J. Group Theory 8 (2005), 389-394

Journal of Group Theory © de Gruyter 2005

Growth rates of amenable groups

G. N. Arzhantseva, V. S. Guba and L. Guyot*

(Communicated by A. Yu. Olshanskii)

Abstract. Let F_m be a free group with *m* generators and let *R* be a normal subgroup such that F_m/R projects onto Z. We give a lower bound for the growth rate of the group F_m/R' (where *R'* is the derived subgroup of *R*) in terms of the length $\rho = \rho(R)$ of the shortest non-trivial relation in *R*. It follows that the growth rate of F_m/R' approaches 2m - 1 as ρ approaches infinity. This implies that the growth rate of an *m*-generated amenable group can be arbitrarily close to the maximum value 2m - 1. This answers an open question of P. de la Harpe. We prove that such groups can be found in the class of abelian-by-nilpotent groups as well as in the class of virtually metabelian groups.

1 Introduction

Let G be a finitely generated group and A a fixed finite set of generators for G. We denote by l(g) the *word length* of an element $g \in G$ in the generators A, i.e. the length of a shortest word in the alphabet $A^{\pm 1}$ representing g. Let B(n) denote the ball $\{g \in G | l(g) \leq n\}$ of radius n in G with respect to A. The growth rate of the pair (G, A) is the limit

$$\omega(G,A) = \lim_{n \to \infty} \sqrt[n]{|B(n)|}.$$

(Here |X| denotes the number of elements of a finite set *X*.) This limit exists due to the submultiplicativity property of the function |B(n)|; see for example [5, VI.C, Proposition 56]. Clearly $\omega(G, A) \ge 1$. A finitely generated group *G* is said to be of *exponential growth* if $\omega(G, A) > 1$ for some (and hence in fact for any) finite generating set *A*. Groups with $\omega(G, A) = 1$ are groups of *subexponential* growth.

Let |A| = m. It is known that $\omega(G, A) = 2m - 1$ if and only if G is freely generated by A; see [3, Section V]. In this case G is non-amenable whenever m > 1.

A finitely generated group which is non-amenable is necessarily of exponential growth [1]. The following interesting question is due to P. de la Harpe.

^{*} This work was supported by the Swiss National Science Foundation, No. PP002-68627.

Question (see [5, VI.C, 62]). For an integer $m \ge 2$, does there exist a constant c_m with $1 < c_m < 2m - 1$, such that G is not amenable whenever $\omega(G, A) \ge c_m$?

We show that the answer to this question is negative. Thus, given $m \ge 2$, there exists an amenable group on *m* generators with growth rate as close to 2m - 1 as one likes.

It is worth noticing that for every $m \ge 2$ there exists a sequence of non-amenable groups (even containing non-abelian free subgroups) whose growth rates approach 1 (see [4]).

For a group H, we denote by H' its derived subgroup, that is, H' = [H, H]. The authors thank A. Yu. Ol'shanskii for helpful comments.

2 Results

Let F_m be a free group of rank *m* with free basis *A*. Suppose that *R* is a normal subgroup of F_m . Assume that there is a homomorphism ϕ from F_m onto an infinite cyclic group whose kernel contains *R* (that is, F_m/R has the additive group **Z** as a homomorphic image). By *a* we denote a letter from $A^{\pm 1}$ such that

$$\phi(a) = \max\{\phi(x) \,|\, x \in A^{\pm 1}\}.$$

Clearly $\phi(a) \ge 1$.

Throughout the paper, we fix a homomorphism ϕ from F_m onto \mathbb{Z} , the letter *a* described above and the value $C = \phi(a)$. By *R* we will usually denote a normal subgroup of F_m that is contained in the kernel of ϕ .

A word w over $A^{\pm 1}$ is called *good* whenever it satisfies the following conditions:

- (1) w is freely irreducible;
- (2) the first letter of w is a;
- (3) the last letter of w is not a^{-1} ;
- (4) $\phi(w) > 0$.

Let D_k be the set of all good words of length k and let $d_k = |D_k|$.

Lemma 1. The number of good words of length $k \ge 4$ satisfies the following inequality:

$$d_k \ge 4m(m-1)^2(2m-1)^{k-4}.$$
(1)

In particular, $\lim_{k\to\infty} d_k^{1/k} = 2m - 1.$

Proof. Let Ω be the set of all freely irreducible words v of length k-1 satisfying $\phi(v) \ge 0$. The number of freely irreducible words of length k-1 equals $2m(2m-1)^{k-2}$. At least half of them have non-negative image under ϕ , and so $|\Omega| \ge m(2m-1)^{k-2}$.

Let Ω_1 be the subset of Ω that consists of all words whose initial letter is different from a^{-1} . We show that $|\Omega_1| \ge ((2m-2)/(2m-1))|\Omega|$. It is sufficient to prove that $|\Omega_1 \cap A^{\pm 1}u| \ge ((2m-2)/(2m-1))|\Omega \cap A^{\pm 1}u|$ for any word u of length k-2. Suppose that $a^{-1}u$ belongs to Ω . For every letter b one has $\phi(b) \ge \phi(a^{-1})$. Therefore $bu \in \Omega_1$ for every letter $b \ne a^{-1}$ if bu is irreducible. There are exactly 2m-2 ways to choose a letter b with the above properties. Hence $|\Omega_1 \cap A^{\pm 1}u|$ and $|\Omega \cap A^{\pm 1}u|$ have 2m-2 and 2m-1 elements, respectively. If $a^{-1}u \notin \Omega$, then the two sets coincide.

Now let Ω_2 denote the subset of Ω_1 that consists of all words whose terminal letter is different from a^{-1} . A similar argument implies that

$$|\Omega_2| \ge ((2m-2)/(2m-1))|\Omega_1|.$$

It is obvious that av is good if $v \in \Omega_2$. Therefore the number of good words is at least

$$|\Omega_2| \ge \frac{2m-2}{2m-1} |\Omega_1| \ge \left(\frac{2m-2}{2m-1}\right)^2 |\Omega| \ge 4m(m-1)^2 (2m-1)^{k-4}.$$

To every word w in $A^{\pm 1}$ one can uniquely assign a path p(w) in the Cayley graph $\mathscr{C} = \mathscr{C}(F/R, A)$ of the group F/R with A the generating set. This is the path that has label w and starts at the identity. We say that a path p is *self-avoiding* if it never visits the same vertex more than once.

Let $\rho = \rho(R)$ be the length of the shortest non-trivial element in a normal subgroup R of F_m .

Lemma 2. Let R be a normal subgroup of F_m that is contained in the kernel of a homomorphism ϕ from F_m onto \mathbb{Z} . Suppose that $k \ge 2$ is chosen in such a way that the following inequality holds:

$$\rho(R) > Ck(2k-3) + 2k - 2. \tag{2}$$

Then any path in the Cayley graph \mathscr{C} of F_m/R labelled by a word of the form $g_1g_2...g_t$, where $t \ge 1$ and $g_s \in D_k$ for all $1 \le s \le t$, is self-avoiding.

Proof. Suppose that p is not self-avoiding, and consider a minimal subpath q between two equal vertices. Clearly $|q| \ge \rho \ge k$. Therefore q can be represented as $q = g'g_i \dots g_jg''$, where g_i, \dots, g_j are in D_k , the word g' is a proper suffix of some word in D_k and g'' is a proper prefix of some word in D_k . We have $|g'|, |g''| \le k - 1$ so that $|g_i \dots g_j| > Ck(2k-3)$. This implies that j - i + 1 (the number of sections that are completely contained in q) is at least C(2k-3) + 1. Obviously $\phi(g') \ge -C(k-1)$ and $\phi(g'') \ge -C(k-2)$ (we recall that g'' starts with a if it is non-empty). On the other hand, $\phi(g_s) \ge 1$ for all s. Hence

$$\phi(g_i \dots g_j) \ge j - i + 1 \ge C(2k - 3) + 1$$

and so $\phi(g'g_i \dots g_j g'') \ge 1$, which is obviously impossible because for every $r \in R$ one has $\phi(r) = 0$.

Theorem 1. Suppose that R is a normal subgroup of the free group F_m that is contained in the kernel of a homomorphism ϕ from F_m onto \mathbb{Z} . Let C be the maximum value of ϕ on the generators and their inverses. Let $\rho = \rho(R)$ be the length of the shortest cyclically irreducible non-empty word in R. If the number $k \ge 4$ satisfies the inequality

$$\rho \ge Ck(2k-3) + 2k - 1,$$
(3)

then the growth rate of F_m/R' with respect to the natural generators is at least

$$(2m-1)\cdot\left(\frac{4m(m-1)^2}{(2m-1)^4}\right)^{1/k}$$

Proof. We use the following known fact [2, Lemma 1]: a word w belongs to R' if and only if, for any edge e, the path labelled by w in the Cayley graph of the group F_m/R has the same number of occurrences of e and e^{-1} . Hence distinct self-avoiding paths of length n in the Cayley graph of F_m/R represent distinct elements of the group F_m/R' . Moreover, all of the corresponding paths in the Cayley graph of F_m/R' are geodesic and so these elements have length n in the group F_m/R' .

Suppose that the conditions of the theorem hold. For every *n*, one can consider the set of all words of the form $g_1g_2...g_n$, where each g_i belongs to D_k . By Lemma 2 these elements give us distinct self-avoiding paths in the Cayley graph of F_m/R . Hence for any *n* we have at least d_k^n distinct elements in F_m/R' that have length *kn*. Therefore the growth rate of F_m/R' is at least $d_k^{1/k}$. It remains to apply Lemma 1.

One can summarize the statement of Theorem 1 as follows: if all relations of F_m/R are long enough, then the growth rate of the group F_m/R' is big enough. Notice that we cannot avoid the assumption that F_m/R projects onto \mathbb{Z} . Indeed, for any number ρ , there exists a finite index normal subgroup in F_m all of whose non-trivial elements have length greater than ρ . If R were such a subgroup, then F/R' would be a finite extension of an abelian group and its growth rate would be equal to 1.

Theorem 2. Let F_m be a free group of rank m with free basis A and let ϕ be a homomorphism from F_m onto \mathbb{Z} . Suppose that

$$\ker \phi \geqslant R_1 \geqslant R_2 \geqslant \cdots \geqslant R_n \geqslant \cdots$$

is a sequence of normal subgroups in F_m with trivial intersection. Then the growth rates of the groups F_m/R'_n approach 2m - 1 as n approaches infinity, that is,

$$\lim_{n\to\infty}\omega(F_m/R'_n,A)=2m-1.$$

Proof. Since the subgroups R_n have trivial intersection, the lengths of their shortest non-trivial relations approach infinity, that is, $\rho(R_n) \to \infty$ as $n \to \infty$. Let

$$k(n) = \left[\sqrt{\rho(R_n)/2C}\right],$$

where C is defined in terms of ϕ as above. Obviously the inequality (3) holds and $k(n) \rightarrow \infty$. Theorem 1 implies that the growth rates of the groups F_m/R'_n approach 2m-1.

Now we show that for every *m* there exists an amenable group with *m* generators whose growth rate is arbitrarily close to 2m - 1.

Theorem 3. For every $m \ge 1$ and for every $\varepsilon > 0$, there exists an m-generated amenable group *G*, which is an extension of an abelian group by a nilpotent group such that the growth rate of *G* is at least $2m - 1 - \varepsilon$.

Proof. It suffices to take the lower central series in the statement of Theorem 2 (that is, $R_1 = F'_m$, $R_{i+1} = [R_i, F_m]$ for all $i \ge 1$). The subgroups R_n have trivial intersection and they are contained in F'_m and hence certainly lie in kernels of epimorphisms to \mathbb{Z} . The groups $G_n = F_m/R'_n$ are extensions of (free) abelian groups R_n/R'_n by (free) nilpotent groups F_m/R_n and so they are all amenable. Their growth rates approach 2m - 1.

One can take instead the sequence $R_n = F_m^{(n)}$ of iterated derived subgroups (that is, $R_1 = F'_m$, $R_{i+1} = R'_i$ for all $i \ge 1$). It is not hard to show that $\rho(R_n)$ grows exponentially. The groups $F_m/R'_n = F_m/R_{n+1}$ are free soluble. Their growth rates approach 2m - 1 very quickly. For instance, the growth rate of the free soluble group of degree 15 with 2 generators is greater than 2.999.

One more application of Theorem 3 can be obtained as follows. The group F_m has countably many finite index normal subgroups and so one can enumerate them as $N_1, N_2, \ldots, N_i, \ldots$. Let $M_i = N_1 \cap N_2 \cap \cdots \cap N_i$ and let $R_i = M'_i$ for all $i \ge 1$. Obviously the subgroups M_i (and thus the subgroups R_i) have trivial intersection since F_m is residually finite. As above, all subgroups R_i are contained in F'_m and so in kernels of epimorphisms to \mathbb{Z} . Hence the growth rates of the groups $F_m/R'_i = F_m/M''_i$ approach 2m - 1. These groups are extensions of M_i/M''_i by F_m/M_i , that is, they are finite extensions of (free) metabelian groups.

Therefore there exist *m*-generated groups with growth rates approaching 2m - 1 in each of the following: (1) the class of extensions of abelian groups by nilpotent groups, and (2) the class of finite extensions of metabelian groups.

Remark. A. Yu. Ol'shanskii suggested the following improvement. Let p be a prime. Since F_m is residually a finite p-group, there is a chain $M_1 \ge M_2 \ge \cdots$ of normal subgroups with trivial intersection, where each F_m/M_i is a finite p-group. Let $R_i = \ker \phi \cap M_i$. The group F_m/R_i is a subdirect product of \mathbb{Z} and a finite p-group. In particular, it is nilpotent. Moreover, it is also an extension of \mathbb{Z} by a finite p-group and an extension of a finite p-group by \mathbb{Z} . So F_m/R'_i will be both abelian-by-nilpotent and metabelian-by-finite. (In fact, the metabelian part is an extension of an abelian group by \mathbb{Z} .) Also F_m/R'_i is an extension of a virtually abelian group by \mathbb{Z} .

References

- G. M. Adel'son-Vel'skii and Yu. A. Sreider. The Banach mean on groups. Uspekhi Mat. Nauk (N.S.) 12, 131–136.
- [2] C. Droms, J. Lewin and H. Servatius. The length of elements in free solvable groups. Proc. Amer. Math. Soc. 119 (1993), 27–33.
- [3] R. Grigorchuk and P. de la Harpe. On problems related to growth, entropy, and spectrum in group theory. J. Dynam. Control Systems 3 (1997), 51–89.
- [4] R. Grigorchuk and P. de la Harpe. Limit behaviour of exponential growth rates for finitely generated groups. In *Essays on geometry and related topics*, Monogr. Enseign. Math. 38 (Enseignement Math., 2001), pp. 351–370.
- [5] P. de la Harpe. Topics in geometric group theory (University of Chicago Press, 2000).

Received 31 May, 2004

- G. N. Arzhantseva, Section de Mathématiques, Université de Genève, CP 240, 1211 Genève 24, Switzerland
 E-mail: Goulnara.Arjantseva@math.unige.ch
- V. S. Guba, Department of Mathematics, Vologda State University, 6 S. Orlov St., Vologda 160600, Russia E-mail: guba@uni-vologda.ac.ru
- L. Guyot, Section de Mathématiques, Université de Genève, CP 240, 1211 Genève 24, Switzerland

E-mail: Luc.Guyot@math.unige.ch