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The axonal arbors of the different types of neocortical and thalamic
neurons appear highly dissimilar when viewed in conventional 2D
reconstructions. Nevertheless, we have found that their one-
dimensional metrics and topologies are surprisingly similar. To
discover this, we analysed the axonal branching pattern of 39
neurons (23 spiny, 13 smooth and three thalamic axons) that were
filled intracellularly with horseradish peroxidase (HRP) during
in vivo experiments in cat area 17. The axons were completely
reconstructed and translated into dendrograms. Topological, fractal
and Horton--Strahler analyses indicated that axons of smooth and
spiny neurons had similar complexity, length ratios (a measure of
the relative increase in the length of collateral segments as the
axon branches) and bifurcation ratios (a measure of the relative
increase in the number of collateral segments as the axon
branches). We show that a simple random branching model
(Galton--Watson process) predicts with reasonable accuracy the
bifurcation ratio, length ratio and collateral length distribution of the
axonal arbors.

Keywords: cell types, dendrogram, 3D reconstruction, fractal analysis,
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Introduction

The overall gestalt of a neuron, usually viewed in two dimen-

sions, has had a powerful influence on ideas of how cortical

circuits are organized and function (Lorente de Nó, 1949; Jones,

1975; Lund and Boothe, 1975; Szentagothai, 1975; Lund et al.,

1979). It is only in recent years that it has become possible to

quantify the gestalt by direct measurements. Until now, how-

ever, quantitative analyses of neuronal morphology have focused

almost entirely on the dendritic tree (Uylings and Van Pelt,

2002). The axon morphology has been much harder to demon-

strate and analyze and so there has been comparative neglect of

axon structure. Cortical anatomists have largely provided quali-

tative or generic descriptions of axon morphologies (Ramón y

Cajal, 1908), or have documented the morphology of individual

axons labeled with bulk methods (Rockland, 1995). These

anatomical studies have been essential steps in piecing together

the puzzle of the cortical circuits and have prompted theoretical

investigations as to how simple rules such as the conservation of

‘wire’ may lead to the observed maps (Mitchison and Crick,

1982; Koulakov and Chklovskii, 2001). Axonmetrics, such as the

average axon length, have been estimated from electron micro-

scopic data (Foh et al., 1973; Braitenberg and Schüz, 1991),

supported by occasional measurements made on single cells

filled with tracers in vivo (Kisvárday et al., 1985, 1986; Tettoni

et al., 1998) or in vitro (Gupta et al., 2000). Topological analyses

(i.e. the analysis of the connectional or ‘logical’ arrangement of

the branches in a tree, rather than the spatial pattern formed in

the three dimensional space) have been made for axons in the

frog (Bart et al., 2000) and fish (Triller and Korn, 1986).

Innocenti and colleagues made a topological analysis of cortical

axons that project long distances, i.e. callosal axons in the cat

and thalamic axons in the mouse and explored how the

geometry of axons relates to their computation properties

(Innocenti et al., 1994; Tettoni et al., 1998).

Nearly absent from the literature are metrical or topological

comparisons of the axonal arborizations of different cortical

neurons within the same cortical area. While it is clear that

axons of different neural types have different laminar prefer-

ences and different lateral extents, what we do not know is

whether these differences are simply variations on a theme, like

different breeds of horses or dogs, or whether they reflect

fundamentally different ‘species’, each with its own rule of

pattern formation. By analogy, simply measuring the dimensions

of axons will not reveal whether they have structural properties

in common. In this paper we compare structures of the axons of

different neurons drawn from a single cortical area, with the aim

of establishing the similarities and differences in the structure of

different axons, beyond the obvious differences of their pat-

terns of laminar innervation and horizontal spread. We there-

fore include in our analyses metrical parameters, e.g. the

collateral length, and topological parameters, which are sensi-

tive only to the number and structural arrangement of the

collaterals within the tree, e.g. the number of segments between

origin and tip. Analyses of parameters that rely on the 3D shape

of the axonal tree, e.g. the branch angles and branch locations in

the neuropil, are beyond the scope of the present work.

Establishing whether there are relationships between the

different types will contribute to current debates of diversity

versus stereotypy of cortical neurons. These issues are impor-

tant, because they address implicitly a deep problem: how do

cortical neuronal circuits assemble themselves using a relatively

small amount of genetic instruction? Here we discovered that

axons of different neurons share more topological and metrical

properties than are immediately apparent from their traditional

2D gestalts.

Material and Methods

Preparations and Maintenance of Animals
The axons examined in this study were obtained from anaesthetized

adult cats that had been prepared for in vivo intracellular recording (for

details, see Martin and Whitteridge, 1984; Douglas et al., 1991). The

same set of axons was also used in another study (Anderson et al., 2002).

All experiments were carried out by Kevan Martin and colleagues under

the authorization of animal research licenses granted by the Home

Office of the UK and the Cantonal Veterinary Authority of Zürich. We

first recorded from each cell extracellularly and mapped the receptive

field orientation preference, size, type, binocularity and direction
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preference by hand. The mapping was repeated intracellularly and

horseradish peroxidase (HRP) was then ionophoresed into the cell.

Thalamic afferents were classified as X- or Y-type using a battery of tests

(Friedlander and Stanford, 1984; Martin and Whitteridge, 1984). After

appropriate survival times, the brains were fixed, sectioned at 80 lm
with a Vibratome and processed to reveal the HRP and then osmicated

and embedded in resin to eliminate differential shrinkage. The recon-

structions were done in 3D so that the correct lengths of axons could be

accurately measured. Our estimate of the shrinkage of the tissue is 11%.

This is far lower than is usual in material prepared for light microscopy

with the more common method of air-drying, which on our estimate

results in a shrinkage of 80% in the thickness of the section and less

severe, but variable amounts in the X- and Y-dimensions. The lengths

given in the dendrograms are the Euclidean lengths estimated from the

3D coordinates of the axon and are corrected for the shrinkage.

Cell Reconstructions
Neurons were reconstructed in three dimensions at 3400 magnification

with the aid of a light microscope (Leitz Dialux 22) with drawing tube

attached to an in-house 3D reconstruction system (TRAKA). TRAKAwas

written in PASCAL by Rodney Douglas and Danie Botha. The recon-

structions were characterized by a list of data points consisting of a code

describing the digitized structure (axon, bouton or dendrite) and its

three spatial co-ordinates and thickness (where relevant). The somata of

the neurons each gave rise to only one axon. The axonal arborizations

were complex and often extended through many histological sections.

The pieces in each section were merged to form a single tree.

Occasionally labeled collaterals could not be connected: these were

ignored in the analysis. The measurement error of the digitized

structures was estimated by measuring four boutons ten times. The

standard deviation was smaller than 0.6 lm in all three dimensions. The

data were rotated in order to bring all reconstructed cells into the same

coordinate system.

Metrical and Topological Analysis
Axonal trees are complex structures and it is impossible to provide

a single compact and coherent description of all their attributes. Here

we focus on collateral length, collateral frequency and the arrangement

of these collaterals within the tree. This information is contained within

the 3D tree, but it is much more conveniently represented by the

simpler 2D binary tree, called the ‘dendrogram’. (In the present context

the word ‘axogram’ would seem more appropriate, but we defer to the

generic technical term derived from Greek for ‘tree’). A dendrogram is

simply a flattened version of the three dimensional axonal tree, in which

the polygons representing the axon collaterals are stretched out and

arranged so that the collaterals do not intersect (Figs 1--3). The

dendrogram is the appropriate representation to use here, because it

is independent of the actual three-dimensional embedding of the axonal

tree in the neuropil. In the process of making the dendrogram, the

relationships between the different collaterals were carefully main-

tained. If two collaterals in the axonal tree branched from the same

mother collateral, then the same two collaterals also branch from the

same mother collateral in the dendrogram.

We investigated metrical key features of the global properties of the

dendrogram using a histogram of the collateral lengths. Various

measures that describe the topology of the axonal trees, e.g. the number

of collateral segments between the root and a terminal collateral, are

defined in the nomenclature of topology below. These simple measures

provide a first level quantitative description that enable different axons

to be compared directly. To relate different sets of collaterals within the

axonal tree to each other, we used the Horton--Strahler method, which

introduces generations of branches: the first generation are the out-

ermost branches, and the last generation of branches contains the root

of the tree. This allows the change in length and frequency of branches

between consecutive generations to be compared and the ‘growth’ rules

of the tree to be inferred.

Magnitude, Depth, Height and Exterior Path Length

An axonal tree, or its representation as a dendrogram (Figs 2 and 3), is

a binary tree consisting of three types of collaterals. The ‘root collateral’

connects the origin of the tree (i.e. the cell body) with the first branch

point, the ‘end collaterals’ are the collaterals that have no children and

thus terminate the branching, and the ‘inner collaterals’ are all

collaterals which are not end-collaterals (i.e. the root collateral is also

an inner collateral).

The ‘magnitude’ (m0) of a tree is defined as the number of end

collaterals it contains, and is related to the total number of collaterals

(m1) in the tree by m1 = 2m0 – 1. (It follows that the number of inner

collaterals equals the number of end collaterals minus 1.)

The ‘depth’ of a particular end collateral is the number of collaterals

(including the root collateral and the end collateral itself) along the

shortest path between the root and the particular termination (Fig. 1A).

The ‘height’ is the maximum depth of all the end collaterals. The

‘exterior path length’ is the sum of the depths of all the end collaterals.

It is easy to see that both the height and the exterior path length are

not independent of the magnitude of the tree. A large exterior path

length can be achieved if there are a large number of end collaterals (i.e.

the magnitude of the tree is large) or if the end collaterals have a large

depth. With increasing magnitude, the height will tend to increase too.

Thus, direct comparison of the height or exterior path length is of little

significance for trees with very different magnitudes. We therefore

plotted these two parameters as a function of magnitude.

Tree Asymmetry Index

Pelt et al. (1992) proposed a topological index that measures the

asymmetry of a binary tree. The definition is based on the partition

asymmetry index

A B

DC

Figure 1. Parameters used to describe the topology of binary trees. (A) The number
of end collaterals is the ‘magnitude’ of the tree. Any given end collateral has a ‘depth’
value, which indicates the minimal number of collaterals in a path that connects the
root and the end collateral. One such path with three collaterals is indicated with a bold
line. The ‘height’ of the tree is the maximum depth occurring in the tree: in this
example it is 5. The ‘exterior path length’ is the sum of depths of the end collaterals, in
this example it is 28. (B) ‘Dichotomous’ tree (left) and ‘herringbone’ tree (right) of
magnitude m0 ¼ 8. (C) Each number indicates the ‘Horton--Strahler order’ of
a collateral. By definition each end collateral has order 1. Collaterals with children of
similar order k have order k þ 1. Collaterals with children of different orders k1 and k2

have order max(k1, k2). A ‘segment’ of order k is a maximum chain of collaterals of this
order. A segment of order 2 is indicated with a bold line. A ‘subtree of order 2’ is
enclosed by the stippled line. The ‘Strahler number’ is the highest order in the tree,
here it is 3. (D) Binary tree that results when the tree shown in C was pruned. This
operation cuts all end collaterals and the collaterals of the new tree are ordered again.
The segments of order 2 of the old tree become the end collaterals of the pruned tree.
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Apðrj ; sj Þ=
jrj – sj j
rj+sj – 2

;

which measures at each branch point j the relative difference between

the number of end collaterals rj and sj on the two subtrees emerging

from the branch point. For rj + sj < 2 it is set Ap(rj, sj) = 0. The tree

asymmetry index is the average of the Aps. There are two extreme forms

of binary trees: ‘herringbone’ or ‘totally unbalanced’ trees are fully

asymmetrical and have an asymmetry index approaching 1 (for trees of

high magnitude), whereas ‘dichotomous’ or ‘totally balanced’ trees, are

fully symmetrical and have an asymmetry index of 0 (Fig. 1B). It is clear

that being tree-structures, the asymmetry index of all axons that

arborize in the cortex must lie somewhere between these two

extremes. One interesting question is whether the asymmetry index

clusters around one point, or whether it clusters at various points,

perhaps correlated with the origins of the axon, e.g. the extrinsic

afferents cluster at one position, the intrinsic afferents at another, or

whether other factors such as cell type or laminar position of the

arborization influences the topology.

Horton--Strahler Analysis

For a more detailed analysis of different parts of the dendrogram, we

ordered the collaterals using the method proposed by Strahler (1952).

He first introduced it in studies of the topology of river networks, where

ordering begins naturally at the sources, i.e. at the smallest drainage

streams that have no tributaries themselves. This centripetal ordering

convention of the Horton--Strahler (HS) numbering scheme may seem

counterintuitive for the description of axonal organization or growth,

where the natural inclination is to begin numbering at the origin.

However, as many studies show, key features about the branching

behavior of river networks, dendritic trees and other natural occurring

binary trees can often be characterized by only two ratios (the

bifurcation and length ratio) when applying this ordering system.

Capturing essential features of axonal trees in a few key numbers greatly

facilitates comparisons between the axons of different types of neurons.

In this method, each collateral in a binary tree is given an order in the

following way (Fig. 1C). The end collaterals have all order 1. If the two

children of an inner collateral have order k, then the inner collateral is

assigned order k + 1. If one child has order k and the other an order

smaller than k, then the inner collateral is assigned to the larger order k.

Each path formed by consecutive collaterals of the same order k is called

an HS ‘segment’ of order k. Note again that segments can include many

collaterals.

The segment with the maximum order I contains the root collateral.

This number is called ‘Strahler number’. A tree has to be ‘pruned’ I – 1

times in order to remove all the branches so that only the stem of the

tree remains (i.e. the segment of order I in the original tree). ‘Pruning’

a tree is the operation that forms a new tree by ‘cutting’ all end

collaterals. The second order segments of the old tree become the end

Figure 2. Coronal view of reconstructed neurons and the dendrogram of their axonal trees. For this and Figure 3 the axon is indicated in red, axonal boutons in white, dendrites in
green and cortical layer borders as white lines. (A) Pyramidal cell in layer 2/3. Receptive field (RF) type, ocular dominance (OD) and size were as follows. Directional C (‘complex’) RF,
OD 7, size 1.2 3 1.4�. (B) Dendrogram of the layer 2/3 pyramidal cell shown in A. (C) Pyramidal cell in layer 5. S1 (‘simple’) RF, OD 7, size 0.9 3 0.7�. (D) Dendrogram of the layer 5
pyramidal cell shown in C. Scale bars ¼ 500 lm.
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collaterals of the new tree and the numbering system is adjusted in the

new tree (Fig. 1C,D).

A ‘subtree of order k’ consists of a segment of order k together with

all the branches that emerge directly or indirectly from this segment

(Fig. 1C). The Strahler number of this subtree is k.

Let Nk be the number of segments of order k in the tree, and Lk the

average length of these segments. N1 is the number of end collaterals,

and of course NI = 1. All other Nk are between these two values. The

‘bifurcation ratio’ of order k 2 [1, . . . ,I – 1g is defined as Nk/Nk+1. This

ratio measures the relative change of the number of segments as one

moves from a higher order to a lower order. The ‘length ratio’ of order

k 2 [1, . . . ,I – 1g is defined as Lk+1/Lk. This ratio measures the relative

change of segment length from a higher order to a lower order.

We call a binary tree ‘topological self-similar’ if all bifurcation ratios

are similar. For a topological self-similar tree with bifurcation ratio b, the

logarithm of the segment numbers Nk, plotted versus HS segment order

k, forms a straight line with slope –log(b). This is an immediate

consequence of the basic equation Nk=bI –kðk 2 ½1; . . . ; IgÞ: From this

equation it also follows that

I=
logðNkÞ
logðbÞ

+k

Fractal Dimension

We used the box-counting procedure (Mandelbrot, 1983) to assign each

axonal tree, embedded in the three dimensional space, a fractal

dimension. A similar procedure was used to determine the fractal

dimensionof dendritic trees (Caserta et al., 1995). The three-dimensional

space is coveredwith cubes of side length lk and the number of boxesMk

which intersect with the axonal branches of the tree are counted (Fig.

8A).We determinedMk for the values lk = 203 2k/2 lm,k = 0,1, . . . ,12, i.e.
lk is between 20 and 1280 lm. For ideal fractal objects the points of the

curve fk = (log(lk), log(Mk)) form a straight line and its negative slope

defines the fractal dimension of the object. For natural occurring fractal

objects the curve fk forms a straight line only for a limited range. In order

to find this region for an axonal tree, we first fitted a straight line

(regression line) through four consecutive points fu, f1+u, f2+u, f3+u (u =
0,1, . . . ,9) of the curve and determined the slope S(u) of this line

Figure 3. Coronal view of reconstructed neurons and the dendrogram of their axonal trees. (A) Basket cell in layer 2/3. S1 RF, OD 5, size 1.4 3 0.3�. (B) Dendrogram of the layer 2/3
basket cell shown in A. (C) Double bouquet cell in layer 2/3. Directional S1 RF, OD 7, size 1.1 3 2.0�. (D) Dendrogram of the double bouquet cell shown in D. Scale bars ¼ 500 lm.
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(Fig. 8B,C, inset). If the curve fk is a straight line, all local slopes S(u)

would have the same value. We therefore looked for four consecutive

local slopes S(u) that had the least variance, and defined the mean of

these local slopes as the fractal dimension of the axonal tree.

Branching Model
We used a Galton--Watson branching process with parameters pst, pel
and pbr (Jagers, 1975) to generate randomly branching axonal trees. The

parameters describe the probability of stopping growth, elongating, or

branching. In order to generate a tree, we started with one segment of

arbitrary length Dl = 1 lm and extended this segment by either adding

a segment of length Dl or by forming a branch point and adding two

children of length Dl. If the segment has elongated or branched, one or

two segments are added, which we call ‘end-tips’. Each of these end-tips

is elongated, branched or stopped with the same probabilities pel, pbr
and pst. This process produces newly formed end-tips (excluding the

end-tips that stopped growing). A binary tree grows by repeating this

procedure to the newly formed end-tips (Fig. 9A). Whether one end-tip

elongates, branches or stops is assumed to be statistically independent

from the elongation of other end-tips. A newly formed end-tip has

exactly three possibilities for its fate (to stop growing, branch or

elongate), therefore

pst+pel+pbr=1 ð1Þ

(these probabilities are fixed parameters). The tree will finally stop

growing (because no more end-tips are formed) if the following relation

holds (Jagers, 1975)

pel+2pbr < 1 ð2Þ

We enforced this relation so that the tree could not grow infinitely. Here

we focus on the probabilities pst, pel and pbr for which relation 2 holds,

and thus avoid the need to introduce explicit stopping rules that

prevent the tree from growing infinitely long. For convenience we

merge (1) and (2) into the form:

pst=1 –pel –pbr ; 0 <pbr <
1 –pel

2 ð3Þ

The probabilities pst, pel and pbr completely determine the distribution

of branch lengths of the grown tree. The probability that a given end-tip

grows by Dl is pel and that the end-tip stops growing (because the end-

tip forms a branch point or stops growing) is 1 –pel. Thus, the probability

that a branch (chain of segments between branch points or between

branch-points and end-tips that stopped growing) has length l = Dl � k is

fpel ðkÞ=ð1 –pel Þ � pk

el ð4Þ

where k is a natural number.

Results

A total of 39 axons were reconstructed completely and meas-

ured in 3D. Four examples of the reconstructions of different

neurons whose major axonal arbor is in layers 2 and 3 are shown

in Figures 2A,C and 3A,C, together with examples of the

dendrogram of the axon and the distribution of the boutons

(Figs 2B,D and 3B,D). The neurons are shown in the transverse

view, with dendrites coded green, axons red, and synaptic

boutons in white. The thickness of the dendrites and axons is

not represented. In the dendrogram the cell body is the origin.

For clarity, the collaterals (indicated by red vertical lines) have

been displaced horizontally and the white lines simply indicate

the branch points. The receptive field types of these neurons

and other properties are reported in the legends to Figures 2

and 3. Twenty-three neurons had spiny dendrites, 13 neurons

had smooth dendrites, and the remaining three were thalamic

axons of the lateral geniculate nucleus (LGN). The breakdown

according to layers and subtype (pyramid, basket, double

bouquet etc.) is given in the legend to Figure 4.

Number and Length of Collaterals

Calculations of average axon lengths in neocortex have been

based mainly on estimates of the percentage of neuropil

occupied by axon-like profiles (Foh et al., 1973; Braitenberg

and Schüz, 1991). Here we could measure the total lengths

(i.e. the summed length of the axon collaterals in the tree) of

individual axons directly. These ranged between 11.7 and

125.5 mm (average length 41.3 ± 20.9 mm, mean ± SD; Fig. 4A).

The axonal arborization of smooth cells were restricted to a

much smaller volume than spiny cells and thalamic afferents and

this was reflected in their average total axonal length (31.8 ±
11.7 mm, range 11.7--52.1 mm), which was smaller than that of

spiny cells (47.4 ± 23.8 mm, range 18.7--125.5 mm) and thalamic

afferents (35.5 ± 11.0 mm, range 27.0--48.0 mm). Only the

basket cells in layer 2/3 (36.0 ± 2.7 mm, range 32.9--37.9 mm;

n = 5) had a total axonal length comparable to spiny cells. The

biggest axonal arbors in terms of total length were made by the

pyramidal cells in layers 2 and 3 (3/5) and one layer 5 pyramidal

cell, which had total axon lengths in excess of 60 mm.

The number of collaterals of the axonal trees varied widely,

from 103 to 1403 (Fig. 4B). Although their average total axon

length was greater, spiny cells and thalamic afferents tended to

have fewer axon collaterals than the smooth cells. Basket cells

in layer 2/3 had about twice as many collaterals as the maximum

number of collaterals seen for spiny neurons and thalamic

axons. The average number of collaterals of the smooth cells

was 803 ± 329 (range 325--1403 ), that of the spiny cells and

thalamic afferents 306 ± 140 (range 103--641) and the collateral

lengths were correspondingly different for these two groups

(Fig. 4C). The smooth cells had median lengths for their

collaterals that varied between 23 and 50 lm (30 ± 7 lm).

The spiny cells had median lengths ranging from 64 to 167 lm
(104 ± 22 lm). The thalamic afferents had intermediate

collateral lengths, with the median ranging from 39 to 50 lm
(43 ± 6 lm). The longest collaterals were found on a layer 6

pyramidal cell whose axon was restricted to layer 6 (see Fig. 4C)

and a star pyramidal cell of layer 4 with diffuse branching

pattern (p4). The star pyramid cell had the lowest number of

collaterals of any cell.

Length Distribution of Collaterals

The distribution of collateral lengths over the entire axonal tree

was roughly similar for neurons within the group of spiny

neurons, smooth neurons and thalamic afferents. By inspection,

the distributions are approximately exponential, but have

a relative lack of very short ( <~20 lm) collaterals. Such short

collaterals would easily be seen in the light microscope, so their

unexpectedly low occurrence is not an artifact of reconstruc-

tion. Beyond this lack of very short collaterals, smooth neurons

and thalamic afferents had a higher proportion of short

( <~50 lm) collaterals than spiny neurons, reflecting the results

we found for the median collateral lengths (Fig. 4D--F).

Tree Magnitude and Length of End-collaterals

The end collaterals had median lengths that were generally

larger than the lengths of the inner collaterals (absolute

difference 28 ± 40 lm, range of differences between 19 and

203 lm). An extreme example was the star pyramidal cell of

layer 4 (p4), where the median length of the end collaterals was

~200 lm longer than that of the inner collaterals. However, for

many neurons (24/39) the absolute difference was <20 lm and

the two distributions were often (23/39) not significantly
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different (significance level 0.01). The number of end collaterals

is referred to as the ‘magnitude’ of the tree. The total number of

collaterals in the tree is twice the magnitude minus 1 (see

Materials and Methods). The magnitude and the mean length of

the end collaterals will be used in the topological and HS

analysis of the axonal trees and are shown in Figures 5 and 6.

Topological Analysis

In order to make an objective comparison of the axonal branch-

ing pattern of the 39 neurons, we applied a number of well-

established methods to define the topology of the axonal trees.

However, while these methods are frequently used to describe

natural structures (e.g. rivers and root systems), they are rare in

applications to neurons and thus require some introduction. We

apply them here, because these topological methods offer

compact descriptions based on quantitative measures of some

key aspects of the branching patterns of axons that are in-

dependent of the embedding in the three dimensional space.

Thus, topological analysis provides simple and direct compar-

isons between the different axon types that goes beyond the

obvious differences of axonal innervation patterns, such as the

differential selection of cortical layers or the formation of axonal

patches. Constancies of organizational form hidden from normal

metrical analyses may be revealed by topological analyses.

Topological Depth, Height, Exterior Path Length and

Magnitude

The ‘depth’ of a particular end collateral is a convenient

measure of the number of collaterals (including the root

collateral and the end collateral itself) along the shortest path

between the root and the given end collateral (see Fig. 1A). The

maximum depth of the end collaterals considered over the

whole arbor is called the ‘height’. The average height of all axons

was 21 ± 6 (range 12--37). Although the overlap was large, the

spiny neurons had a smaller height (18 ± 4, range 12--24) than

the smooth neurons (25 ± 7, range 17--37) or thalamic afferents

(25 ± 3, range 22--27).

A measure of the degree of collateral branching is given by

the sum of the depths of all the end collaterals: this sum is

referred to as the ‘exterior path length’. The average exterior

path length of the whole population of cells was 2999 ± 2420

(range 420--10467). It was smallest for the spiny neurons,

1624 ± 936 (range 420--4141), followed by the LGN axons with

3426 ± 486 (range 2869--3766). The largest exterior path length

was formed by the smooth neurons, with 5333 ± 2706 (range

1862--10467).

Axonal trees with similar ‘magnitude’ (the number of

end collaterals) had similar height and exterior path length

(Fig. 5A,B). The dependence on the magnitude m0 (or

Figure 4. Metrical characterization of the axon collaterals. (A) The total axonal length of individual cells was computed. (B) The total number of axon collaterals are shown for each
cell. (C) Median of the collateral lengths of each cell. Gray bars indicate the 20th and 80th percentiles of the distribution of collateral lengths. (A--C) open circles indicate smooth
cells, closed circles spiny cells and thalamic afferents. Abbreviations: p2/3, p4, p5, p6, pyramidal cells in layer 2/3, 4, 5 and 6; ss4, spiny stellate cells in layer 4. Pyramidal cells in
layer 5 and 6 and spiny stellate cells were sub-classified depending on the preferred layer of innervation (indicated in parenthesis in the labels). Lgn, X-type thalamic afferent (lgnX)
and Y-type (lgnY); b2/3, b4, b5, basket cells in layer 2/3, 4 and 5; db2/3, double bouquet cell in layer 2/3; sm2/3, unclassified smooth cell in layer 2/3. (D--F) Histogram of the number
of collateral lengths for the spiny neurons (D), the smooth neurons (E) and the thalamic afferents (F). The shaded area indicates the maximum and minimum number of collaterals
per bin for the different cells in a class. The solid line in each inset indicates the bin-wise median. Bin size is 10 lm. Median values of the pooled collateral lengths were 98.8 lm for
the class of spiny neurons, 28.5 lm for the smooth neurons and 45.0 lm for the thalamic afferents.
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equivalently on the number of end collaterals) of the height and

the exterior path length can be described reasonably well by

a power function of the form a � mb0: Based on the regression

lines in Figure 5A,B, we estimated a and b. For the height we

got a = 3.3 and b = 0.34, for the exterior path length a = 3.80 and

b = 1.21. The dashed lines in Figure 5A,B indicate the maximum

and minimum height and the maximum and minimum exterior

path length for trees of a given magnitude.

Figure 5C provides a comparison of the degree of topological

asymmetry of the axonal trees. Intuitively, the tree asymmetry

index is an average measure of the size difference between the

two subtrees that emerge from the branch points of the tree.

For example, a herringbone tree (Fig. 1B) of high magnitude is

maximally asymmetric (i.e. has an index of 1), because for any

branch point one emerging subtree is very small (consisting of

one end collateral), while the other emerging subtree is very big

(having many end collaterals). In contrast, a dichotomous tree

(Fig. 1B) is maximally symmetric (i.e. has an index of 0), because

for any branch point the two emerging subtrees have an equal

amount of end collaterals. Despite their differences in size and

complexity, the asymmetry index is very similar for all the

axonal trees (0.53 ± 0.05, range 0.42--0.65, Fig. 5C). Typically,

one subtree emerging from a branch point of an axonal tree

has about three times as many end collaterals as the other

subtree.

Horton--Strahler Analysis

The analysis of the collateral length showed that end-collaterals

are typically shorter than the inner collaterals. This indicates

that axon collaterals form a heterogeneous population that

divided into classes of different metrical and topological prop-

erties. The topological and metrical measures applied so far are

global in the sense that they do not distinguish collaterals of

different groups. We therefore use here the Horton--Strahler

method to order collaterals of an axonal tree into a hierarchy

and to compare the different levels. Although ‘collateral’ takes

a slightly different meaning in this context (and is called

‘segment’), in the analysis we basically compare the change in

segment number and segment length between the different

levels, and also compare these changes between the different

axonal trees.

The Strahler number I is a measure of the degree of branching

of a tree. It is derived by determining how many times the tree

has to be pruned in order to cut off all branches. Each ‘pruning’

removes all the end collaterals. The second order collaterals of

the old tree become the end collaterals of the new tree and the

numbering system is adjusted in the new tree (Fig. 1C,D). The

more ‘complex’ the branching, the higher the Strahler number.

For the axonal trees of smooth cells, the Strahler number ranged

between 6 and 7 with one exception, a basket cell in layer 4,

where I = 5. Spiny cells and thalamic afferents had Strahler

numbers between 5 and 6. (It should be noted that the thalamic

afferent root was taken as the entry point to the cortical grey

matter and not the origin of the axon in the thalamus, where

additional branching might occur.) With one exception, the

spiny cells of type p2/3 had a Strahler number of 6, and, again

with one exception, layer 6 pyramidal cells had a Strahler

number of 5.

In the Horton--Strahler (HS) numbering scheme, the end

collaterals are the first order segments of the axonal tree for

which the number (N1) and average length (L1) are shown in

Figure 6A,B. The number of first order segments (the end

collaterals) is linearly related to the total number of collaterals.

This number varied widely, from 54 for the star pyramid of layer

4, to 702 for a layer 3 basket cell. As might be expected, the

average length of end collaterals dominates the distribution and

thus is close to the median length of all collaterals (Fig. 4C).

Bifurcation Ratio

A basic property of binary trees is that the number of segments

of a given order increases as the order number decreases. The

topological measure of the relative increase of segments from

a higher to a lower order is termed the bifurcation ratio. More

exactly, the bifurcation ratio of order k is the ratio Nk/Nk+1 of

the number of segments of order k and k + 1. Bifurcation ratios

are always > 2, but otherwise unlimited (in theory). For many

natural occurring trees [including dendrites of rat neocortex

(MacDonald, 1983)] the bifurcation ratios are rather indepen-

dent of the order and have a value between 2 and 5.

The first and second order bifurcation ratios of the recon-

structed axonal trees are very similar (Fig. 6C). The first order

bifurcation ratio (N1/N2, circles) ranges between 2.8 and 4.5

A B C

Figure 5. Topological characterization of the axon collaterals. (A) Log--log plot of height of an axonal tree as a function of magnitude. Dashed lines indicate the maximum and
minimum height of all binary trees of a given magnitude. Thin black line indicates regression line through data points (r¼ 0.83, a¼ 0.52, b¼ 0.34). (B) Log-log plot of exterior path
length of an axonal tree as a function of magnitude. Dashed lines indicate the maximum and minimum exterior path length of all binary trees of a given magnitude. Thin black line
indicates regression line through data points (r¼ 0.99, a¼ 0.58, b¼ 1.21). (A, B) Open circles indicate smooth cells, closed circles spiny cells and stars indicate thalamic afferents.
(C) Asymmetry index of each axonal tree. The tree asymmetry index equals zero when on average at each bifurcation the two subtrees have an equal amount of end collaterals (i.e.
maximally symmetry) and approaches 1 when at each bifurcation one of the subtrees is an end collateral (maximally asymmetry).
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(mean 3.3 ± 0.3), the second order ratio (N2/N3, squares)

between 2.9 and 4.5 (3.4 ± 0.4). For the neurons with dissimilar

bifurcation ratios, no clear pattern could be observed concern-

ing the size relation. For example, the bifurcation ratio of order

1 was bigger than the bifurcation ratio of order 2 in the case of

the double bouquet cell, but smaller for one of the spiny stellate

cells which had its major axonal arborization within layer 4.

The bifurcation ratios of higher orders are more varied, but

the vast majority of the ratios (92%) still lie between 2 and 4

(Fig. 6D). The mean of the pooled ratios of order > 2 is 2.9 ± 0.9

(range 2.0--7.0). The mean of the pooled ratios of all orders is

3.1 ± 0.8 (range 2.0--7.0).

We also estimated the common bifurcation ratio b, by plotting

for each tree the number of segments of order k + 1 against the

number of segments of order k (Fig. 7B). The points lie on

a straight line through the origin, which confirms that our entire

sample of axons (both spiny and smooth) have similar bifurca-

tion ratios (b = 3.32, r = 0.99). This result suggests that all the

axons are topologically self-similar. Indeed, Figure 7A demon-

strates that, despite the variances in higher order bifurcation

ratios mentioned above, the overall relationship between

log(Nk) and order k for individual axons is linear. Furthermore,

the HS index predicted by log(N1)/log(b) + 1 is in good

agreement with the observed values (Fig. 7C).

A B

DC

E F

Figure 6. Horton--Strahler analysis of axonal trees. (A) Number of first order segments (i.e. number of end collaterals or magnitude) of each axonal tree. (B) Mean length of the first
order segments for each axonal tree. Gray bars indicate the 20th and 80th percentiles of the distribution of first order segment lengths. (C) First and second order bifurcation ratio for
each axonal tree. (D) Higher order bifurcation ratios. (E) First and second order length ratio for each axonal tree. (F) Higher order length ratios for each axonal tree.
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Length Ratio

The length ratio measures the relative increase of the length of

the collaterals from a lower to a higher order. The length ratio of

order k is the ratio Lk+1/Lk of the average length of segments of

order k + 1 and k. Length ratios can take any value > 0. For
naturally occurring tree structures [including dendrites of rat

Purkinje cells (MacDonald, 1983)] the length ratio is relatively

independent of the segment order and typically has values

between 1 and 2.

For the reconstructed axonal trees, the average length ratios

of order 1 (L2/L1, Fig. 6E, circles) is 1.7 ± 0.6 (range 0.8--4.2). For

the second order length ratio (L3/L2, Fig. 6E, squares) the

average is quite similar, 1.5 ± 0.7 (range 0.5--4.1). Most ratios

are > 1. For the first order ratios this means that the end collat-

erals (the segments of order 1) are typically smaller than the

second order segments. As with the bifurcation ratios, no clear

pattern was observed concerning the size relationship of the

first and second order length ratios [i. e. Fig. 6E, db2/3, ss4(L4)].

As with the bifurcation ratio, the higher order length ratios

are more varied (1.2 ± 1.1, range 0.03--5.9, Fig. 6F). The average

of the pooled length ratios of all orders is 1.4 ± 1.0 (range

0.0--5.9). The average length of segments of order k + 1 and the

average length of segments of order k, pooled for all neurons

and all orders, did not correlate (r = 0.39). Thus, in contrast to

the branching ratio (Fig. 7B), there is no global length ratio that

applies to all axons and all orders.

Fractal Analysis

Whereas HS methods measure the topological ‘complexity’ of

a tree in terms of the number of times a tree can be pruned,

fractal methods measure its dimensional ‘complexity’. The

higher the fractal dimension of the tree, the bushier it appears

(Fernández and Jelinek, 2001). To the extent that axons are

fractal at all, they have the fractal property of self-similarity.

Natural objects are not ideal mathematical objects, and so they

are not expected to exhibit exact fractal self-similarity. Never-

theless, they may show some degree of self-similarity over

a limited range of scales (in our case, spatial scale). A large

axonal tree with constant HS bifurcation and length ratios

should display some scale invariance (Tarboton et al., 1988).

Although our axons have quite strong fluctuations of higher

order branching and length ratios, we expected to find evidence

of this invariance by fractal analysis.

We used the box-counting algorithm to determine the fractal

dimension of axonal trees embedded in their three dimensional

space (Fig. 8A,B). The fractal dimension of axons of all cells was

rather similar, with a slight tendency of smooth cells to be

higher (Fig. 8B,C,D). Spiny cells and thalamic afferents have an

average fractal dimension of 1.5 ± 0.1 (range 1.2--1.7), for

smooth cells it is 1.7 ± 0.2 (range 1.4--1.9). Some neurons show

a fairly straight line in the box-counting approach (Fig. 8B,C),

indicative of fractal self-similarity. However, we also found

axons for which the curve l/M(l ) hardly contained a straight

segment (�7/39), indicating a lack of fractal self-similarity.

Growth Model

Apart from some specific lengthening of some high-order axonal

segments, the metrical and topological aspects of the axonal data

can be described by a simple growthmodel. Themodel we used is

a Galton--Watson branching process, which is one of the simplest

and best understood (Jagers, 1975). A tree is grown (Fig. 9A) by

repeatedly elongating its end-tips by 1 lm(with probability pel) or

by branching the end-tips into two new branches of length 1 lm
(with probability pbr), causing two new end-tips. It is also possible

to stop the growth of an end-tip (with probability pst).

Estimation of the Parameters pst, pel and pbr for the

Reconstructed Trees

To test whether the Galton--Watson branching process is

a reasonable model of the terminal branching of axonal trees,

we estimated pst, pel and pbr for the two major subdivisions of

the axonal types — those originating from spiny cells and

thalamic afferents, and those of smooth cells. Note that because

of relation (1) it is enough to estimate pel and pbr. We modeled

only the growth of the terminal arbors (i.e. subtrees of order 2

or 3), which constitute most of the axon. We did not model the
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main axonal trunks because they are rather few in number

and varying considerably in length (see Figs 2 and 3), thus

compromising any statistical comparison with the simple

Galton--Watson branching process. We described each of the

two axonal types (spiny and smooth) by the histogram of

branch length (fpel ðkÞ), the first bifurcation and length ratio, and

for the subtrees of order 3 also the second order bifurcation and

length ratio (Fig. 9B,C).

In order to estimate pel, we fitted for each population the

function fpel to the histogram of branch length (equation 4).

Reasonable fits were obtained for pel = 0.9927 (spiny popula-

tion) and pel = 0.9780 (smooth population). The best fit was

found byminimizing the least square error using the Levenberg--

Marquardt algorithm. In order to estimate pbr we picked values

in the interval

0 <pbr <
1 – pel

2

because the distal trees have to stop growing at some point (see

equation 3). For each picked value pbr we produced 10 000

trees and determined the first and second order bifurcation and

length ratios of the generated trees with Strahler number 2 or 3.

The value pbr for which the resulting ratios were closest to the

observed ratios for the population of distal subtrees was

selected (spiny neurons: pbr = 0.0025, smooth neurons pbr =
0.0074). A comparison shows that for both groups, spiny and

smooth neurons, parameters pel, pbr and pst exist that reproduce

to a good approximation the branching ratio, bifurcation ratio

and branch length distribution of the distal subtrees of the

reconstructed axonal trees (Fig. 9B,C).

Discussion

Our results show that there are strong metrical and topological

similarities between the axons of recognized neuron types,

despite large differences in the appearances of the axonal arbors

of these many different types of cortical neurons. These similar-

ities are intriguing, especially in light of the differences in the

appearance of the axons when viewed in the conventional 2D

format (Figs 2A,C and 3A,C). The laminar specificity of the axons

and differences in the lateral and vertical extents of the axons is

clearly a major cue to distinguishing between different neuronal

types. However, this 2D format does not give much insight into

the branching patterns of the axons. The dendrograms illustrated

in Figures 2B,D and 3B,D are much more revealing of the

qualitative similarities and differences in branching patterns of

different axons. While classifications of neuronal types have
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Axonal fractal dimension for each neuron.
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proceeded well without using quantitative methods, any deeper

consideration of the structure of axons requiresmore systematic

and quantitative methods, some of which we have applied here.

Simple measures, such as the lengths of axons and the order,

number, and length of branches are needed, since there are so

few direct measurements of filled cortical axons in the litera-

ture. Here the 2D dendrogram is invaluable as a means of

organizing and representing the axonal tree. In the dendrogram,

the axonal branches and their relative lengths, and the tree-like

structure of the axons are readily apparent, quantitative meas-

urements are easily made, and the topology of the axonal trees

can be characterized.

Similarity of Branching Rules

Our topological (Fig. 5) and HS analysis (Fig. 6) show that all the

axons occupy a relatively restricted region of the possible

parameter space. Within this sub-space we could not detect

a consistent and distinct signature for the different cell-types.

For example, the axonal tree height and exterior path length

tended to be smaller for the smooth neurons than the spiny

neurons, suggesting that a topological distinction between

these two classes might be possible. However, both these

numbers are strongly correlated with the magnitude of the

tree (Fig. 5A,B) because, for trees of a given magnitude, the

height and exterior path length must fall within a range whose

lower and upper limits themselves increase with magnitude

(Fig. 5A,B, lower stippled lines). Of course, within this range, the

values could still be arbitrary. But they are not. Instead, for all

axons examined, the dependence on the magnitude can be

described by just two functions; one for the height and the

other for the exterior path length (Fig. 5A,B). This surprising

regularity suggests that the axonal branching pattern of all

neurons, spiny or smooth, is related and follow similar branch-

ing (growth) rules. This hypothesis is further strengthened by

the analysis of the HS bifurcation and length ratios.
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Figure 9. Random branching model of the distal part of axonal trees. (A) Branching model (Galton--Watson branching process). Each end-tip (squares) grows and forms new end-
tips by adding a segment of length 1 lm (with probability pel) or by forming a branch point and adding two segments of length 1 lm (with probability pbr). Each end-tip can also stop
growing (with probability pst). (B) Comparison of randomly generated trees with the distal subtrees of axons of spiny neurons. Upper left panel: example of a randomly generated
tree with Strahler number 3 (pst ¼ 0.0048, pel ¼ 0.9927, pbr ¼ 0.0025). Branching angles were arbitrary chosen (60�). Ten thousand trees were produced: 641 trees had Strahler
number 3; 2678 trees had Strahler number 2; and 6624 had Strahler number 1. Upper right panel: histogram of branch lengths of the randomly generated trees with Strahler number
3 (solid line). For comparison, the histogram of pooled branch length of the reconstructed axonal subtrees with order 3 of spiny neurons is also shown (dots). Bottom left panel: first
(b2,1, b3,1) and second (b3,2) order bifurcation ratios of randomly generated trees with Strahler order 2 and 3 (white bars). The corresponding ratios of the reconstructed axonal
subtrees with order 2 and 3 of spiny neurons are shown in black bars. Bottom right panel: First (l2,1, l3,1) and second (l3,2) order length ratios of randomly generated trees with
Strahler order 2 and 3 (white bars). The corresponding ratios of the reconstructed axonal subtrees with order 2 and 3 of spiny neurons are shown in black bars. (C) Comparison of
randomly generated trees with the distal subtrees of axons of smooth neurons (pst ¼ 0.0146, pel ¼ 0.9780, pbr ¼ 0.0074). Ten thousand trees were produced: 641 trees had
Strahler order 3; 2643 trees had Strahler order 2; and 6653 trees had Strahler order 1. The description of the four panels is similar to B. Scale bars ¼ 100 lm.
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Horton--Strahler Analysis

The HS method has been applied successfully to both physical

and biological tree-like structures (for example, river networks,

blood vessels, and trees). The HS ordering was useful for our

application, because it expresses the hierarchy between seg-

ments based on patterns of branching, and therefore allows us

to investigate axonal structure on a finer level. In the original HS

application of river systems, a higher order segment provides

a branch that drains equivalent lower order (more peripheral)

tributaries. In the case of the axons, the higher order segment

can be interpreted as a source branch that gives rise to (possibly

many) hierarchically equivalent lower order branching patterns.

The highest order segment is the trunk whose origin is at the

soma.

The HS ‘bifurcation’ ratio measures the relative change in the

number of hierarchically equivalent segments when moving

distally from one segment order to the next. The length ratio

measures the relative change in average segment length when

moving distally from one segment order to the next lower, and

so indicates the degree of extension of the tree. The HS method

has proved useful, because the bifurcation ratios and length

ratios of natural tree-like structures turned out to be relatively

insensitive to segment order, i.e. natural trees can often be

described by a constant length ratio and a constant bifurcation

ratio, which indicates topological self-similarity.

We found that the bifurcation ratios of all orders and all

investigated neurons can be reasonably well described with one

global bifurcation ratio (Fig. 7A,B). Thus each axonal tree is, to

a first approximation, topological self-similar. This offers a great

simplification in that the number of segments of similar order is

fully determined by only three variables: the Strahler number,

the global bifurcation ratio, and the segment order (see Materi-

als and Methods). In fact, the number of segments of similar

order is only dependent on the Strahler number and the

segment order, because the bifurcation ratio applies globally

to all axons. In particular, the Strahler number is the only

determinant of the number of end-collaterals (end-collaterals

have always segment order 1), and therefore of the total number

of axonal branches that an axonal tree can form (Fig. 7C).

The situation for the length ratio was different in that we did

not discover a global length ratio that applied to all axons and all

segment orders. Nevertheless, the first and second order length

ratios are also rather similar for the different cells (Fig. 6E),

fluctuating around a mean value 1.6. The global bifurcation

ratio was 3.3. These values are within the range for many

naturally occurring tree-like structures (MacDonald, 1983).

These observations suggest that the topology of axons may be

dominated by fundamental principles of construction [for

example, simple growth rules that optimize the distribution of

metabolic materials through a space-filling branching tree

(Changizi, 2001)], rather than by the need to make connections

to very specific targets.

Of course, it is also clear that neurons do have a strategy of

making some intra-areal long range connections, and so one

might expect greater variances in the ratios for higher order

segments. Indeed, higher-order ( > 2) bifurcation and length

ratios of axons do vary more than those of the lower orders

(Fig. 6C--F). Their increased variance is partly explained on

numerical grounds. The data necessarily contain a smaller

number of high order segments than low ones. For example,

orders 5--7 never have > 7 segments for the individual axonal

trees. The increased variance in the length ratio is also partly

due to the inhomogeneous extension of higher order seg-

ments. It is often one or a few of these high order segments that

extend much further than other segments of similar order.

Usually, these long segments are formed by the vertical or

horizontal running axons of spiny neurons or thalamic afferents

that innervate different layers or functional columns. Basket

cells can also form such segments.

If these few segments all have the same order, the result will

be a large length ratio [i.e. Fig. 6F, p2/3:C-E, ss4(L4):B, lgnY].

However, these obviously extending segments are often of

different orders. The admixture of very local smaller segments

results in a smaller length ratio [i.e. Fig. 6F, p6(L4)]. In this sense,

the large variation of length ratios of higher orders indicates that

there is at least some regional specificity in the axonal tree. That

is, a few collaterals will break the default axonal growth rule in

the interests of extending the arbor to a more distant cortical

region. However, there are clearly many ways how generation of

branches can be introduced in a tree, and the question to what

extent the methods of Horton and Strahler captures the true

biological development of axonal trees needs further analysis.

Tree Complexity

The Strahler number (i.e. the number of times a tree can be

pruned) gives an indication of the ‘complexity’ of axonal

branching. The number can vary up or down with increasing

magnitude. For example, for the herringbone tree the Strahler

number is a constant 2, which is the lowest possible Strahler

number of a binary tree. For the dichotomous tree the Strahler

number equals the height of the tree and no other binary tree of

smaller magnitude can form higher Strahler numbers. Smooth

cells, which tend to have higher magnitudes (i.e. more end

collaterals) than spiny cells, also tended to have a Strahler

number that was 1 or 2 greater than the typical number of 5--6

for most spiny cells and thalamic afferents (Fig. 7C). The layer 6

pyramidal cells had the least complex branching and thus the

lowest Strahler number (5).

Another more frequently applied measure of the complexity

of axonal shape is the fractal dimension, which showed a weak

tendency to be higher for smooth cells (Fig. 8D). Again, this

suggests that the axons of smooth cells are slightly more

complex than spiny neurons.

Growth Model

Based on topological and metrical properties of adult trees

alone, it is difficult to deduce the precise growing rule that

generates the tree. Nevertheless, growing rules which are not

consistent with the observed parameters can be excluded. For

example, the measured fractal dimension of retinal ganglion

dendrites is about 1.68 (Caserta et al., 1995), which is similar to

the fractal dimension of a tree structure grown by diffusion

limited aggregation (‘DLA cluster’) in two dimensions (Tolman

and Meakin, 1989). This has led to the suggestion that dendrites

are created by this process (Caserta et al., 1990). For cortical

axons, this growth process can be ruled out. The fractal

dimension of the reconstructed axonal trees is always <2 (Fig.

8D), while three dimensional DLA clusters have a fractal di-

mension of ~2.5 (Tolman and Meakin, 1989).

Galton--Watson branching processes are the oldest and best

understood branching processes. They appear in many variants

and are applied in many sciences (Jagers, 1975), including the

modeling of dendritic trees (Kliemann, 1987). We used it here

in its simplest form to simulate axonal branching. Its key
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properties are constant elongation, branching and stopping

probabilities, and the assumption that these events are statistic-

ally independent for the end-tips of the growing tree. Despite

its simplicity, the model produces trees with bifurcation ratios,

length ratios and branch length distributions that are similar to

the ones observed for the spiny and smooth population of the

reconstructed neurons (Fig. 9B,C).

The model fails to reproduce finer details of the axonal trees,

such as their lack of very small branch lengths (Fig. 9B,C). This

indicates that for a better fit, the assumption of constant

probabilities should be relaxed. In addition, the model simulates

only the distal subtrees of the axonal trees (i.e. subtrees which

have a root of order 2 or 3) and fails to predict bifurcation and

length ratios of higher order (see Fig. 9B,C). The model’s

prediction of the second order bifurcation ratio of the subtrees

of order 3 fitted worst. The reason for this failure is that the

simple model does not contain a mechanism for atypical

elongation of a few high-order branches (‘specific’ branching),

as described above.

While many studies model dendritic trees, for references see

Van Pelt et al. (2001), there is only one study that attempted to

model the local branching of axonal trees (Nelken, 1992). The

model used in the study of Nelken (1992) is also a Galton--

Watson branching process, but slightly more complicated than

our approach because it involves the distinction of several types

of axonal branches. Although the model results were compared

with data from axons of the somatosensory cortex of the mouse,

the comparison was qualitative and no details about the fitted

model parameters were given.

Conclusion

At face value, the structure of the axons of various types of

cortical neurons seems to be distinctly different from one

another. However, the topological structure of axons is not

easily detected by simple observation. Therefore, we have

applied a battery of analyses that are sensitive to the topological

characteristics of the reconstructed axonal trees.

Surprisingly, our results revealed no dramatic differences in

the fundamental organization of the axonal arbors of neurons as

distinct as basket cells and pyramidal cells, except for their

scales of collateral length. Instead, we found a marked topo-

logical resemblance between the trees of all axons, suggesting

that they all grow according to the same basic rules. We have

demonstrated that even a simple three-parameter axonal

growth model can generate trees with characteristics that are

nearly indistinguishable from those of intra-areal cortical axons.

Obviously there are many other branching processes that

might also produce the observed length ratios, bifurcation ratios

and branch length distributions of the distal subtrees of the

measured axons. Much more analysis is needed to specify more

completely the branching process of axonal trees. In particular,

a simple mechanism for the atypical collateral extension that

seems to support clustering of the tree branches in 3D space,

would be a useful next step.

Although we now can describe the generic structure of

axons, the particular instantiation of an axon in 3D space is

another matter. Presumably, the 3D space instantiation will take

the topological rules as growth constraints, and configure

themselves to satisfy connection constraints, which have not

been addressed here.

That even our simple model reproduces the observed values

raises the possibility that only a minimal set of specific rules is

actually usedwhen the axon of any type of cortical neuron grows

and branches to form connections with other neurons. Small

parametric adjustments in the rules could be sufficient to explain

the different macroscopic structures of axons that are (superfi-

cially) characteristic of different neuronal types. In this context it

is interesting to note that a simple generation rulewas also found

for the placement of boutons along the branches of cortical

axons (Braitenberg and Schüz, 1991; Anderson et al., 2002).

These simplifications have interesting implications for models of

the development of complex neuronal networks such as cortex.
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