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Growth rates of amenable groups
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(Communicated by A. Yu. Olshanskii)

Abstract. Let Fm be a free group with m generators and let R be a normal subgroup such that
Fm=R projects onto Z. We give a lower bound for the growth rate of the group Fm=R

0 (where
R 0 is the derived subgroup of R) in terms of the length r ¼ rðRÞ of the shortest non-trivial re-
lation in R. It follows that the growth rate of Fm=R

0 approaches 2m� 1 as r approaches in-
finity. This implies that the growth rate of an m-generated amenable group can be arbitrarily
close to the maximum value 2m� 1. This answers an open question of P. de la Harpe. We
prove that such groups can be found in the class of abelian-by-nilpotent groups as well as in the
class of virtually metabelian groups.

1 Introduction

Let G be a finitely generated group and A a fixed finite set of generators for G. We
denote by lðgÞ the word length of an element g A G in the generators A, i.e. the length
of a shortest word in the alphabet AG1 representing g. Let BðnÞ denote the ball
fg A G j lðgÞc ng of radius n in G with respect to A. The growth rate of the pair
ðG;AÞ is the limit

oðG;AÞ ¼ lim
n!y

ffiffiffiffiffiffiffiffiffiffiffiffi
jBðnÞjn

p
:

(Here jX j denotes the number of elements of a finite set X .) This limit exists due to the
submultiplicativity property of the function jBðnÞj; see for example [5, VI.C, Propo-
sition 56]. Clearly oðG;AÞd 1. A finitely generated group G is said to be of expo-

nential growth if oðG;AÞ > 1 for some (and hence in fact for any) finite generating set
A. Groups with oðG;AÞ ¼ 1 are groups of subexponential growth.

Let jAj ¼ m. It is known that oðG;AÞ ¼ 2m� 1 if and only if G is freely generated
by A; see [3, Section V]. In this case G is non-amenable whenever m > 1.

A finitely generated group which is non-amenable is necessarily of exponential
growth [1]. The following interesting question is due to P. de la Harpe.
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Question (see [5, VI.C, 62]). For an integer md 2, does there exist a constant cm with
1 < cm < 2m� 1, such that G is not amenable whenever oðG;AÞd cm?

We show that the answer to this question is negative. Thus, given md 2, there
exists an amenable group on m generators with growth rate as close to 2m� 1 as one
likes.

It is worth noticing that for every md 2 there exists a sequence of non-amenable
groups (even containing non-abelian free subgroups) whose growth rates approach 1
(see [4]).

For a group H, we denote by H 0 its derived subgroup, that is, H 0 ¼ ½H;H �.
The authors thank A. Yu. Ol’shanskii for helpful comments.

2 Results

Let Fm be a free group of rank m with free basis A. Suppose that R is a normal sub-
group of Fm. Assume that there is a homomorphism f from Fm onto an infinite cyclic
group whose kernel contains R (that is, Fm=R has the additive group Z as a homo-
morphic image). By a we denote a letter from AG1 such that

fðaÞ ¼ maxffðxÞ j x A AG1g:

Clearly fðaÞd 1.
Throughout the paper, we fix a homomorphism f from Fm onto Z, the letter a

described above and the value C ¼ fðaÞ. By R we will usually denote a normal sub-
group of Fm that is contained in the kernel of f.

A word w over AG1 is called good whenever it satisfies the following conditions:

(1) w is freely irreducible;

(2) the first letter of w is a;

(3) the last letter of w is not a�1;

(4) fðwÞ > 0.

Let Dk be the set of all good words of length k and let dk ¼ jDkj.

Lemma 1. The number of good words of length kd 4 satisfies the following inequality:

dk d 4mðm� 1Þ2ð2m� 1Þk�4: ð1Þ

In particular, lim
k!y

d
1=k
k ¼ 2m� 1.

Proof. Let W be the set of all freely irreducible words v of length k � 1 satisfying
fðvÞd 0. The number of freely irreducible words of length k � 1 equals
2mð2m� 1Þk�2. At least half of them have non-negative image under f, and so
jWjdmð2m� 1Þk�2.
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Let W1 be the subset of W that consists of all words whose initial letter is di¤erent
from a�1. We show that jW1jd ðð2m� 2Þ=ð2m� 1ÞÞjWj. It is su‰cient to prove that
jW1 VAG1ujd ðð2m� 2Þ=ð2m� 1ÞÞjWVAG1uj for any word u of length k � 2. Sup-
pose that a�1u belongs to W. For every letter b one has fðbÞd fða�1Þ. Therefore
bu A W1 for every letter b0 a�1 if bu is irreducible. There are exactly 2m� 2 ways to
choose a letter b with the above properties. Hence jW1 VAG1uj and jWVAG1uj have
2m� 2 and 2m� 1 elements, respectively. If a�1u B W, then the two sets coincide.

Now let W2 denote the subset of W1 that consists of all words whose terminal letter
is di¤erent from a�1. A similar argument implies that

jW2jd ðð2m� 2Þ=ð2m� 1ÞÞjW1j:

It is obvious that av is good if v A W2. Therefore the number of good words is at least

jW2jd
2m� 2

2m� 1
jW1jd

2m� 2

2m� 1

� �2

jWjd 4mðm� 1Þ2ð2m� 1Þk�4:

To every word w in AG1 one can uniquely assign a path pðwÞ in the Cayley graph
C ¼ CðF=R;AÞ of the group F=R with A the generating set. This is the path that has
label w and starts at the identity. We say that a path p is self-avoiding if it never visits
the same vertex more than once.

Let r ¼ rðRÞ be the length of the shortest non-trivial element in a normal subgroup
R of Fm.

Lemma 2. Let R be a normal subgroup of Fm that is contained in the kernel of a ho-

momorphism f from Fm onto Z. Suppose that kd 2 is chosen in such a way that the

following inequality holds:

rðRÞ > Ckð2k � 3Þ þ 2k � 2: ð2Þ

Then any path in the Cayley graph C of Fm=R labelled by a word of the form

g1g2 . . . gt, where td 1 and gs A Dk for all 1c sc t, is self-avoiding.

Proof. Suppose that p is not self-avoiding, and consider a minimal subpath q

between two equal vertices. Clearly jqjd rd k. Therefore q can be represented as
q ¼ g 0gi . . . gjg

00, where gi; . . . ; gj are in Dk, the word g 0 is a proper su‰x of some
word in Dk and g 00 is a proper prefix of some word in Dk. We have jg 0j; jg 00jc k � 1
so that jgi . . . gj j > Ckð2k � 3Þ. This implies that j � i þ 1 (the number of sections
that are completely contained in q) is at least Cð2k � 3Þ þ 1. Obviously
fðg 0Þd�Cðk � 1Þ and fðg 00Þd�Cðk � 2Þ (we recall that g 00 starts with a if it is
non-empty). On the other hand, fðgsÞd 1 for all s. Hence

fðgi . . . gjÞd j � i þ 1dCð2k � 3Þ þ 1

and so fðg 0gi . . . gjg
00Þd 1, which is obviously impossible because for every r A R one

has fðrÞ ¼ 0.
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Theorem 1. Suppose that R is a normal subgroup of the free group Fm that is contained

in the kernel of a homomorphism f from Fm onto Z. Let C be the maximum value of f

on the generators and their inverses. Let r ¼ rðRÞ be the length of the shortest cyclic-

ally irreducible non-empty word in R. If the number kd 4 satisfies the inequality

rdCkð2k � 3Þ þ 2k � 1; ð3Þ

then the growth rate of Fm=R
0 with respect to the natural generators is at least

ð2m� 1Þ � 4mðm� 1Þ2

ð2m� 1Þ4

 !1=k

:

Proof. We use the following known fact [2, Lemma 1]: a word w belongs to R 0 if and
only if, for any edge e, the path labelled by w in the Cayley graph of the group Fm=R
has the same number of occurrences of e and e�1. Hence distinct self-avoiding paths
of length n in the Cayley graph of Fm=R represent distinct elements of the group
Fm=R

0. Moreover, all of the corresponding paths in the Cayley graph of Fm=R
0 are

geodesic and so these elements have length n in the group Fm=R
0.

Suppose that the conditions of the theorem hold. For every n, one can consider the
set of all words of the form g1g2 . . . gn, where each gi belongs to Dk. By Lemma 2
these elements give us distinct self-avoiding paths in the Cayley graph of Fm=R.
Hence for any n we have at least d n

k distinct elements in Fm=R
0 that have length kn.

Therefore the growth rate of Fm=R
0 is at least d

1=k
k . It remains to apply Lemma 1.

One can summarize the statement of Theorem 1 as follows: if all relations of Fm=R
are long enough, then the growth rate of the group Fm=R

0 is big enough. Notice that
we cannot avoid the assumption that Fm=R projects onto Z. Indeed, for any number
r, there exists a finite index normal subgroup in Fm all of whose non-trivial elements
have length greater than r. If R were such a subgroup, then F=R 0 would be a finite
extension of an abelian group and its growth rate would be equal to 1.

Theorem 2. Let Fm be a free group of rank m with free basis A and let f be a homo-

morphism from Fm onto Z. Suppose that

ker fdR1 dR2 d � � �dRn d � � �

is a sequence of normal subgroups in Fm with trivial intersection. Then the growth rates

of the groups Fm=R
0
n approach 2m� 1 as n approaches infinity, that is,

lim
n!y

oðFm=R
0
n;AÞ ¼ 2m� 1:

Proof. Since the subgroups Rn have trivial intersection, the lengths of their shortest
non-trivial relations approach infinity, that is, rðRnÞ ! y as n ! y. Let

kðnÞ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðRnÞ=2C

p
�;
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where C is defined in terms of f as above. Obviously the inequality (3) holds and
kðnÞ ! y. Theorem 1 implies that the growth rates of the groups Fm=R

0
n approach

2m� 1.

Now we show that for every m there exists an amenable group with m generators
whose growth rate is arbitrarily close to 2m� 1.

Theorem 3. For every md 1 and for every e > 0, there exists an m-generated amenable

group G, which is an extension of an abelian group by a nilpotent group such that the

growth rate of G is at least 2m� 1 � e.

Proof. It su‰ces to take the lower central series in the statement of Theorem 2 (that
is, R1 ¼ F 0

m, Riþ1 ¼ ½Ri;Fm� for all id 1). The subgroups Rn have trivial intersection
and they are contained in F 0

m and hence certainly lie in kernels of epimorphisms to Z.
The groups Gn ¼ Fm=R

0
n are extensions of (free) abelian groups Rn=R

0
n by (free) nil-

potent groups Fm=Rn and so they are all amenable. Their growth rates approach
2m� 1.

One can take instead the sequence Rn ¼ F
ðnÞ
m of iterated derived subgroups (that

is, R1 ¼ F 0
m, Riþ1 ¼ R 0

i for all id 1). It is not hard to show that rðRnÞ grows ex-
ponentially. The groups Fm=R

0
n ¼ Fm=Rnþ1 are free soluble. Their growth rates

approach 2m� 1 very quickly. For instance, the growth rate of the free soluble group
of degree 15 with 2 generators is greater than 2.999.

One more application of Theorem 3 can be obtained as follows. The group Fm

has countably many finite index normal subgroups and so one can enumerate them
as N1;N2; . . . ;Ni; . . . : Let Mi ¼ N1 VN2 V � � �VNi and let Ri ¼ M 0

i for all id 1.
Obviously the subgroups Mi (and thus the subgroups Ri) have trivial intersection
since Fm is residually finite. As above, all subgroups Ri are contained in F 0

m and so in
kernels of epimorphisms to Z. Hence the growth rates of the groups Fm=R

0
i ¼ Fm=M

00
i

approach 2m� 1. These groups are extensions of Mi=M
00
i by Fm=Mi, that is, they are

finite extensions of (free) metabelian groups.
Therefore there exist m-generated groups with growth rates approaching 2m� 1

in each of the following: (1) the class of extensions of abelian groups by nilpotent
groups, and (2) the class of finite extensions of metabelian groups.

Remark. A. Yu. Ol’shanskii suggested the following improvement. Let p be a prime.
Since Fm is residually a finite p-group, there is a chain M1 dM2 d � � � of normal
subgroups with trivial intersection, where each Fm=Mi is a finite p-group. Let
Ri ¼ ker fVMi. The group Fm=Ri is a subdirect product of Z and a finite p-group. In
particular, it is nilpotent. Moreover, it is also an extension of Z by a finite p-group
and an extension of a finite p-group by Z. So Fm=R

0
i will be both abelian-by-nilpotent

and metabelian-by-finite. (In fact, the metabelian part is an extension of an abelian
group by Z.) Also Fm=R

0
i is an extension of a virtually abelian group by Z.
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