Pure Appl. Chem., Vol. 73, No. 3, pp. 449–453, 2001. © 2001 IUPAC

Long-distance charge transport through DNA. An extended hopping model*

Bernd Giese[†], Martin Spichty, and Stefan Wessely

Department of Chemistry, University of Basel, St. Johanns Ring 19, CH-4056 Basel, Switzerland

Abstract: Long-distance transfer of a positive charge through DNA can be described by a hopping model. In double strands where the $(A:T)_n$ bridges between the guanines are short $(n \ge 3)$, the charge hops only between guanines, and each hopping step depends strongly upon the guanine to guanine distances. In strands where the $(A:T)_n$ sequences between the guanines are rather long $(n \ge 4)$, also the adenines act as charge carriers. To predict the yields of the H₂O-trapping products one has to take into account not only the charge-transfer rates but also the rates of H₂O-trapping reactions.

In the 1990s, the question of long-distance electron transfer through DNA raised a controversial discussion [1]. We entered this area three years ago by studying radical-induced DNA strand cleavage reactions. Our experiments showed that photolysis of a 4'-acylated nucleoside in the DNA double strand **1** yields radical cation **2** that selectively oxidizes guanine (G) and forms a guanine radical cation (G^{*+}) in **3** (Fig. 1) [2].

This reaction sequence led to an assay that made it possible to follow the charge migration through DNA by trapping of the positive charge at the heterocyclic base [3]. In order to understand the experimental results, we suggested in 1998 a hopping mechanism [3] for long-distance charge transport through DNA, which is based on the theoretical model of Jortner [4]. A similar hopping mechanism, which is slightly different in the details, was also suggested by Schuster [5], and today there is a con-

Fig. 1 Assay for the charge injection into a guanine (G).

^{*}Lecture presented at the XVIIIth IUPAC Symposium on Photochemistry, Dresden, Germany, 22–27 July 2000. Other presentations are published in this issue, pp. 395–548.

[†]Corresponding author

Fig. 2 Yield of H_2O -trapping products at the GGG sequence (P_{GGG}) in long-distance charge transfer by a hopping between guanines (G).

sensus that long-distance charge transport through DNA occurs by a multistep hopping process [6]. Out of the four natural heterocyclic bases guanine (G) has the lowest ionization potential [7], therefore G is the preferred carrier of the positive charge. Thus, in double strands **4–7** of Fig. 2 the positive charge hops between the guanines to the GGG unit, which has an even lower redox potential than a single G. Trapping of the guanosine radical cation (G^{++}) leads to products P_G and P_{GGG} that are separated and analyzed quantitatively by gel electrophoresis.

This hopping model implies that the electron transfer from a G to a G^{•+} is faster than the trapping reaction by H_2O so that the charge should be partly distributed over the guanines before it is trapped [8]. Therefore, the yields of products P_G decrease only slightly from P_{G1} to P_{G4} , although the distance to the charge donor $G_1^{\bullet+}$ increases by 10 Å per each hopping step (Fig. 3).

This slow decrease of the product yields must not be mixed up with a weak distance influence on the charge-transfer rate. It is the ratio between the charge transfer and the H_2O -trapping rates that governs the product ratios (Fig. 4). We have quantitatively described this situation using the Curtin–Hammett principle [10]. The product ratio decreases only slightly as long as the H_2O reaction is slower than the charge-transfer steps.

Figure 5 shows how the charge migration from G_1 via G_2 , G_3 , G_4 to the GGG unit precedes the product formation.

Despite this weak distance influence on the product formation, the influence of the distance on the charge-transfer rate k_{CT} of each hopping step is large, and the β -value is about 0.7 Å⁻¹ (Fig. 6) [3,9].

Thus, the electron-transfer rate between G^{++} and G over an $(A:T)_n$ bridge dramatically decreases with *n* until one reaches the situation in which the endothermic oxidation of the adjoining adenine (A) by G^{++} is as fast as the oxidation of a distant G [10]. Using a buffer at pH = 7, this seems to be the case if the number of A:T base pairs *n* of the $(A:T)_n$ bridge is larger than 3 where the charge-transfer rate between the guanines is smaller than 10^5 s^{-1} . As shown in Fig. 7, in these strands also adenines (A) become charge carriers [10]. Once A is oxidized, the charge migrates in fast hopping steps between the

© 2001 IUPAC, Pure and Applied Chemistry 73, 449-453

Fig. 3 Product yields P_G and P_{GGG} formed by trapping of the guanosine radical cation (G⁺) by H₂O during charge transfer through DNA double strand **7**. The positive charge is injected into G₁ and migrates via G₂, G₃, and G₄ to the GGG unit.

Fig. 4 Reaction profile diagram for the charge transfer and H_2O -trapping of the guanines G_1 to G_4 of double strand 7 at pH = 7.

Fig. 5 Calculated charges at $G_2^{\bullet+}$, $G_3^{\bullet+}$, $G_4^{\bullet+}$ (•), and H_2O -trapping products P_{G2} , P_{G3} , and P_{G4} (\Diamond) at the positions G_2 , G_3 , and G_4 , respectively, during charge transfer through double strand **7** at pH = 7.

© 2001 IUPAC, Pure and Applied Chemistry 73, 449–453

Fig. 6 Experimentally determined β -values using the assays of Giese [3] or Lewis and Wasielewski [9].

Fig. 7 Dependence of the charge-transfer rate on the number *n* of A:T base pairs between G_a and G_b in DNA double strands at pH = 7.

adjoining adenines until it reaches a G, so that the overall charge-transfer rate decreases only slowly with a further elongation of the $(A:T)_n$ bridge.

In conclusion, the yields of the trapping products P_G depend not only upon the charge transfer but also on the H₂O-trapping rates. In DNA double strands, where the H₂O-trapping reaction is very slow and the number of adjoining A:T base pairs is large, guanines and adenines are the carriers of the positive charge, and only a small distance influence on the ratios of products P_G will be observed. However, if the H₂O-trapping rate is very fast and the number of adjoining A:T base pairs is small into G, only guanines can act as the charge carriers, and the distance influence on the product ratios will be large. In between these two extremes, a complex situation arises. According to the Curtin–Hammett principle, the product ratios can be predicted using the known charge transfer rate constants [11], a β -value of 0.7 Å⁻¹, and a kinetic model that treats the long-range charge transfer by a hopping mechanism between the guanines for short A:T sequences, or guanines and adenines for long A:T sequences [10].

ACKNOWLEDGMENTS

This work was supported by the Swiss National Science Foundation and the Volkswagen Foundation.

REFERENCES

- Commentaries on hole transfer in DNA: a) E. K. Wilson. *Chem. Eng. News* 77(34), 43 (1999); b)
 M. Ratner. *Nature* 397, 480 (1999); c) M. W. Grinstaff. *Angew. Chem. Int. Ed.* 38, 3629 (1999).
- E. Meggers, D. Kusch, M. Spichty, U. Wille, B. Giese. Angew. Chem. Int. Ed. 37, 459 (1998); E. Meggers, A. Dussy, T. Schäfer, B. Giese. Chem. Eur. J. 6, 485 (2000).
- 3. E. Meggers, M. E. Michel-Beyerle, B. Giese. J. Am. Chem. Soc. 120, 12950 (1998).
- a) J. Jortner, M. Bixon, T. Langenbacher, M. E. Michel-Beyerle. *Proc. Natl. Acad. Sci. USA* 95, 12759 (1998);
 b) B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers, M. E. Michel-Beyerle. *Angew. Chem. Int. Ed.* 38, 996 (1999);
 c) M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel-Beyerle, J. Jortner. *Proc. Natl. Acad. Sci. USA* 96, 11713 (1999).
- 5. P. T. Henderson, D. Jones, G. Hampikian, Y. Kan, G. B. Schuster. *Proc. Natl. Acad. Sci. USA* **96**, 8353 (1999).
- B. Giese. Acc. Chem. Res. 33, 631 (2000); G. B. Schuster. Acc. Chem. Res. 33, 253 (2000);
 C. Wan, T. Fiebig, O. Schiemann, J. K. Barton, A. Zewail. Proc. Natl. Acad. Sci. USA 97, 14053 (2000).
- 7. S. Steenken and S. V. Jovanovic. J. Am. Chem. Soc. 119, 617 (1997).
- 8. B. Giese and S. Wessely. Angew. Chem. Int. Ed. 39, 3490 (2000).
- F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield, M. R. Wasielewski. Science 277, 673 (1997).
- 10. B. Giese and M. Spichty. Chem. Phys. Chem. 1, 185 (2000).
- 11. F. D. Lewis, X. Liu, J. Liu, S. E. Miller, R. T. Hayes, M. R. Wasielewski. Nature 406, 51 (2000).