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Abstract
Malaria has been treated for over 350 years with quinine and quinine-derived drugs. However, in

several areas of the world, some strains of the malarial parasite Plasmodium falciparum have

developed resistance against these drugs. Recently, the World Health Organization (WHO) rec-

ommended the use of artemisinin-combination treatments (ACT) as the first-line treatment for

multidrug-resistant falciparum malaria. The WHO estimates that current supplies of artemisinin

are sufficient for only 30 million ACT, and is foreseeing the need for 130–220 million ACT in

2005 (WHO, 2004). Current research on the production of synthetic artemisinin-like compounds

by the Roll BackMalaria project, pharmaceutical companies and academia resulted in a promising

synthetic artemisinin-like compound (OZ277) which is currently undergoing phase I clinical

trials. In about 5 years this drug is expected to be approved andmade available to the public, how-

ever, meeting current global demands for ACT depends on the immediate availability of afford-

able artemisinin-derived drugs. This will involve expansion of the area under cultivation of

Artemisia annua and improvedmethods of cultivation andprocessing of rawmaterial, associated

withmore efficientmethods for extraction andpurificationof artemisinin fromplantmaterial. This

review addresses the agricultural, environmental and genetic aspects that may be useful in the

successful large-scale cultivation of A. annua and for producing the antimalarial artemisinin in

areaswhere it is urgently needed today. It also includes geographic aspects (latitude and altitude),

which will helpmake decisions about crop establishment in tropical countries, and includes a list

of Good Agricultural and Collection Practices for A. annua.
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Introduction

Bouts of chills (ague) and fever lasting several hours and

at every 3 or 4 days, muscle ache, headache, diarrhoea

and vomiting are symptoms commonly associated with

malaria. If the disease is not treated, the spleen and the

liver become enlarged, anaemia develops and jaundice

appears. General debility, anaemia and clogging of the

vessels of cerebral tissues are followed by coma, and

eventually death (White, 1996). Cerebral malaria is most

commonly seen in infants, pregnant women and non-

immune travellers to endemic areas. The term malaria

( paludisme in French, paludismo in Spanish and Portu-

guese) first entered the English medical literature in the

first half of the 19th century and the word was derived

from the Italian name for the disease (mala ¼ bad,

aria ¼ air). Among infectious diseases, malaria is only* Corresponding author. E-mail: jorge.ferreira@ars.usda.gov
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second to AIDS, and costs Africa ca US$12 billion a year

in lost gross national product (Roll Back Malaria, 2004).

In recent years, the malaria epidemic has worsened, or

at best stabilized, but not improved in any African

country. Unfortunately, there are few success stories of

malaria eradication, such as Taiwan and Jamaica, which

had their growth accelerated after eradication: 1961 for

Taiwan and 1958 for Jamaica (Gallup and Sachs, 2001).

Each year, malaria afflicts over 300 million people world-

wide, killing from 0.5 to 2.7 million, mostly children.

Over 90% of these cases occur in the sub-Saharan

Africa, but large areas of Asia, Central America and

South America have high incidences of the disease

(Nussenzweig and Long, 1994). Out of 37 countries and

territories, members of the Pan American Health Organiz-

ation (PAHO), 21 still have active malaria transmission

(PAHO/WHO, 1998). Although there are four species of

Plasmodium which can cause malaria, the most life-

threatening species is P. falciparum.

In the 1960s, P. falciparum malaria started to show

signs of resistance against quinine-derived drugs. This

resistance was reported from places as far apart as

Brazil, Colombia, Malaysia, Cambodia and Vietnam,

making it harder to control the disease. In addition,

over 1000 cases of malaria occur in the USA, and mos-

quito species capable of transmitting the disease are

found in all 48 states of the continental USA. In 1969,

the Chinese army found that a diethyl ether extract of

Artemisia annua L., or qinghao in Chinese (Fig. 1), had

an excellent effect against malaria, and in 1972 artemisi-

nin was identified as the main active ingredient (Anon-

ymous, 1982). Artemisinin (qinghaosu) (Fig. 1) is a

sesquiterpene lactone of the cadinane series. In addition

to a lactone group, artemisinin contains an endoperoxide

bridge, which is rarely found in secondary metabolites,

and is responsible for the antimalarial and anti-cancer

activity. Complete chemical (de novo) synthesis of artemi-

sinin was achieved by several research groups (Schmid
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Fig. 1. Exomorphology of Artemisia annua. Left: 2-month old Artemisia annua plant (grown from Artemis seed, Mediplant,
Switzerland). Right: upper insert—close-up showing details of leaves, capitula and hermaphroditic florets (bar ¼ 2 mm)
before anthesis; central insert—10-celled glandular trichome, found in leaves and flowers, accumulates essential oils and
artemisinin in the upper subcuticular space (as pictured); lower insert—artemisinin (qinghaosu) molecule, a sesquiterpene
lactone with a peroxide bridge, which is effective against malaria and cancer.
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and Hofheinz, 1983; Xu et al., 1986; Ravindranathan et al.,

1990; Avery et al., 1992). The procedures require several

steps, and can start from different raw materials. A com-

prehensive review on the chemistry, synthesis and semi-

synthesis of artemisinin has been published by Ziffer et al.

(1997). However, low yield, complexity and high cost

indicate that the isolation of artemisinin from the plant

is the most economically feasible method for its pro-

duction at present.

Artemisinin, along with taxol, is considered one of the

novel discoveries in recent medicinal plant research, and

its isolation and characterization have increased the inter-

est in A. annua worldwide. Increased production of arte-

misinin may also allow ready utilization of its recently

established anti-cancer attributes (Efferth et al., 2001).

Artemisinin is the base compound for the synthesis of

more potent and stable antimalarial drugs with reduced

toxicity to humans. Artemisinin is effective against all

Plasmodium species, including P. vivax and P. falci-

parum, two of the four species that cause human malaria.

A multi-organizational approach launched in 1999, and

organized by the Medicines for Malaria Venture involved

academia, pharmaceutical companies and research insti-

tutes. This effort resulted in a synthetic triloxane peroxide

named OZ277. The drug is effective, affordable and

reported to last longer in the body than artemisinin

(O’Neill, 2004; Vennerstrom et al., 2004), but is still at

least 5 years away from being commercially available.

Due to the steady spread of chloroquine-resistant

malaria, and the lack of affordable and efficient vaccines

or alternative drugs, the search for effective, safe and

affordable antimalarial drugs is one of the most pressing

health priorities worldwide (Delhaes et al., 2003). Pre-

vious reviews addressing cultivation aspects of A. annua

for artemisinin production have been published by

Laughlin (1994), Ferreira et al. (1997) and Laughlin et al.

(2002). This review will focus on the agricultural,

environmental and manufacturing aspects of artemisinin

production, on recent advances in the genetics of

A. annua, world demand and available drugs. Besides

an updated literature, this review will discuss geographic

aspects important for crop establishment around the

world, and presents a tentative list of good agricultural

and collection practices for Artemisia annua.

Artemisinin and Artemisia annua

The WHO estimates that ca 32 million doses of artemisi-

nin-based antimalarial drugs are available and urges the

production of 130–220 million by 2005 (WHO, 2004).

The urgency in increasing the production of antimalarial

drugs based on artemisinin calls for immediate action in

increasing the area cultivated with A. annua in Asia,

establishing its cultivation in Africa and in increasing effi-

ciency in the production of artemisinin by maximizing its

production per unit area and increasing the efficiency of

processing A. annua leaves into artemisinin.

Artemisinin has been detected in leaves, small green

stems, buds, flowers and seeds of A. annua (Acton

et al., 1985; Zhao and Zeng, 1985; Liersch et al., 1986;

Martinez and Staba, 1988; Singh et al., 1988; Madhusuda-

nan, 1989; Ferreira et al., 1995a). Artemisinin has not

been reported in roots of field-grown plants (Pras et al.,

1991; Klayman, 1993; Ferreira et al., 1995a) or pollen,

and the detection of artemisinin from seeds appears to

be due to the presence of floral debris because seeds

have no glandular trichomes (Ferreira et al., 1995a). Arte-

misinin accumulates in glandular trichomes (Figs 1 and 2),

Fig. 2. Hermaphroditic florets in capitula of Artemisia
annua. Top: wild-type A. annua with biseriate glandular tri-
chomes described in detail by Duke et al. (1994) in leaves
and Ferreira and Janick (1995a) in flowers. Bottom: gland-
less mutant, which contains no artemisinin or related
compounds.
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which are present only on leaves, stems and flowers of

the plant (Duke et al., 1994; Ferreira et al., 1997).

Production of artemisinin under in vitro conditions has

attracted the attention of several investigators due to the

success in the production of a few natural compounds of

medicinal value. Attempts to produce artemisinin and

related compounds by tissue culture systems have been

reviewed by Woerdenbag et al. (1994b), Ferreira et al.

(1997) and Ferreira and Janick (2002), but the unstable

and low yields are unattractive for commercial purposes.

Distribution and geographic range of Artemisia
annua

Artemisia annua (family Asteraceae), also known as

qinghao (Chinese), annual or sweet wormwood, or

sweet Annie, is an annual herb native to Asia, most prob-

ably China (McVaugh, 1984). Artemisia annua occurs

naturally as part of the steppe vegetation in the northern

parts of Chahar and Suiyuan provinces (408N, 1098E) in

Northern China (now incorporated into Inner Mongolia),

at 1000–1500m above sea level (Wang, 1961). The plant

now grows wild in many countries, such as Argentina,

Bulgaria, France, Hungary, Romania (cultivated for its

essential oil), Italy, Spain, USA and former Yugoslavia

(Klayman, 1989, 1993). In addition, it has been intro-

duced into experimental cultivation in India (Singh

et al., 1986), Vietnam, Thailand, Myanmar, Madagascar,

Malaysia, USA, Brazil, Australia (Tasmania) and in

Europe into the Netherlands, Switzerland, France and as

far north as Finland (Laughlin et al., 2002).

The geographic range of A. annua is paramount in

determining areas for potential cultivation (Fig. 3).

Although A. annua originated in relatively temperate

latitudes it appears it can grow well at much lower tropical

latitudes with lines which are either native to these areas

(Woerdenbag et al., 1994a) or which have been adapted

by breeding (Magalhães and Delabays, 1996). The current

availability of late-flowering clones make it possible to cul-

tivateA. annua in areas whichwere previously considered

unsuitable due to their proximity to the equator, and short

photoperiod. The high artemisinin concentrations (0.5–

1.5%) in the leaves of some of these clones could allow

high artemisinin yields in tropical latitudes, such as Viet-

nam, Madagascar and sub-Saharan Africa, even though

the leaf biomass may not be as high as some strains of

A. annua grown in temperate latitudes (see ‘Crop planting

time’). The beneficial influence that higher altitudes may

have on the production of A. annua at tropical latitudes

is a principle which could possibly be applied to parts of

tropical Africa and elsewhere.

Currently, seizing the opportunity offered by the avail-

ability of late-flowering clones and the world demand for

artemisinin, several international agencies, including the

US Agency for International Development are carefully

analysing the possibility of cultivating A. annua in tropi-

cal countries including Kenya and Tanzania. Artemisinin

is the raw material needed to manufacture antimalarial

drugs such as dihydroartemisinin, arteether, artemether

and artesunate. Although it is generally stated that the

main limitation factor in artemisinin production is its

low levels in the plant, there are hybrids such as Artemis

(a cross between Chinese and Vietnamese clones) that

can produce from 1 to 2% artemisinin on a dry weight

basis. Our view is that the current bottleneck for the feas-

ible production of artemisinin in developing countries is

the lack of affordable seeds from high-artemisinin

parents. The seeds provided by Anamed.org have excel-

lent germination (close to 100% in 3 days), but come at

the high price of e40.00 per 1200 seeds, enough only to

plant 0.1 ha. The seeds developed by the University of

Fig. 3. Range of Artemisia annua cultivation in the world according to latitude, and altitude (when known). In North
America: West Lafayette, IN (408N, 184 m); Carbondale, IL (378N). In Europe: Conthey, Switzerland (468N, ca 1330 m). In
Africa: Madagascar (188520S); Calabar, Nigeria (58N, 60 m); Kenya (18N); Tanzania (68S). In Asia: Chongqing, China (298N,
260 m); Penang, Malaysia (58300N); Lucknow (268510N) and Kashmir (32–368N), India. In South America: Campinas, Brazil
(238S, 685 m); Teresina, Brazil (58S, 75 m). In Australia: Devonport, Tasmania (438S). The species occurs naturally in northern
parts of Chahas and Suiyuan provinces, China (408N). Sources: Singh et al. (1986), Delabays (1997), Ferreira et al. (1997),
Laughlin et al. (2002); and personal communications from B. Moro (Brazil), P. Rasoanaivo (Madagascar), K. Mak (China)
and A. Brisibe (Nigeria).
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Campinas (Unicamp), Brazil were developed in collabor-

ation with Mediplant and sell for US$40.00 per g (1 g con-

tains ca 15,000 seeds), which is enough to plant 1 ha.

The cultivar Artemis, developed by Mediplant, has been

selected for its biomass and high artemisinin content, and

grows under photoperiods of less than 13 h light per day.

The genotypes selected by Unicamp/Mediplant were

used to generate hybrids named CPQBA, adapted for cultiva-

tion at latitudes of 208S or N, if cultivated out of the induc-

tive photoperiod for flowering. The recommended

planting time for both North and South hemispheres

would be after the equinox (Fig. 4). However, further selec-

tion is needed to isolate lines which will produce sufficient

biomass and artemisinin at latitudes close to the equator,

which have fewer hours of light a day compared to

higher latitudes (Fig. 5). Even available improved genetic

lines should be further improved tomeet local and regional

needs. Artemisia plants have been grown successfully in

latitudes ranging from 428S (Tasmania, Australia) to 408N

(Indiana, USA) (Fig. 3), according to Laughlin et al.

(2002), Ferreira and Janick (1995b), Simon and Cebert

(1988) and Singh et al. (1986). Recently, A. annua cultivars

(CPQBA) bred in collaboration between Unicamp and Med-

iplant in Campinas, Brazil, have been grown in Teresina,

Piaui (58N) and Calabar, Nigeria (58S). The plants from Ter-

esina varied from 40 to 120 cm in height before flowering

(M. Boro and L. A. da Silva, personal communication),

while seeds grown in Calabar resulted in both early flower-

ing and late flowering plants (A. Brisibe, personal com-

munication). In such low latitudes, late flowering and tall

plants with a high leaf-to-stem dry matter ratio should be

selected for further planting and production of artemisinin.

Artemisia annua plants (seeds from Kew Gardens, UK)

were planted in Lucknow (268510N) and Kashmir valley

(32–368N) in India. The plants from Kashmir (temperate

climate, altitude of 305m or higher), although with a

short season from mid-May to mid-June (plants at full

bloom) produced 0.1% artemisinin, while the plants from

thewarmer climate and lower altitudes (123m)of Lucknow

produced a much lower, undisclosed, artemisinin concen-

tration (Singh et al., 1986). However, this Kew Garden

A. annua strain was later established to be a poor

grower, with early flowering and a growth span of about

75 days, when compared to a strain from Europe and

another from the USA (Singh et al., 1988).

Success in growing A. annua in tropical climates,

such as Africa, currently relies on selection of clones

for high leaf-to-stem dry matter ratio (possibly Artemis,

Anamed-A3 or CPQBA) bred at latitudes varying from 0

to 208N. With the current lines, cultivation is possible

at a broader range of latitudes (N or S) up to 408,

although crop establishment becomes more challenging

closer to the equator, where photoperiod is shorter

(Fig. 5).

Cultivation of Artemisia annua and production of
artemisinin

The ideal site for A. annua cultivation would depend

on the scale of operation and the location of plants

for commercial extraction. The concentration of artemi-

sinin in A. annua is relatively low and the total dry

herbage yield, from which the chemical is extracted,

can be as high as 30 t/ha or higher (Laughlin et al.,

2002). For practical and commercial purposes, the

Fig. 4. Solstice and equinox with arrows showing recommended sowing times for Artemisia annua in the North and South
hemispheres, according to the equinox, but observing the frost-free day where pertinent. Source:http://www.physicalgeogra-
phy.net/fundamentals/6h.html.
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extraction and processing plant should be as close as

possible to the area of production, or vice versa,

depending on the circumstances. If mechanical harvest-

ing is desired, the selection of relatively flat terrain

would be appropriate. Artemisia annua has been

grown in a wide diversity of soils and latitudes, show-

ing its potential for adaptation. Apart from the intoler-

ance of some A. annua selections to acid soils (pH

5.0–5.5), many soil types could be utilized.

Propagation of A. annua is normally done by seeds.

Seeds remain viable up to 3 years if stored in dry, cool

conditions (Ferreira et al., 1997). Several researchers

transplant A. annua to the field at about the 10-leaf

stage, which requires 4–6 weeks of greenhouse

growth (see ‘Transplanting’). Vegetative propagation of

Artemisia is normally achieved from cuttings. The

shoots can be taken from juvenile or adult plants and

have a rooting rate of 95–100%. Cuttings will root in

about 2 weeks in a mist chamber (Ferreira, 1994).

Although this method will produce homogenous

plants regarding artemisinin content, it is not con-

sidered feasible for large areas destined for commercial

production. On the other hand, seed-generated plants

will vary widely in artemisinin content, which can

range from 0.01% (Trigg, 1989) to about 1.5% (Debrun-

ner et al., 1996). Even seeds from the same parental

origin, e.g. clones from half brothers from Campinas,

Brazil, will produce plants that range in artemisinin

content from 0.2 to 0.9% on a dry weight basis ( J.

F. S. Ferreira, unpublished data). Currently, there are

lines that can produce up to 2% artemisinin (N. Dela-

bays, unpublished data), but such high percentages

are unusual in the currently available seed stocks. The

economics of commercial development of artemisinin-

derived drugs and their use in areas of greatest need

hinge on plant raw material with high artemisinin con-

tent. Because of this, investigations have been carried

out to select seed progenies having high artemisinin

content and other desirable agronomic characteristics.

These include good seed and plant vigour, high leaf-

to-stem ratio with high dry matter leaf yield, disease

resistance and desirable time of flowering appropriate

to the region of production (Laughlin et al., 2002), or

lack of sensitivity to short photoperiods in locations

close to the equator.

Germplasm comparison and plant selection have been

carried out (i) on the basis of previous introduction and

establishment of plants in the investigating countries

and (ii) on the introduction of promising artemisinin-

rich lines from countries where A. annua is native (e.g.

China and Vietnam). However, commercial competition

in the possession of high-artemisinin lines has limited

the widespread availability of these lines at the present

time. Likewise, the general access to hybrids which

have incorporated the high artemisinin (1.1%) but low

vigour of Chinese clones with the low artemisinin

(0.04–0.22%) but high vigour of a range of European

clones (Delabays et al., 1993) are also generally unavail-

able for purposes other than research. Similarly, the more

recent hybrids between Chinese and Vietnamese selec-

tions with even higher artemisinin (1.0–1.5%) are only

available to a limited extent (Debrunner et al., 1996).

These shortages result mainly from the complex process

of hybrid seed production which includes in vitro conser-

vation and multiplication of the two parental clones, syn-

chronization of the flowering, crossing, ripening and

seed collection (Delabays, 1997). The cost and time

involved in carrying out accurate assays for artemisinin

have also limited progress in the screening and selection

of A. annua lines. Rapid methods of artemisinin assay

developed by Ferreira and Janick (1995b, 1996a) and

the technique of appraising plantlets growing in vitro

for artemisinin content (Pras et al., 1991) are all strategies

by which the process of screening A. annua germplasm

could be accelerated. Germplasm assessment and studies

of a range of other agronomic factors which have a bear-

ing on the successful cultivation of A. annua have been

carried out in Tasmania, Australia (Laughlin, 1993, 1994,

1995), Brazil (Magalhães, 1994, 1996), India (Singh et al.,

1986, 1988), Japan (Kawamoto et al., 1999), Madagascar

(Magalhães et al., 1996), the Netherlands (Woerdenbag

et al., 1990), Switzerland (Delabays et al., 1992, 1993;

Debrunner et al., 1996) and the USA (Simon et al.,

1990; Morales et al., 1993; Ferreira et al., 1995a). See

Fig. 3 for the latitudinal range where A. annua has

been cultivated around the globe.

Fig. 5. Hours of sunlight per day according to the time of
the year, in ascending order, ranging from 12 h (equator) to
24 h (at 708N).
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Crop establishment

Natural stands versus cultivated crops

Although A. annua has been traditionally harvested in

China from wild stands, the harvesting of raw material

from wild stands for medicinal drug production is not

recommended (Fritz, 1978; Franz, 1983). The plant

material in wild stands is typically variable in its artemisi-

nin content and plant biomass and this has an impact on

the economics of drug extraction. In Madagascar, this

variability in artemisinin content and plant morphology

(0.3–2.0m in height) has been reported by

P. Rasoanaivo (personal communication). In addition,

the overharvesting of wild stands may ultimately limit

the ability for the plant to cross-pollinate and reseed

naturally, eventually restricting the gene pool and genetic

variability, which is vital to the development of improved

seed lines. Another negative factor against utilization of

wild stands is that transport distances often become une-

conomic with a crop such as A. annua, which has rela-

tively low artemisinin content and requires large

biomass production.

Although certain medicinal plants harvested from the

wild achieve higher prices than cultivated crops (e.g. gin-

seng), the production of artemisinin from wild-grown

versus cultivated A. annua crops is still being investi-

gated. In China, where companies such as Holley pro-

duce Good Agricultural Practices (GAP) Artemisia,

seeds from known A. annua parents are distributed to

collaborating farmers who plant ca 6500 ha in three Chi-

nese provinces. This cultivated area allows Holley to esti-

mate the production of artemisinin for the upcoming

harvest year to a minimum of 45 tons (K. Mak, Chongq-

ing Holley China, personal communication).

Crop planting time

It is important to plan the crop establishment for the

beginning of the rainy season, which will enable fast

growth at the crop’s early stages and the production of

higher biomass before flowering. In Switzerland, good

growth and biomass production were obtained from

planting in late spring (Delabays et al., 1993) and early

summer in Germany (Liersch et al., 1986) and the USA

(Charles et al., 1990). In the temperate maritime climate

of Tasmania, Australia, a field experiment compared

transplanting in the spring months of October and

November with early summer in December. Although

all transplants flowered at the same time, the leaf dry bio-

mass from October transplants was twice and four times

as much as those obtained from November and Decem-

ber transplants, respectively. While artemisinin levels

were similar for crops established from October to

December, the concentration of artemisinic acid

decreased by 25% and 50%, respectively, for crops estab-

lished in November and December, compared to the crop

established in October. However, when in field exper-

iments winter transplanting (July and August) and

spring transplanting (September and October) were

compared, no differences in either leaf dry matter or in

the yield of artemisinin or artemisinic acid were found

(Laughlin, 1993). This experiment showed that there

was no advantage in transplanting earlier than October

in Tasmania, also avoiding problems associated with

weed control.

In Indiana, USA, a greenhouse experiment at a con-

stant temperature of 278C with cuttings of a Chinese

accession showed that A. annua from that accession

was a short-day plant that flowered 2 weeks after

exposure to photoperiods of 8, 10 and 12 h, but not of

16, 20 or 24 h. Subsequent field experiment showed

that the critical photoperiod for that accession was 13 h

31min. The flowering stimulus appears to be perceived

at the apical meristem, and that flowering could be some-

what delayed by pinching the apical meristems and pro-

viding nitrogen fertilization (J. F. S. Ferreira, unpublished

data). This technique, if applied early enough, will cause

plants to branch out and potentially increase leaf biomass

(Ferreira et al., 1995a) if the season is 4–5 months long.

Studies in Indiana, USA, showed that topping increased

lateral branching but not the final yield. Under short

growing seasons, topping was found to significantly

lower biomass yields (J. Simon, personal communi-

cation). Although interactions between temperature and

photoperiod were not possible under these greenhouse

conditions, floral induction and flowering seem to show

a very marked shift from this model in warmer tropical

and subtropical climates. In Lucknow (268520N), India,

seedlings of the same European A. annua selection

which was used in the Tasmanian field experiment

described previously (Laughlin, 1993) were transplanted

in the relatively cool winter period of mid-December

(Singh et al., 1988). Under these conditions, bud for-

mation occurred at a day length of 11 h 16min with full

flowering (anthesis) and maximum dry matter yield of

leaves, flowers and artemisinin about 6 weeks later on

26 March at a day length of 12 h 15min. In contrast to

the Tasmanian field experiment, in which artemisinin

peaked at the late vegetative stage, artemisinin concen-

tration reached its peak during full flowering.

Another field experiment near Hanoi (218020N), Viet-

nam, was carried out with a Vietnamese strain of

A. annua to establish the pattern of dry matter yield and

artemisinin content over a growing season (Woerdenbag

et al., 1994a). Plants were sown into field plots at a density

of 25 plants/m2 (200mm £ 200mm) in January. Maximum
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dry matter yield of leaves (5.3 t/ha), maximum artemisinin

concentration (0.86%) and maximum artemisinin yield

(45.4 kg/ha) occurred at the vegetative stage on 15 June

at a day length of 13 h 24min. The plants remained in vege-

tativephaseuntil 15October (budding stage)with a dry leaf

matter yield of 3.8 t/ha and artemisinin concentration of

0.42% at a day length of 11 h 41min. Thus, for this Vietna-

mese strain, under Hanoi’s environmental conditions,

maximum leaf yield and artemisinin concentration were

achieved 4 months before the onset of flowering. Similar

results were obtained for a Brazilian hybrid (CPQBA

3M £ POP) bred at the Centro Pluridisciplinar de Pesquisas

Quı́micas, Biológicas e Agrı́colas (CPQBA), Campinas,

Brazil, and grown in southern Illinois (J. F. S. Ferreira,

unpublished data). The above Indian and Vietnamese

experiments illustrate the point that the response of A.

annua cultivated at low latitudes may be quite different

from the responses observed at higher latitudes (for

instance at 408N or S).

Vietnamese plants propagated by tissue culture were

grown under greenhouse conditions in mid-December

1994. These plants were transferred to the field to a

number of locations near Devonport in mid-February

1995 and remained in the vegetative stage throughout

the autumn. They survived the winter and continued to

grow throughout the following spring, with some plants

achieving a height of 2m. Flowering did not start until

late February 1996, and a few plants that flowered did

not set viable seeds (Laughlin et al., 2002), indicating

their single plant source since self-pollinated A. annua

plants, or stands originated from a single plant by vegeta-

tive propagation, do not produce viable seeds (Delabays

et al., 1992).

At an elevation of ca 1500m above sea level in Anata-

nanarivo, Madagascar (188520S), A. annua hybrid plants

resulting from a cross between Chinese and Vietnamese

plants were transplanted into field plots on 12 March at

a spacing of 50 £ 70 cm. Mature plants were harvested

on 4 August, and produced dry leaf biomass of 4.7 t/ha

and an artemisinin yield of 41.3 kg/ha (Magalhães et al.,

1996). Other hybrids (CPQBA 3M £ POP and CPQBA

5 £ 2/39) planted in Campinas, Brazil, produced 3 tons

of dried leaves and 25 kg of artemisinin per hectare

(P. M. De Magalhães, unpublished data). Although speci-

fics of this breeding programme in Brazil have not been

published, a similar breeding programme developed by

Mediplant has been discussed in more detail elsewhere

(Delabays et al., 1993, 2001). In Penang, Malaysia

(58300N), seeds of A. annua obtained from Hanoi were

used in field studies to evaluate plant performance at

low latitudes and altitudes. Three-week-old plantlets

were transferred into field plots and flowering occurred

14 weeks after transplanting with maximum artemisinin

(0.39%) 1 week before flowering (Chan et al., 1995).

Although leaf dry matter yields were not obtained in

this experiment, plants grew to 1 m tall. Similar results

were reported when the CPQBA A. annua developed in

Campinas, Brazil (238S) was planted in Teresina, Brazil

(58S) at a low altitude, producing plants from 0.3 to

1.2m in height (B. Moro and L. A. da Silva, personal com-

munication). It appears that if A. annua is to be grown

under such low latitudes and near the equator, further

selection under local conditions must be done, based

mainly on plant height, high biomass yield and high arte-

misinin accumulation. It may also be possible, in these

tropical climates with very rapid growth, to consider

planting two crops per year as has been suggested

for Vietnam (Woerdenbag et al., 1994a) and Brazil

(Magalhães, 1996).

Transplanting

Supplies of A. annua seeds from high-artemisinin

parents have been generally limited, partly due to

increased interest by the pharmaceutical community,

and further due to limited numbers of sources which

make improved seedstocks available. Thus, most exper-

imental field programmes have utilized transplanting as

the preferred method of establishment (Acton et al.,

1985; Liersch et al., 1986; Simon and Cebert, 1988;

Singh et al., 1988; Delabays et al., 1993; Laughlin, 1993;

Ferreira et al., 1995a). In a few cases transplants have

been generated from cuttings obtained through tissue

culture or greenhouse propagation (Ferreira et al.,

1995a), but in most other studies the investigators have

used a cellular tray system such as Speedlingsw (pyra-

mid-shaped cells) and a wide range of other cell trays

used commonly in vegetable transplant production. The

Speedlingsw system involves germinating A. annua

seeds in shallow (5–6 cm deep) seed trays using a steri-

lized potting mix such as 2:2:1 (sand: peat: vermiculite)

with the pH adjusted to 6.0–7.0 and a low to moderate

dose of a complete (macro- and micro-nutrient) fertilizer

added after sterilization. The seeds are sprinkled uni-

formly on to the surface of this mixture, covered lightly

with vermiculite (1–2mm) and germinated in a green-

house. The surface must be kept moist until germination

and root establishment. When the seedlings are about

2 cm high (four or five true leaves)—or 3 weeks later—

they are carefully uprooted and transplanted into the cel-

lular trays, using the same mixture as above, or any avail-

able suitable container. The plants are then grown in a

greenhouse for approximately 4 weeks or until they

have about 10 true leaves and are about 10–14 cm in

height. At this stage, the plants are acclimated outside

or in a shade-house for 3–5 days and then transplanted

to the field. There is no published information on the
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optimum size for transplanting A. annua plantlets, but

plants that have a developed and strong root system, in

which the growth media and roots remain intact during

transplanting, and the seedlings are about 15 cm in

height (10-leaf stage), have led to successful field estab-

lishment. If mechanically transplanted, plants should be

sufficiently robust to cope with such operation. Until

the young plants start to actively grow, the soil should

be kept moist. Approximately 800ml of water per plant,

three times a week, proved enough for field establish-

ment of A. annua in Illinois and Indiana, USA. If irriga-

tion is to be used, more delicate nozzle and water

droplet size is advised to minimize direct water impact

on the young transplant and to increase transplanting

success. To lower production costs, several groups use

outside nursery beds to start the seeds rather than green-

houses. Once the plants emerge and reach transplantable

size they are collected and moved, bare-rooted, to the

final field destination (J. Simon, personal communi-

cation). While the use of transplants has been successful,

the expensive and time-consuming nature of the oper-

ation makes it desirable to develop more efficient and

direct seeding methods, suitable for commercial

cultivation.

Sowing

If supplies of seed were freely available, direct sowing

would be the most economical method of plant establish-

ment, provided the length of the growing season and

other environmental factors were suitable and weeds

could be controlled (see ‘Herbicides’ and ‘Crop density’).

Currently, prices of A. annua seeds from known origin

are expensive for commercial-scale planting. Anamed.org

sells limited amounts of seeds for e40.00 per 1200 seeds

(covered in kaolin), Mediplant sells Artemis seeds from

US$55.00 to 70.00 per g (depending on percentage germi-

nation) and CPQBA sells their seeds for US$40.00 per g

(1 g ¼ 12,000–15,000 seeds). These seeds have to be

ordered at least 8 months ahead due to short supplies.

Seeds from China and Vietnam are currently unavailable.

A germination rate higher than 90% was obtained with

seeds from Anamed.org in 3–5 days (J. F. S. Ferreira,

unpublished data) but this rate decreases as the seed

ages. Six-year-old Mediplant seeds have been reported

to have a germination rate of ca 60% (TechnoServe,

2004). In Tasmania, Australia, sowing plants gave leaf

dry matter and artemisinin yields very similar to the

yields from transplanting, in two out of three field exper-

iments (Laughlin, 1993). In these experiments sowing

and transplanting took place in mid-October (spring).

Both treatments matured at the same time and were har-

vested at the early bud stage in late February (summer),

four and a half months later. There is little information

on the possibility of autumn sowing and the over-winter-

ing survival of A. annua seedlings in geographical zones

where this technique may be appropriate (Ferreira et al.,

1997). However the performance of a self-sown Yugosla-

vian strain of A. annua, which germinated in the field in

autumn (April) in Tasmania (Forthside, 418120S), may

bring some light to this issue. These seeds germinated

in late April and the young seedlings survived the

winter very well. They grew strongly in the spring, but

did not flower until late February of the following year

(Laughlin et al., 2002). Throughout that year, tempera-

tures at Forthside never reached below 3.58C or above

21.28C (Table 1 in Laughlin et al., 2002). Although these

temperatures might appear inappropriate for plant

growth, A. annua has recently been determined to be

a C3 plant, thus having the capability of thriving mostly

in temperate climates because it synthesizes carbo-

hydrates through C3 photosynthetic mechanism (March-

ese et al., 2005). In Germany A. annua has been sown

successfully in field experiments with seeding taking

place in the third week of June and full bloom in late

August (Liersch et al., 1986). Also in Vietnam, A. annua

was sown in January with floral induction in October

(Woerdenbag et al., 1994a) (see ‘Crop planting time’).

Sowing of A. annua seed can be carried out by various

methods ranging from the basic hand application, or

simple hand-pushed single-row seeders, to sophisticated

combined multi-row seed and fertilizer drills. In all of

these operations the soil needs to be ploughed to a

fine tilth and consolidated by rolling where appropriate.

Because A. annua seed is small (10,000–15,000 seeds/

g) it needs to be mixed either with some inert material

or with an appropriate neutral fertilizer. In Tasmanian

experiments, the technique of mixing a 50:50 blend of

fine ground limestone and superphosphate with

A. annua seed resulted in successful establishment

(Laughlin, 1993). This technique is useful in many situ-

ations ranging from basic hand sowing to machine dril-

ling and has the advantage of not requiring a

sophisticated drill with a specialized small seed attach-

ment. Although the 50:50 fertilizer–limestone blend is

neutral, the seed should only be mixed through it

immediately before drilling. Ideally, the drilled area

should be irrigated soon after sowing if soil moisture is

less than optimal. In mixing seed and fertilizer, one

should consider the current (i) seed germination rate

and (ii) field survival in order to use a seed sowing rate

that avoids either very sparse or very thick stands,

which may require thinning. The technique of seed pel-

leting should be assessed for its possible adaptation to

A. annua cultivation. Although A. annua seeds are

very small (10,000–15,000 seeds/g), tobacco seeds

(14,000 seeds/g) have been successfully pelleted, and
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the equipment for pelleting is available (Cantliffe, 1997;

Lee, 2004). Pelleting consists of the application of clay

particles plus a binder to small seeds. The seeds are

enlarged and have a spherical shape, which facilitates

their precise dispersal into trays (Caruso et al., 2001).

Depth of sowing is also critical for crops with small

seeds such as A. annua. In Tasmanian studies, a depth

of drilling of 5mm below the surface of finely prepared

soil resulted in good emergence and establishment

(Laughlin et al., 2002). Also, it is important to irrigate

soon after sowing so that young emerging seedlings do

not suffer moisture stress or fertilizer ‘burn’ (see ‘Water

requirements’). An alternative technique to mixing seed

and fertilizer has been the sowing of a fine mixture of

seed and other inert floral parts of A. annua (Galambosi,

1982). Ultimately, the success of any technique of direct

sowing depends on a detailed knowledge of local soil

and its physical characteristics, on environmental factors

such as rainfall and temperature (Laughlin et al., 2002),

and on seed viability, which usually decreases after

3 years if seeds are not stored under dry and/or cold

conditions.

Crop density

Plant population density and its components of inter- and

intra-row spacing are important in determining yield and

the practicability of both weed control and harvesting

(Holliday, 1960; Willey and Heath, 1969; Ratkowsky,

1983). If inter-row cultivation is intended for the control

of weeds before the rows close, then inter-row spacing

of 0.5–1.0 m may be appropriate. Similarly, wide intra-

row spacing may also be appropriate. However, if effec-

tive herbicides were applied, yield per unit area could be

increased by using higher plant densities. In earlier

studies, low densities of 1 plant/m2 (Maynard, 1985;

WHO, 1988) and 2.5 plants/m2 (Delabays et al., 1993)

gave yields of 1–4 t/ha of dried leaf. Simon et al.

(1990), in Indiana, USA, compared 3, 7 and 11plants/

m2 and obtained the highest biomass at the highest den-

sity. In Tasmania, Australia, a field experiment with a

Yugoslavian strain compared 1, 5, 10, 15 and 20 plants/

m2 at a November transplanting and found that leaf dry

matter yield increased up to a density of 20 plants/m2.

However, 10 plants/m2 allowed about 90% of the maxi-

mum yield of 6.8 t/ha (Laughlin, 1993). A high density

of 25 plants/m2 was also used in a field experiment in

Vietnam which gave a maximum leaf dry matter yield

of 5.3 t/ha (Woerdenbag et al., 1994a). In the above

Australian study (Laughlin, 1993), plant population den-

sity had no effect on the concentration of either artemisi-

nin or artemisinic acid in the Yugoslavian strain of

A. annua used. In the north Indian plains it has been

recommended that A. annua should be cultivated at a

high plant density of about 22 plants/m2 (Ram et al.,

1997). The effect of variation in rectangularity (the ratio

of inter- to intra-plant spacing) at constant plant popu-

lation density (Chung, 1990) has not been studied with

A. annua and may also be worth investigating. Consider-

ing the current lack of affordable seeds of high-artemisi-

nin hybrids, it seems practical not to surpass 10–

12 plants/m2, which can produce 90% of maximum

yields and make rational use of the cultivated area and

applied resources.

Water requirements

Whether transplanted as seedlings or directly seeded into

the field A. annua requires adequate soil moisture. If not

established at the beginning of the rainy season, frequent

light irrigations are necessary to ensure good crop estab-

lishment. The irrigation frequency will depend on soil

type, climate and season. Another reason to avoid soil

moisture drop at crop establishment is the possibility of

fertilizer ‘burn’. This problem is caused by a detrimental

osmotic effect from high concentrations of soluble

mobile elements such as nitrogen and sometimes potass-

ium (Simon et al., 1990; Laughlin and Chung, 1992). After

plants are established, and at the end of the vegetative

cycle, 1 week of drought could be desirable to hasten

the field drying process, but the effect of such a drought

on artemisinin accumulation needs to be investigated.

Water stress data, measured through soil water potential

during the 2 weeks before harvest of A. annua, indicated

(r 2 ¼ 0.24) that leaf artemisinin concentration might

decrease (Charles et al., 1993). Marchese (1999) subjected

84-day-old A. annua (CPQBA, Brazil) plants to water

stress under both growth chamber and greenhouse con-

ditions. Irrigation in growth chamber studies was sus-

pended for 14, 38, 62 and 86 h. Only plants stressed for

38 h showed a significant increase in artemisinin com-

pared to the control (0.54% versus 0.42%, and 0.82

versus 0.15%). In the greenhouse work, 147-day-old

greenhouse plants had irrigation suspended for 18.5,

42.5, 66.5, 90.5 and 114.5 h. Additionally, plants from

the 114.5 h treatment were re-hydrated and further

deprived of water for 72 and 144 h. None of the treat-

ments showed significant changes in artemisinin content.

Although these plants were generated from seeds, their

average artemisinin content (n ¼ 8) ranged from 0.81 to

1.16% on a dry weight basis. These results suggest that

seeds from the CPQBA cultivar used had a high heritability

for artemisinin content, but water management and

artemisinin accumulation, for A. annua in general, will

be better conducted with clonally propagated plants to

prevent error caused by artemisinin variability observed
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in plants generated from seeds. Thus, a short drought

before harvesting (or allowing the plants to sun dry after

harvest) may not decrease artemisinin concentration.

Nutrient requirements for plant growth

Macronutrients

Very little published work exists on the vegetative

growth responses of A. annua to the specific macronu-

trients nitrogen, phosphorus and potassium or of their

effects on the concentration of artemisinin and related

compounds. Significant increase of total plant and leaf

dry matter (1–3 t/ha) was obtained in Mississippi,

USA, where a complete fertilizer mixture containing

100 kg N, 100 kg P and 100 kgK/ha was broadcast and

worked uniformly through the soil (WHO, 1988). Simi-

larly in Tasmania, Australia, dry leaf yields of 6–12 t/ha

were obtained in experiments with a mixed fertilizer

containing 60 kgN, 60 kg P and 50 kgK/ha pre-drilled

in bands 150mm apart and about 50mm below seed

and 75mm below transplants (J. C. Laughlin, unpub-

lished data). The technique of banding fertilizer is to

be generally recommended in soils where phosphorous

fixation is a problem. The manoeuvre of pre-drilling

fertilizer in 150mm rows prior to sowing or transplant-

ing plantlets allows very simple and inexpensive

sowing equipment to be used and obviates the need

for sophisticated and expensive sowing practices

which place fertilizer and seed in one operation. In

this technique the fertilizer bands can never be more

than 75mm (half the row width) laterally displaced

from the plant row when seed is sown at random in

a second operation parallel to the fertilizer and closer

to the surface (Laughlin, 1978).

Although there is no published evidence on field

responses of A. annua to phosphorus or potassium,

there is some work on the response of A. annua to nitro-

gen under field conditions, and phosphorus and potass-

ium in tissue culture. Regarding the response of

A. annua to phosphorus and potassium in tissue culture,

Liu et al. (2003) reported that KH2PO4 increased plant

biomass and artemisinin content (0.05–0.20%) up to

200mg/l. Beyond 200mg/l, there was a slight increase

in plant biomass, but artemisinin content decreased to

original levels. Trials in Indiana, USA, compared three

rates of nitrogen (0, 67 and 134 kgN/ha) and three

plant densities (27,778, 55,555 and 111,111 plants/ha).

The study indicated that both optimum essential oil

(85 kg/ha) and fresh whole plant biomass (30 t/ha)

were achieved at 67 kgN/ha at medium plant density.

Although the highest plant density (at 67 kgN/ha) pro-

vided 35 t/ha of plant biomass, the plants had a lower

leaf-to-stem ratio (Simon et al., 1990). Hydroponic studies

in Brazil concluded that the omission of nitrogen or phos-

phorus drastically reduced plant growth and dry matter

production (Figueira, 1996). Later field trials with nitro-

gen fertilizer compared 0, 32, 64 and 97 kgN/ha applied

as urea (Magalhães et al., 1996). In this trial, the leaf dry

matter yield of 2420 kg/ha and artemisinin yield of 26 kg/

ha obtained at 0 kgN/ha increased to 4690 kg/ha dry

leaves and 41 kg/ha artemisinin at 97 kgN/ha, although

the concentration of artemisinin per plant was reduced

by 22% at this high N rate. The rate of 64 kgN/ha resulted

in a leaf biomass of 3880 kg/ha and artemisinin yield of

40.4 kg/ha (a 51% increase from the 0 kgN/ha), thus

being the most cost-effective N rate for artemisinin pro-

duction. In the same study, no significant differences

were found for leaf biomass and artemisinin production

when ammonium sulphate and ammonium nitrate were

compared as the sources of nitrogen. Because nitrogen

is a very mobile element, it can be easily leached out

of the root zone, especially in areas of high or concen-

trated rainfall periods. This leaching effect may well be

very significant in tropical and sub-tropical regions and

in these situations the method and timing of nitrogen fer-

tilization may be very important. Banding of nitrogen

near the seed or plant row may give less leaching than

broadcasting and uniform mixing. Split applications of

nitrogen or slow-release nitrogen may be other means

to minimize leaching, especially in long growing seasons.

For example, in the growth pattern of the Vietnamese A.

annua, the plants remained in the vegetative phase from

seed drilling in January until September (Woerdenbag

et al., 1994a). At the optimum harvest time in mid-June

the mean total rainfall, between January and June, had

been 533mm, but more than twice this pluviosity is poss-

ible in very wet years (Takahashi and Arakawa, 1981).

Under such rainy weather, splitting the total nitrogen to

be applied into two, three or more doses is rec-

ommended. Ideally some form of leaf or tissue analysis

to determine the critical concentration of N at which a

vegetative growth or artemisinin (or artemisinic acid)

concentration response would be obtained could be the

ultimate aim because soil analyses for N (unlike P and

K) are often unreliable (Laughlin et al., 2002).

It has been shown that some strains of A. annua are

sensitive to soil pH below 5.0–5.5 (Laughlin, 1994) (see

‘Soil pH’). A comparison of different forms of nitrogen

such as urea and the neutral calcium ammonium nitrate

with the more acidic ammonium sulphate and

ammonium nitrate may be useful. Ammonium sulphate

has been compared with ammonium nitrate in a field

experiment on sandy soil in Switzerland (Magalhães

et al., 1996). When 90 kgN/ha was applied, both

forms of nitrogen increased leaf dry matter yield and

artemisinin yield by about 50%. However, a hydroponic
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nutrient culture experiment suggested that a higher

proportion of nitrate than ammonium may induce

better leaf biomass (Magalhães et al., 1996).

Micronutrients

In China, a range of growing media and nutrient treat-

ments were tested for their effect on the synthesis of arte-

misinin. There were no effects on artemisinin from any of

these treatments (Chen and Zhang, 1987). However, sand

culture experiments with a strain of A. annua (Washing-

ton, DC) showed that low levels of the micronutrients Fe,

Mn, Cu, Zn and B, when compared to upper levels,

resulted in significant decreases in plant height (26–

63% shorter), fresh weight (19–45% lighter) and dry

matter accumulation (18–49% lighter). Artemisinin level

on control plants was on average 0.02% (w/w), but

decreased significantly in plants submitted to low levels

of Fe (twice as low), Cu (20 times lower), Zn (10 times

lower) and B (10 times lower), according to Srivastava

and Sharma (1990).

Soil pH

Artemisia annua can be grown under a wide range of

soil pH (5.0–8.0), depending on the plant origin, but

there are only a few studies on the effect of soil pH on

the vegetative growth and artemisinin concentration in

A. annua. In Tasmania, Australia, the effect of zero and

10 t/ha of fine ground limestone (calcium carbonate)

was evaluated for the growth of Chinese and Yugoslavian

strains of A. annua field grown in a red krasnozem soil

of pH 5.0 in the top 500mm (Laughlin, 1993, 1994).

The 10 t/ha limestone treatment increased soil pH from

5.0 to 5.5. The leaf dry matter yield of the Yugoslavian

strain increased from 1.0 to 6.5 t/ha while the Chinese

strain increased from 4.5 to 8.0 t/ha. The concentrations

of neither artemisinin nor artemisinic acid were affected

by the change in soil pH. These results suggested that

there were large differences in strain (genotype) suscep-

tibility to soil pH. The responses of the Chinese and

Yugoslavian strains of A. annua to a wide range of soil

pH were later studied under greenhouse conditions

using plants potted in the same krasnozem soil from

the field experiment. Fine ground calcium hydroxide at

the equivalent of 0, 1, 2.5, 5, 10, 20 and 40 t/ha was uni-

formly mixed through the soil to give mean soil pH

values of 5.0, 5.2, 5.3, 5.4, 6.0, 7.4 and 8.2, respectively.

Both strains of A. annua grew well at a pH range of

5.4–7.4. However, the Chinese strain was more tolerant

of both high (8.2) and low (5.0) pH conditions than the

Yugoslavian strain (Laughlin, 1993, 1994). In Indian

pot culture experiments, with A. annua grown on

soils of widely varying pHs, essential oil yields at pH

4.9 and 9.9 were, respectively, about 75% and 25% of

those grown on soils with pH 7.9–8.9 (Prasad et al.,

1998).

The work of Srivastava and Sharma (1990) correlated

boron and copper with artemisinin concentration, and

may also have implications for soil amendment practices

by lime application. On some light soils the application of

lime can lower the availability of boron. Although there

might be advantages in evaluating correlations between

copper, boron and lime application, an alternative strat-

egy to the costly correction of soil pH may rest in the

selection of strains of A. annua which are not only

adapted to the local environment but also tolerant to

extremes of soil pH below 5.5 and above 7.5 (Laughlin

et al., 2002). Although no gain in artemisinin levels has

been shown with pH amendment, a lot can be gained

by increasing biomass production and, thus, total artemi-

sinin yield.

Herbicides

Weeds are a constant problem for crop production

throughout the world and any system of A. annua culti-

vation must give careful thought to weed control. In small

areas of cultivation in developing countries, manual

weeding may be appropriate if row spacing is wide

enough to allow it. Similarly, if inter-row cultivation by

hand-pushed or tractor-drawn implements is to be

used, row spacing must be to allow easy access while

the crop is small and before the rows close. This

system may also be the only practical one available

even in developed economies where strict regulations

governing the registration of herbicides for new crops

demand lengthy lead times and investigations (Ferreira

et al., 1997).

If A. annua is to be established from seed, weed con-

trol in the early stages of growth is even more critical

than with transplants. The young seedlings of A. annua

are very small and can easily be outgrown by weeds in

their early growth stages. In such cases, chemical weed

control is certainly the most convenient and efficient

method. Application of 2.2 kg active ingredient (a.i.)/ha

napropamide before transplanting gave good weed con-

trol without phytotoxicity in the USA (Simon and Cebert,

1988). More detailed field studies have been carried out

in Mississippi, USA where a range of herbicides was

tested (Bryson and Croom, 1991). Chloramben was very

effective when applied at 2.2 kg a.i./ha before emer-

gence. Also, a good weed control was achieved with tri-

fluralin at 0.6 kg a.i./ha incorporated before transplanting

followed by fluazifol at 0.2 þ 0.2 kg a.i./ha broadcast
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after emergence and acifluorfen at 0.6 kg a.i./ha after

emergence. All of these treatments gave good weed con-

trol without any significant reduction in leaf yield or con-

centration of artemisinin (Bryson and Croom, 1991).

Once plants become established, and with good early

season weed control, the canopy shade will provide

good weed control.

Insects and pathogens

There have been no serious pests or diseases yet reported

to be a problem associated with A. annua, according to

Simon and Cebert (1988). In Tasmania, Australia, from a

wide range of experiments, the only disease observed

in some trials was a very low incidence (,1% of

plants) of Sclerotinia stem infection on the lower third

of the plant (Laughlin et al., 2002). The symptoms took

the form of conspicuous white fungal patches on the sur-

face of the main stem. The possibility of Sclerotinia stem

infection and appropriate control measures should be

considered when A. annua is grown in plantations

with high densities. Under these conditions the build

up of localized humidity could induce the infection

(Laughlin and Munro, 1983). In Saudi Arabia, Orobanche

cernua was identified as a root parasite of A. annua

with the potential to cause losses in yield (Elhag et al.,

1997).

Growth hormones

Applications of 50mg/l gibberellic acid (GA3) to field-

grown plants increased artemisinin content from 0.77 to

1.10mg/g; kinetin (10 and 20mg/l) increased leaf yield

and oil content, but decreased artemisinin content; and

triacontanol had no effect on artemisinin content

(Farooqi et al., 1996). The levels of artemisinin increased

from 0.77 to 1.3% when 80mg/l GA3 was applied to field

crops, but artemisinin levels were not correlated to the

levels of GA3 applied to the crop (Siyapata-Ntakirutimana

et al., 1996). The beneficial effect of GA3 on artemisinin

accumulation has recently been supported by the find-

ings of Zhang et al. (2005), who treated Chinese

A. annua plants with half-strength Hoagland’s solution

containing GA3. The authors reported that 14mM GA3

increased artemisinin content from 0.14 (control) to

0.64% (w/w) when applied to 74-day-old plants. The

authors also observed that artemisinic acid decreased as

artemisinin increased during plant development, reach-

ing the peak at the full flowering stage. From a recent

review on production of artemisinin under in vitro con-

ditions (Ferreira and Janick, 2002), it was established

that no other growth regulator, besides GA3, produced

any significant increase in artemisinin. Salinity stress did

not influence artemisinin production (Prasad et al.,

1997). However, caution and more experimentation are

needed before suggesting GA3 as a cost-effective treat-

ment to increase artemisinin content under field

conditions.

Harvesting, drying and commercialization

Various methods of harvesting and drying A. annua have

been tested in practical and experimental situations. Tra-

ditionally, manual harvest followed by various periods of

sun and shade drying have been used in China and Viet-

nam. Harvesting time has to be established according to

the cultivar of A. annua used because peak artemisinin

can be achieved before or at full flowering, but it is gen-

erally accepted that the leaves should have no more than

12–13% relative humidity to realize optimum recovery of

artemisinin. Depending upon the weather condition it

may be appropriate to leave the harvested plants in the

field for 5–10 days to achieve drying to the desired rela-

tive humidity under field conditions (TechnoServe, 2004).

A drought a week before harvesting the plants could

shorten the time needed to bring the cut plants to 12–

13% relative humidity, but the results of water stress on

artemisinin content are scarce and only one work is avail-

able (Marchese, 1999), which tested water stress in

A. annua up to 6 days (see ‘Water requirements’).

Regarding temperature effects, Wallaart et al. (2000)

recorded that the levels of artemisinin, in a Vietnamese

A. annua cultivar, increased nearly 58% after a night-

frost period, even though plants were showing a gradual

decrease in artemisinin over time. This is possibly a

stress-induced phenomenon and needs to be confirmed

under controlled environment conditions. Wallaart et al.

(2000) stated that the increased artemisinin after a frost

is consistent with the hypothesis that stress will trigger

the conversion of dihydroartemisinic acid to artemisinin,

the final step in the biochemical pathway. These authors

also suggest that the presence of high levels of dihydroar-

temisinic acid may be an adaptation to stress conditions

(e.g. night frost), during which relatively high levels of

O2 are formed, and that dihydroartemisinic acid might

protect the plant by reacting with these reactive oxygen

species and yielding artemisinin as a stable end-product.

Marchese (1999) submitted A. annua plants from Brazil

(CPQBA, Campinas) to temperatures ranging from

18–288C. These plants accumulated more artemisinin,

although not significantly, than plants submitted to

11–208C (0.41% versus 0.36%). These results were

based on the average artemisinin analysis of plants gener-

ated from seeds. Ferreira et al. (1995a) also indicated that

a decrease in artemisinin content (0.04–0.01%) observed
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in a Chinese clone of A. annua, under greenhouse con-

ditions, was due to higher temperatures observed from

April to July, compared to cooler greenhouse tempera-

tures observed from January to March. Singh et al.

(1986) also found artemisinin to be higher in A. annua

plants (seeds from Kew Gardens, UK) grown in the tem-

perate climates of Kashmir than in the subtropical climate

(0.1% versus 0.06%) of Lucknow, India. Although water

stress and temperature regimen cannot be controlled

under field conditions, these results indicate that

A. annua plants can tolerate some changes in water

availability and temperature without a drastic decrease

in artemisinin content. However, it is important to note

that results in artemisinin content may vary depending

on the origin of the A. annua cultivar and on the regional

environmental conditions.

The whole aerial part should be harvested, but leaves

(or flowers) are the main source of artemisinin. These

can be separated from the stems by threshing the

whole plant (like rice threshing) over a plastic tarp.

Leaves can then be sieved using a 5-mm mesh and

then a 3-mm mesh (TechnoServe, 2004). Fine grinding

of leaves is not necessary for the extraction of artemisinin

because the compound is located in protruding glandular

trichomes found in both leaves and flowers (Duke et al.,

1994; Ferreira and Janick, 1995a). Ferreira and Janick

(1996b) analysed seven clones of a Chinese A. annua

at two harvesting times (September and October) in Indi-

ana, USA, and established that there was no significant

difference in artemisinin content analysed from the

bottom, middle or top part of the plants. Mechanized

mowing and binding were first tried in the USA

(Maynard, 1985) and harvesting after sun-drying whole

plants for 1 week was tried in Australia (Laughlin et al.,

2002). The effect of various methods and times of

drying have been reviewed by Laughlin et al. (2002)

but there is little published information on the effect of

drying on the new high-artemisinin strains of A. annua.

A recent study by Simonnet et al. (2001) made a valuable

contribution to this problem. A clone of a Vietnamese

strain of A. annua was used in a field experiment in

the Valais region of Switzerland. Whole plants were har-

vested at the late vegetative stage and sun-dried in the

field for 31 and 29 days, respectively, in succeeding

years. Leaf artemisinin concentration increased by 30%

and 26%, respectively, in these two experiments, in

which artemisinin levels immediately after harvest were

in the range of 1.0–1.5%. In a similar field study in Tas-

mania, Australia, whole plants of a Chinese strain of

A. annua were dried under full sun for 21 days. Leaf arte-

misinin concentration in this low-level strain (ca 0.1%)

was increased by ca 100% (Laughlin, 2002). It may be

important to assess to what extent these results from con-

tinental and temperate environments would apply to

sub-Saharan Africa and other tropical regions where

potential leaf loss and fungal diseases may be more

likely due to the hot and humid weather.

Regarding the paying mechanism used for A. annua

growers, crops are priced according to their artemisinin

content (K. Mak, Chongqing Holley China, personal com-

munication) or payment can be divided in three install-

ments based on expected artemisinin content for the

crop. For instance, a base payment of US$250/ton is

suggested for a crop with 0.5% artemisinin. A second

installment of US$100/ton is suggested after extraction

is completed and a third installment (as a bonus, if appli-

cable) of US$40/ton per every additional full 0.1% above

the expected 0.5% artemisinin content (TechnoServe,

2004). It is important to consider that leaf artemisinin

content may decrease if dried leaves are stored outside

a dry and cool environment and that processed leaves

(crude artemisinin) might be desirable for transport and

commercialization over dry leaves. Therefore, processing

plants, ideally, should be available to growers, at close

proximity to the production site.

Good Agricultural and Collection Practices (GACP)

All medicinal plants are now recommended to be pro-

duced and/or collected using a process known as Good

Agricultural and Collection Practices (GACP). These prac-

tices can increase the level of quality and traceability of the

target botanical, and ensure that the correct botanical

species is used. GACP will assure that the collection and/

or cultivation practices result in a consistent quality of

the raw botanical product. While several countries have

produced versions of their own general GAP or GACP

guidelines, and while none have yet been produced

specifically for A. annua, the ‘WHO guidelines on good

agricultural and collection practices (GACP) for medicinal

plants’ (see http://www.who.int/medicines/library/trm/

medicinalplants/agricultural.shtml) provide a rather com-

prehensive list of practices that should be followed. As

A. annua is still both collected from the wild in several

countries as well as cultivated, it is important that the col-

lection be performed in a manner that does not lead to the

degradation of the environment and/or loss of the plant’s

biodiversity. Following such a GACP will assure ecologi-

cally sound cultivation protocols, in which the main objec-

tives include: (i) quality assurance of medicinal plant

materials used as source for herbal medicines or raw

material for pharmaceuticals; (ii) guidance to the formu-

lation of GACP guidelines and monographs at regional

and national levels; (iii) encouragement and support of

the sustainable cultivation and collection of medicinal

plants of good quality in ways that respect and support

the conservation of medicinal plants and the environment.
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It is important to note that only the A. annua species has

been reported to contain the antimalarials. Thus, the assur-

ance that only this species enters into processing is import-

ant for quality control and to avoid any sales of A. annua

teas and/or herbal products which would contain, inten-

tionally or unintentionally, undesirable species.

GACP guidelines, as applied to the cultivation of

A. annua, would focus on several issues related to the

cultivation and harvest/post-harvest aspects of the crop,

which include, but are not limited to:

. Site selection: soil that has not been previously con-

taminated with hazardous waste that might be

absorbed by the plant and may end up in the final

product. This also includes water sources free of con-

taminants that could harm the crop or consumers (e.g.

high arsenic levels in ground water). Water tests are

advisable.

. Use of seeds that are of known origin and reliable

source, which will assure that the crop is indeed

A. annua, and not a related species of different

(or no) medicinal value. This will also give the produ-

cer an idea of the average artemisinin level that can

be achieved with plants originated from such seeds.

. Conservation agricultural techniques that should be

followed to foster organic matter, soil moisture and

adoption of no-tillage systems.

. Environmental conditions that would foster plant

development such as duration of sunlight during the

months the crop is being established and undergoing

vegetative growth (more than 13 h/day desirable).

Information on the rainfall potential for the area.

The altitude of the location might bring advantages

in latitudes close to the equator.

. Adequate physical (drainage, organic matter content)

and chemical (pH, nutrient availability) characteristics

of the soil to host the crop.

. Adopting planting densities that will increase yield

without fostering the development of fungal diseases,

or be so sparse as to allow weeds to grow rampantly.

In this aspect, the efficient use of herbicides might be

investigated, if the economics of the crop allows such

control, with special concern that national laws are

followed with regard to the application and use of

both herbicides and pesticides.

. Harvest should occur at optimal seasons to ensure the

highest level of artemisinin in the final product, and

lowest content of water (without harming artemisinin

biosynthesis) possible to minimize costs and labour

during post-harvest processing. Optimal drying con-

ditions of the plant material (leaves) should be deter-

mined under field conditions to maintain (or increase)

levels of the desired compound. In regions where

long growing seasons are possible, it seems that

several harvests conducted on the same plants allow

higher leaf yield than one harvest at the end of the

long season (Kumar et al., 2004). Drying under full

sun versus drying under shade needs further investi-

gation. Regarding storage, moisture content of ca

13% seems appropriate for short-term storage of

plant material without decreasing artemisinin content,

although long-term storage is not recommended at

this humidity level due to the possibility of fungal

contamination.

. Personnel involved should be trained for the func-

tions they are expected to conduct in the growing/

harvesting pipeline. For instance, harvest crews

should avoid mixing A. annua with potential toxic

plants that might be present in the same cultivated

area.

Given the increased global interest in the production of

A. annua, we predict that such international cultivation

manual(s) and specific GACP on this crop will be

developed.

Genetics of Artemisia annua and artemisinin
production

Broad sense heritability compared the artemisinin con-

tent of 24 clones of A. annua grown simultaneously

under tissue culture, greenhouse and field conditions,

and indicated that artemisinin production is controlled

mainly by genetic factors (Ferreira et al., 1995b).

Recently, narrow-sense heritability studies (Delabays

et al., 2001, 2002) confirmed the results previously

reported by Ferreira and collaborators and provided

further evidence that artemisinin is mostly controlled by

genetic factors. Artemisia plants can be kept in a vegeta-

tive growth phase under long photoperiods or induced to

flower under short days in a greenhouse. Thus, genetic

gain can be achieved, and maintained, from intercrossing

high-artemisinin clones selected in the field and induced

to flower in a greenhouse. Flowering of different lines

often is mismatched under field conditions. A Chinese

selection could be induced to flower after 2 weeks of

short photoperiods (Ferreira et al., 1995a). These results

were confirmed for the same Chinese selection by March-

ese et al. (2002) but a Vietnamese selection tested in the

same study required an average of 33 days of short

photoperiod to flower under growth chamber conditions.

Artemisia annua plants are naturally wind-pollinated

and favour outcrossing over selfing (Delabays, 1997).

Crossing of a late-flowering clone of Chinese origin,

rich in artemisinin (1.1%, w/w), with European plants

by Mediplant in Switzerland led to progenies containing

between 0.64% and 0.95% artemisinin, with dry leaf
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yields between 14 and 21 t/ha (Delabays et al., 1993).

Numerous other hybridizations between Chinese and

Vietnamese clones have been carried out to generate

hybrids such as Artemis, containing up to 1.4% artemisi-

nin, and allowing the achievement of a potential artemi-

sinin production of 38 kg/ha (Delabays et al., 2001).

Some of these hybrid populations have been further

improved to produce progenies with 2% artemisinin

(N. Delabays, unpublished data). All these hybrids are

obtained through the crossings between two high-artemi-

sinin parental clones (although neither was back-crossed

to the homozygous stage and cannot be called ‘true

hybrids’—J. A. Marchese, personal communication).

These so-called hybrids were maintained and scaled up

by vegetative propagation under long photoperiod (14

or more hours of light per day). According to Hirt

(2001), a stock of progenitor plants needs to be main-

tained for production of hybrid seeds. According to this

author, if second-generation seeds are taken from the

hybrid plants only a few will germinate, and these will

result in weaker plants with approximately 30% less arte-

misinin. Although artemisinin will always be present in

plant tissues, artemisinin final yield is not solely depen-

dent on the artemisinin genetic potential of the plant,

but also on the total biomass production, accounted for

mainly by leaves and flowers because roots are devoid

of artemisinin and branches are low in artemisinin (Fer-

reira et al., 1995a). The Institute of Materia Medica in

Vietnam has been breeding plants for high artemisinin

levels and high plant biomass (Dong and Thuan, 2003).

Although a population which is uniform in artemisinin

content cannot be achieved by sexual propagation, the

original parents should be used whenever fresh seeds

are needed. Outcrossing F1 plants to produce seeds (or

F2 plants) will lead to loss of hybrid vigour in subsequent

populations (F3, etc.). Selecting for plants that reach the

peak in artemisinin before, or at the onset of, flowering

(e.g. Artemis, Anamed, CPQBA) also allows for harvesting

to be performed 3–4 months after planting and allows for

at least two crops a year in tropical climates. Plants with a

high leaf-to-stem ratio would also be desirable. However,

the synchronization of flowering is one of the foreseeable

problems to be overcome. Plants from different origins

might have different requirements for photoinductive

cycle, i.e. the number of short days the plant has to be

exposed to before flowering. For instance, a Chinese

A. annua has been reported as a short-day plant,

which flowered 2 weeks after being exposed to the

inductive photoperiod of 13.3 h of light under green-

house and field conditions in Indiana, USA (Ferreira

et al., 1995b). The same Chinese line was compared to

a Vietnamese line of A. annua for the inductive photo-

period in southern Brazil (Marchese et al., 2002).

These authors confirmed the requirement of 14 days

(or cycles) of short days (13–15 h) for the Chinese line

to flower under growth chamber and field conditions

(268110S and 760 m altitude). However, the Vietnamese

line required an average of 33 short days before flower-

ing. Also, 100% of the Chinese plants flowered under

average temperatures of 378C maximum and 198C mini-

mum, compared to ca 33% of the Vietnamese plants. In

order for 100% of the Vietnamese plants to flower, the

average temperatures had to be 298C maximum and

138C minimum and the photoperiod had to be of either

7 or 9 h of light per day. The percentage of flowering

Vietnamese plants decreased to 83.3% with an 11-hour

photoperiod, while 100% of the Chinese plants flowered

with photoperiods of 7, 9, 11 and 13 h of light per day.

Tetraploid Artemisia annua and artemisinin

Tetraploid A. annua (2n ¼ 36) was obtained with the

mitotic inhibitor colchicine by Wallaart et al. (1999)

with an efficiency of approximately 20%. The content

of artemisinin (0.46% dry wt) in the tetraploid A. annua

during one vegetation period was ca 39% higher than in

the diploid parental clone of A. annua (0.33% artemisi-

nin). However, the average production of essential oils

was ca 32% lower than in the diploid parental clone, indi-

cating a possible inverse correlation between artemisinin

and essential oil production. The authors indicated that

the higher production of artemisinin might be achieved

at the expense of the essential oil level and concluded

that the A. annua tetraploid did not achieve the higher

levels of secondary metabolites achieved by tetraploid

Atropa beladona (68% higher), Datura stramonium

(105% higher) or Cinchona succirubra (110% higher).

The biomass accumulation of the tetraploid A. annua

was also lower than the one obtained by the diploid par-

ental clone, which decreased the total yield of artemisinin

of the tetraploid by 25%. Because the glandular trichomes

of A. annua have been indicated as the site for artemisi-

nin accumulation (Duke and Paul, 1993; Ferreira and

Janick, 1995a) it would be interesting to investigate the

density and size of these glandular trichomes in the tetra-

ploid plants. De Jesus-Gonzalez and Weathers (2003) also

obtained stable tetraploid A. annua root cultures with

colchicine and an efficiency of 10%, but growth in tetra-

ploid root cultures was slower than in diploid cultures.

Root diameter of tetraploid roots was larger than in

diploids. Although artemisinin production of tetraploid

hairy-root clones was from three to six times higher

than the production achieved by diploid clones, the

levels of artemisinin in those cultures (mg/g dry wt) did

not have commercial potential. An additional setback

was that the production of artemisinin in the diploid

clones isolated by the authors in the early 1990s has
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been declining ever since. This decrease and instability in

artemisinin production was previously reported by Fer-

reira et al. (1995b) in whole plant (differentiated) cul-

tures, kept in tissue culture for 2 years. The decrease in

artemisinin and loss of apical dominance were attributed

to epigenetic changes induced by tissue culture abnormal

growth conditions, compared to greenhouse or field

crops. This indicates that field-selected clones are better

maintained under greenhouse than under tissue culture

conditions.

Cloning and characterization of cDNAs involved in
artemisinin biosynthesis

The biosynthetic pathway of artemisinin has been

broadly defined (Wang et al., 1988; Akhila et al., 1990),

but the proper order and structure of the biochemical

intermediates is still being verified. In the past 10 years,

considerable effort has been made to clone and charac-

terize genes involved in the regulation of biosynthetic

enzymes with the hope of increasing artemisinin in

A. annua. Farnesyl pyrophosphate (FPP), as the primary

metabolic precursor to artemisinin, was the initial ‘target’

molecule for this strategy. Matsushita et al. (1996) cloned

farnesyl pyrophosphate synthase (FPPS) from A. annua

and demonstrated that the recombinant enzyme has auth-

entic FPPS activity in Escherichia coli.

The first committed step of artemisinin production is

the initial cyclization of FPP to the corresponding sesqui-

terpene amorpha-4,11-diene. Several sesquiterpene

synthase cDNAs have been cloned and characterized

from A. annua including 8-epicedrol synthase (Hua

and Matsuda, 1999), epi-cedrol synthase (Mercke et al.,

1999), (3R)-linalool synthase (Jia et al., 1999) and b-car-

yophyllene synthase (Cai et al., 2002). Each of the

cDNAs were expressed in E. coli and demonstrated to

have authentic sesquiterpene synthase activity. The

enzymes 8-epi-cedrol synthase and epi-cedrol synthase

generate a mechanistically complex class of compounds

known as cedranes. However, cedranes are not thought

to be involved in artemisinin biosynthesis. Similarly,

(3R)-linalool synthase and b-caryophyllene synthase do

not generate sesquiterpene precursors of artemisinin.

Also, cedranes are postulated to be involved in resistance

to plant pathogens. For instance, (3R)-linalool synthase

steady-state transcript accumulation increases in response

to wounding in A. annua seedlings (Jia et al., 1999), and

b-caryophyllene synthase steady-state transcript accumu-

lation increases in response to a fungal elicitor (Verticil-

lium dahliae) in A. annua seedlings (Cai et al., 2002).

However, manipulation of genes that control enzymes

of the essential oils (e.g. caryophyllene and linalool)

pathway by fungal elicitors cannot be extrapolated to

the branch of the pathway leading to the biosynthesis

of sesquiterpenes such as arteannuin B, artemisinic acid

and artemisinin. Presently, there is no evidence that arte-

misinin production can be increased by fungal attack.

The conversion of FPP to amorpha-4,11-diene by amor-

pha-4,11-diene synthase (ADS) is postulated to be the

first committed step in artemisinin biosynthesis. Mercke

et al. (2000) cloned and characterized the enzyme ADS

from A. annua tissues. This enzyme was cloned by

screening an A. annua cDNA library using the full-

length epi-aristolochene synthase cDNA from tobacco as

probe. Characterization of the ADS enzyme demonstrates

a low Km for FPP (0.7mm), and that the major product is

amorpha-4,11-diene (91%) although other related com-

pounds such as a-bisabolol and b-sesquiphellandrine

were produced at less than 1%. Martin et al. (2003) cir-

cumvented the poor performance of plant terpene

cyclases in E. coli by expressing a codon-optimized syn-

thetic cyclase gene, which improved the production of

FPP over 100-fold. They also used an engineered mevalo-

nate pathway from yeast, which performed from 30 to 90

times better than the normal E. coli pathway. Combi-

nation of both approaches increased the production of

amorpha diene by ca 105-fold. So far, the authors have

created a high-flux isoprenoid pathway in a bacterial

system capable of generating significant amounts of

amorpha-4,11-diene. However, because both artemisinic

acid and arteannuin B are bacteriostatic against E. coli

(Dhingra et al., 2000), it will be an interesting challenge

to move further than amorpha diene in this bacterial

system.

Selecting for other secondary metabolites

Artemisinic acid (qinghao acid), a precursor of artemisi-

nin, has been reported in A. annua at concentrations

up to 10-fold that of artemisinin (Laughlin, 1993) and

can be converted to artemisinin with an efficiency up

to 40% (Roth and Acton, 1989; Haynes and Vonwiller,

1991). However, due to the existence of different chemo-

types of A. annua from different origins, producing arte-

misinin from artemisinic acid is not always possible.

Some lines have only traces of artemisinic acid.

A. annua also contains an essential oil in its herbage

which is used in perfumery and as an anti-microbial

(Lawrence, 1990), and can add commercial value to the

crop if demand increases. Although the demand for Arte-

misia essential oils is small in the Western hemisphere, in

the Eastern hemisphere several toiletry items contain

A. annua essential oil. Strains of A. annua with essential

oil profiles of commercial interest were identified in

studies in the USA (Charles et al., 1991), although to

date these strains have not been explored commercially.

J. F. S. Ferreira et al.222

https:/www.cambridge.org/core/terms. https://doi.org/10.1079/PGR200585
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 16:47:30, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1079/PGR200585
https:/www.cambridge.org/core


The screening of A. annua germplasm for both artemisi-

nic acid and essential oil content may be a useful strategy

to increase the cost–benefit ratio of the extraction pro-

cess by aiming for both oil and artemisinic acid, but not

artemisinin, in one operation (Laughlin, 1994), when

using super-critical CO2 extraction. Essential oils are

extracted by steam distillation at temperatures which

destroy most of the artemisinin in the tissue, as reported

by Magalhães (1996) and Laughlin (2002). It is important

to note that if artemisinin is extracted in water below the

boiling point, up to 75% of the artemisinin will be present

in the aqueous extract (J. F. S. Ferreira, unpublished

data). A similar extraction procedure produced over

50% artemisinin, while boiling water produced 30% arte-

misinin or less (Magalhães, 1996). It seems that clones of

A. annua high in artemisinin and dihydroartemisinic acid

are low in artemisinic acid, and that chemotypes with low

levels of artemisinin and dihydroartemisinic acid are high

in artemisinic acid, the direct precursor of artemisinin

(Wallaart et al., 2000).

Currently, the resurgence of the use of Artemisia tea

as an alternative treatment for malaria with an efficacy

similar to, and bioavailability higher than, pure artemi-

sinin, points to a possible synergistic effect of other

components present in the decoction or infusion

obtained from dried plant material. This indicates that

selection of germplasm should head towards lines or

clones not only high in artemisinin, but also with

fairly high contents of artemisinin-related compounds

such as artemisitene, also with a peroxide group, and

compounds which might increase the biological activity

of artemisinin.

Increasing artemisinin in Artemisia annua

Manipulation of the artemisinin biosynthetic pathway to

increase artemisinin production would greatly decrease

costs of artemisinin-derived drugs and contribute to the

understanding of terpene biosynthesis. FPP, a central

molecule in plant metabolism, is the direct precursor of

sesquiterpenes (C15) and triterpenes (C30), and is related

to the biosynthesis of monoterpenes (C10) and tetrater-

penes (C40). As demonstrated by Martin et al. (2003),

ADS is capable of converting available FPP to amorpha-

4,11-diene, indicating that FPP is not limiting to artemisi-

nin biosynthesis. Thus, in vivo, Ferreira et al. (2004)

postulated that competition for FPP by a variety of ses-

quiterpene synthases will be the critical control point.

Some possible approaches to increase production of arte-

misinin in the plant, proposed by Ferreira et al. (2004),

were (i) over-express ADS in A. annua to shunt FPP

into the artemisinin pathway; (ii) knock-out other

known sesquiterpene synthase genes (such as 8-epice-

drol synthase, epi-cedrol synthase, (3R)-linalool synthase

and b-caryophyllene synthase) to see if a reduced

demand for FPP by other sesquiterpene (C15)

biosynthetic pathways would increase artemisinin; (iii)

combine approaches (i) and (ii); (iv) use macro- or

micro-arrays to determine the suite of genes expressed

in wild-type A. annua under physiological and develop-

mental states when artemisinin accumulation occurs.

When compared to similar data from wounded or patho-

gen-challenged A. annua, it should be possible to ident-

ify ‘master genes’ capable of increasing carbon flux

specifically to artemisinin biosynthesis. However,

although expression analysis suggests that wounding

and/or pathogen attack might increase carbon flux

through the sesquiterpene (C15) biosynthetic pathway

(Jia et al., 1999; Cai et al., 2002), wounding or disease

might not increase artemisinin biosynthesis.

Although the levels of artemisinin achieved by the

plant are mostly linked to genetic factors, the work of

Simonnet et al. (2001) indicate that it is possible to

increase artemisinin by up to 30% after harvested plants

are left to dry under full sun for 20–30 days. Similar pat-

terns of increase in artemisinin concentration from sun-

drying whole plants of A. annua for 21 days were

recorded by Laughlin (2002). This increase might be

due to photo-oxidative stress undergone by the plants

during the drying process. It is possible that artemisinin

precursors (artemisinic acid and arteannuin B) are trans-

formed into artemisinin during that time.

If the A. annua cultivar and geographic region allow

for a long vegetative cycle, more than one harvest can

be performed to increase the final yield of leaves and

artemisinin. In this regard, the work of Kumar et al.

(2004) with the A. annua cultivar Jeevanraksha, carried

out in a subtropical climate in India for 3 years, resulted

in yields of ca 28, 27, 40 and 74 kg/ha if the crops were

harvested once, twice, three times and four times,

respectively, during a 1-year growth cycle.

Available drugs and world demand

China and Vietnam are the main producers of artemisinin

and its derivatives either for oral or parenteral use.

Malaria control programme officials have distributed,

between 1991 and 1998, 31.6 million tablets of artemisi-

nin, 10.5 million of artesunate and 793,500 vials of inject-

able artesunate in Vietnam. Although recent data from

China are not available, sales of artesunate tablets rose

from 185,000 to 2,545,000 between 1991 and 1995. In

Thailand, consumption of artesunate rose from 2880

tablets in 1993 to 653,199 tablets in 1997. Artemisinin,

artemether, arteether, artesunate and dihydroartemisinin

can all be purchased as drug substances from producers
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in China while artemisinin, artemether and artesunate can

be purchased from Vietnam (WHO/MAL, 1998).

According to the WHO, artemisinin and its derivatives

are widely registered as antimalarial drugs in countries

where malaria is endemic. Currently, Artekin (dihydro-

artemisinin-piperaquine), Duo-cotexin (dihydroartemisi-

nin-piperaquine phosphate) and Coartemw (artemether

þ lumefantrine) are the artemisinin-combination drugs

available for the treatment of malaria caused by P. falci-

parum strains resistant to chloroquine. The first two

drugs are produced by Chongqing Holley Holdings

Co., and have been approved for use as a combination

treatment for malaria in Africa and Asia. Coartemw is

produced by Novartis from raw material produced by

Holley. Zambia was the first African country to adopt

Coartemw as a first-line treatment for malaria with Zam-

bia’s Central Board of Health receiving 2.1 million treat-

ments in 2003 and, supposedly 3.4 million treatments in

2004 on a not-for-profit basis (Anonymous, 2004). Intra-

muscular artemether can be made available in France

and Denmark upon request. Countries such as Bangla-

desh and the Philippines have no problem with malaria

caused by multidrug-resistant strains of P. falciparum,

and artemisinin-derived drugs are unavailable. However,

countries such as Myanmar and Vietnam require the use

of artemisinin drugs due to the existence of multidrug-

resistant Plasmodium strains. The world demand for

artemisinin-derived drugs is currently dictated by the

development and spread of multidrug-resistant P. falci-

parum. Unfortunately, the high demand for artemisinin

not only holds the price up, but also leads to counterfeit

drugs such as the fake artesunate reported by Newton

et al. (2001). Artesunate is manufactured by Guilin

Pharma and is widely used in South-East Asia and

other areas to fight malaria, which is still a major killer

in developing countries. The real artesunate is identified

by a circular hologram incorporated into the foil of the

blister packs. The fakes are very similar in appearance

and packaging to the genuine medication, but they

lack the active ingredient artesunate, which makes

them deadly if used to treat complicated malaria. Both

real and fake artesunate are depicted in Newton et al.

(2001). To date, these fakes have been found in Laos

and Cambodia. This problem is so serious that PAHO

has recommended a field method to test artesunate as

follows:

. Scrape 1/100 of tablet into tubes.

. Add 0.5ml of 1 N NaOH mix.

. Wait for 5–20min, room temperature.

. Add 1ml of 1.1 M acetic acid.

. Add 0.5ml of Fast TR red salt (5mg/ml in distilled

water).

If a yellow colour appears in 5min, there is real artesunate

in the sample. One should keep in mind that this method is

only qualitative, not allowing the user to know how much

artesunate is present in the sample. Although we could not

find a reference for this test, a similar test was published by

Green et al. (2001). Their method can be used quantitat-

ively if a spectrophotometer is available.

Laboratory and commercial extraction of
artemisinin

Artemisinin is an odourless, non-volatile compound,

which is purified as white crystals with a melting point

of 156–1578C. Its molecular weight is m/e 282.1742 Mþ

(Luo and Shen, 1987), with an empirical formula of

C15H22O5.

Artemisinin can be easily extracted with petroleum

ether (bp ¼ 458C), hexane (bp ¼ 608C), or other miscible

solvents such as chloroform, acetonitrile and ether which

have boiling points lower than the critical temperature for

artemisinin stability. Artemisinin was established to be

stable up to 1508C in neutral solvents (Lin et al., 1985).

However, during tea preparation artemisinin decreases

when leaves are boiled for as little as 5min, but seems

to remain stable if leaves are extracted with water

before the boiling point (Magalhães, 1996). The first pub-

lished laboratory procedure for isolation of artemisinin

was described by the late Dr Daniel Klayman (Klayman

et al., 1984). Extraction of artemisinin and artemisinic

acid is also achieved by an improved method of super-

critical CO2, with optimal pressure of 15MPa, tempera-

ture of 508C, methanol (or ethanol) concentration of

3%, flow rate of 2ml/min and extraction time of 20min

(Kohler et al., 1997), although the economics of this

extraction method have not been discussed for its com-

mercial-scale use. A feasibility report performed by

TechnoServe (2004) considered the costs of large-scale

extraction of artemisinin with (i) mixed solvents, includ-

ing petroleum ether (or hexane) and ethyl ether; (ii) etha-

nol; and (iii) CO2, and concluded that mixed solvents and

CO2 are economically attractive, but the initial investment

would be large for a 2600-ton capacity plant, and none of

the options consider the price of a quality control labora-

tory, equipped with a high-performance liquid chromato-

graph, to monitor leaf artemisinin content of different

batches. Prices and economic study numbers are undis-

closed, but can be obtained by contacting Mr Thomas

Dixon (Thomas.Dixon@tnstanzania.org).

The first large-scale extraction procedure of artemisinin

was published by ElSohly (1990). Unground, dried leaves

(400 kg) were extracted to produce 485 g (0.12% yield) of

artemisinin, 2.12 kg (0.53% yield) of artemisinic acid and
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170 g (0.04% yield) of arteannuin B. Commercial pro-

cedures in general involve the initial extraction with pet-

roleum ether or hexane (low-boiling solvents). As

petroleum ether and hexane are non-polar solvents, all

the waxes are extracted with artemisinin. This crude

paste is later refined through column chromatography

to separate artemisinin from undesirable debris and

from other desirable compounds such as artemisinic

acid and arteannuin B (if present). A major artemisinin

producer in China (Holley) recycles the petroleum

ether so that it can be reused in subsequent extractions.

Holley achieves an average yield of pure artemisinin

per ton of dried leaves of ca 85% (K. MaK, personal com-

munication).

In the attempt to protect ecosystems from pollution by

solvents derived from petroleum, clean methods and

good manufacturing practices need to be considered.

Although initial costs for installation and routine acqui-

sition of liquid CO2 might be seen as disadvantageous,

the advantages, when compared to a gasoline extraction

method, can be found in the yield (0.62% versus 0.3%),

extraction time (20 h versus 120 h), total cost (19%

cheaper), safety and low pollution of the environment

(WHO, 2002). In addition, the possibility of using small-

scale super-critical fluid extraction units can alter the econ-

omic model and the benefits of introducing such environ-

mentally friendly, recyclable solvents such as CO2.

Conclusions

Artemisia annua is the main source of artemisinin, the

most potent and efficacious antimalarial after quinine.

Recently, artemisinin has also been proved to be a

selective anti-cancer drug (Moore et al., 1995; Efferth

et al., 2001). Currently, the limited availability of artemi-

sinin and the lack of real competition among producers

of raw material seem to be the major barriers to scal-

ing-up production and are partially responsible for its

high price (World Bank, 2003). Also, the lack of afford-

able certified seeds hampers the extension of A. annua

cultivation around the world. Breeding high-yielding,

late-flowering cultivars of A. annua adapted to the tro-

pics, where malaria is endemic, is a desirable approach

that needs to be pursued. Reports about the antimalar-

ial efficacy of tea prepared with leaves of artemisinin-

rich plants (Mueller et al., 2000, 2004) offer hope to

people who are isolated from immediate health care.

Anamed.org presents detailed protocols for tea prep-

aration from leaves, but we cannot overstress the

need of physician assistance to assure that the treat-

ment will be carried out to completion. Also, the tea

alternative should be used as an immediate source of

artemisinin to alleviate symptoms and fight Plasmodium

reproduction until a full-course treatment for malaria,

preferably with artemisinin-combination therapy, can

be provided. However, this approach should not be

used in areas where chloroquine-resistant Plasmodium

is in existence. Scientists are currently trying to under-

stand the intricate and self-regulated biosynthetic path-

way of artemisinin, its potential increase by the

manipulation of a bacterial system and by the over-

expression of terpene cyclase genes, although commer-

cially feasible results are still to be seen.

Currently, the hope to curb malaria rests on hampering

the spread of the disease by mosquito vectors, on the

availability of an effective and affordable vaccine, on

the widespread use of insecticide-treated nets, on new

antimalarial drugs effective against multidrug-resistant

Plasmodium, and on meeting the world demand for arte-

misinin-combination treatments. Of course this last factor

depends on a steady production of artemisinin, at afford-

able prices, to meet global demand.

Recently, the entire genome of Plasmodium falci-

parum has been deciphered, revealing that the resist-

ance to chloroquine rests on one single gene.

Interestingly, the same mutation renders Plasmodium

more susceptible to quinine and artemisinin (Gardner

et al., 2002). Genetics has played a major role in the

control of malaria through the breeding of more pro-

ductive A. annua cultivars and by helping to find a

chink in the armour of the malarial parasite. It is now

up to researchers to translate this knowledge into

actions that can alleviate the suffering of people

afflicted with malaria. Genetic improvement of A.

annua to generate plants with high artemisinin and

high biomass in the tropics, mainly close to latitude

zero, is an essential goal that must be pursued

immediately.

Although field production of A. annua is presently the

most commercially feasible approach to produce artemi-

sinin and related compounds, farmers must have access

to good-quality seed generated from high-artemisinin

parents. Although these seeds do not constitute ‘true

hybrids’ because the parents are not homozygous, arte-

misinin content found currently in seeds available for

research is approximately twice as high as it was 10

years ago (1.0% compared to less than 0.5%). Also, the

agricultural aspects of artemisinin production such as

soil fertility and pH, plant density, water availability, lati-

tude and altitude, hormones, harvesting and drying pro-

tocols must be fine-tuned for each geographic area

where artemisinin is to be produced as a raw material.

In addition, factors that affect temporal (when artemisinin

reaches its maximum) or spatial (tissue localization)

accumulation must not be ignored when evaluating the

commercial potential of Artemisia annua as a new

crop for tropical or temperate regions.
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