Systems 3 (1997), 51-89.
[4] R. Grigorchuk and P. de la Harpe. Limit behaviour of exponential growth rates for finitely generated groups. In Essays on geometry and related topics, Monogr. Enseign. Math. 38 (Enseignement Math., 2001), pp. 351-370.
[5] P. de la Harpe. Topics in geometric group theory (University of Chicago Press, 2000).

Received 31 May, 2004
G. N. Arzhantseva, Section de Mathématiques, Université de Genève, CP 240, 1211 Genève 24, Switzerland
E-mail: Goulnara.Arjantseva@math.unige.ch
V. S. Guba, Department of Mathematics, Vologda State University, 6 S. Orlov St., Vologda 160600, Russia
E-mail: guba@uni-vologda.ac.ru
L. Guyot, Section de Mathématiques, Université de Genève, CP 240, 1211 Genève 24, Switzerland
E-mail: Luc.Guyot@math.unige.ch

[^0]: *This work was supported by the Swiss National Science Foundation, No. PP002-68627.

