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This paper deals with eigenvalue problems of the form

—u”(2) + V(2)u(z) — q(z)|u(z)|"u(z)

+ pr(@lu(@)|"u(z) = Mu(z), @€ R, ue H(R)\ {0},
where 0 < o < 7 and V(z) is such that the spectrum of —u'’ consists of eigenvalues
A1, A2, ... situated below the continuous spectrum [A, +ool.

We analyse the existence of (multiple) solutions for A < A1 as well as for A > \;
when A is in a spectral lacuna.

The existence of solutions depends on the weight of p > 0. Moreover, when A
increases (while y is kept fixed), some solutions are lost when crossing eigenvalues.

The above results are derived with the help of an abstract approach based on
variational techniques for multiple solutions. This approach can even be applied to a
wider class of problems, the one presented herein being only a model problem.

1. Introduction
We consider in this paper nonlinear eigenvalue problems of the following kind.
PrOBLEM 1.1. Find A € R and v € H*(R) \ {0} such that

—(@) + V{@)u() — q@)|u@)|7u(@) + pr(@)u@) u(@) = Aa(z), @€ R,
holds (in a generalized sense).

It will be assumed that V'(-) is a non-negative function, that ¢(-) and r(-) are pos-
itive functions and that 0 < o < 7. The positive parameter p measures the strength
of the second nonlinear term; indeed we may assume without loss of generality that
||~ =1, for example.

Nonlinear eigenvalue problems of this kind have been studied very intensively by
many authors.

A first class of publications covers the case where V(-) = 0 and g = 0. Nowa-
days, it is well known that, for each A < 0, problem 1.1 has an infinite number of
solutions [4,5,12,16-20,23-28], this being so under rather general assumptions on
q(:) and o.

Concerning the case of Schrodinger equations (where V(1) # 0), we refer the
reader to [3,6,9,13,15,29].

(© 2005 The Royal Society of Edinburgh
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Figure 1. Spectrum of o(L).

We have analysed problem 1.1 with x4 > 0 and for A below the spectrum of
the linearization under such general assumptions in [21]. The key results can be
summarized by the observation that the nonlinear terms

q(@)|u(z)|?u(z) and  pr(z)fu(z)| u(z)

are conflicting in the sense that the first term gives rise to solutions, while the second
term prohibits the existence of solutions. More precisely, we could establish that,
for a fixed value of A\ below the spectrum of the linearization, our problem 1.1 has
no solutions at all as soon as p > 0 is sufficiently large, while there are solutions
for 1 > 0 sufficiently small. We insist on the fact that the threshold value of u
appearing here depends on A: solutions exist for a given A below the spectrum
as long as pu € [0,¢(N\)), where ¢(-) is a non-decreasing function and there are no
solutions for p > c(A).

In [21], we established another important fact. By symmetry it is obvious that
solutions appear pairwise in the form (A, £u). For u > 0 sufficiently small, we could
associate with each solution pair (A, £u) a second solution pair (A, £v) that has
no equivalence in the case p = 0. Thus, we are led to the interesting fact that the
conflict of nonlinear terms is in fact solution-generating as long as the conflicting
terms are well equilibrated, i.e. u > 0 is not too large. Among authors that have
dealt with such situations let us cite [1].

A second class of publications covers the case where V() # 0, but where still
@ = 0. In this case, the values of A lying in a spectral gap of the linear operator
appearing in problem 1.1 have been studied with special interest in the last few
years (see, for example, [7,8,10,11]). At first glance, it seems that a generalization
to the case where p > 0 should be easily realized and that the results cited above
should be recovered when p # 0. It turns out that the situation is somewhat more
complicated.

The first reason for this is the fact that the above-mentioned equilibrium of the
nonlinear terms requires a loss of compactness for the nonlinear potential

1
247

0(0) = 5 [ r@)u(@)P s

R
this in turn makes it more difficult to handle the compactness condition of Palais—
Smale type.

The second reason is less technical, since solutions (A, £uy) may be lost while
crossing with A eigenvalues of the linear part in problem 1.1. In order to keep this
loss of solutions sufficiently small, we will have to assume that the spectral gap
under consideration will be bounded on the left only by eigenvalues. This means
roughly that the spectrum o (L) of the linear part —u”(z) + V(x)u(x) can be split
into the point spectrum o,(L) = {A; | i = 1,2,3,...} and the continuous spectrum
oeont (L) according to figure 1.
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Conflicting nonlinearities and lacunae 1043

The paper is organized as follows. In §2 we give an abstract formulation of
our problem. This abstract problem covers the situation discussed here, but it
covers other problems too. The abstract variational formulation needs some kind
of a compactness property, a topic developed in §3. After a remark on the non-
existence of solutions for small, negative values of A (say A < A), we analyse the
existence of solutions for A > A. In order to achieve this, we first identify (in §4)
two critical sets 9y and 9y containing all the non-trivial solutions. A solution wi x
below the spectrum can be found by minimization over 91y; with a mountain-pass
argument (over 91y) we can find a second solutions v; » (see §4). In §5, we derive
the existence of more solutions by replacing, for example, minimization over 91y by
a Ljusternik—Schnirelmann argument. Moreover, we discuss how solutions are lost
when increasing A\ across an eigenvalue. In the last section we formulate the result
for the concrete problem mentioned above (see figure 7 on p. 1070).

2. The abstract problem

We now introduce the abstract problem we will deal with throughout this paper:
we are looking for A € R and u € H \ {0} such that

Lu — F(u) + uG(u) = \u

holds in some appropriate space and in a sense to be made more precise. The setting
of this problem will be rather general, since we make only the following assumption.

ASSUMPTION 2.1. H is a separable, real Hilbert space with scalar product (-,-) and
associated norm || - ||.

The operators F' and G are nonlinear, while L is a linear operator satisfying the
following assumption.

ASSUMPTION 2.2. L : D(L) C H — H is a linear, self-adjoint operator that is
bounded from below:

3¢ > 0 such that (Lu,u) > ¢|jul?, Yu € D(L).

The spectrum o (L) of L is such that there exist some constants U > 0 and U > U
such that

o(L) N]—o0,U[ = 01U oy,
where

(i) o1 ={Ni|i=1,...,M} is composed of all the M eigenvalues (M > 1, with
M = oo possible),

(i) o2 = [U,U[ C 0com(L).
For convenience, we set Apry1 := U (Ao := U if M = c0) and we note that £ = A;.

In order to give a broad sense to the concept of solution, we introduce some
subspaces of H. For s > 0, H® denotes the domain of L*/? equipped with the scalar
product

(u,v)s := (L*?u, L*/?v)
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1044 H.-J. Ruppen

and the associated norm ||uls = ||L*/?u|| = \/(L*u,u); H~* denotes the dual space
(H*)'. Clearly, H* = H.

PROPOSITION 2.3. Under assumptions 2.1 and 2.2, the spaces H® and H™° are
separable, real Hilbert spaces, for all s > 0.

The spaces H?, H', H and H~! will be of special interest. We may consider H?2,
H' and H as subspaces of H~! (see [7] for more details).

We denote by (-,-) the duality between H~! and H'. In particular, for u € H
and v € H', we have (u,v) = (u,v). So, for u € H?> and v € H', we find, in view
of Lu € H, that

(L) = (L2, L20)] < [l o).

This means that
L:D(L)=H*CcH"— H™!

is a continuous operator of norm less or equal to 1. Hence, we can make the following
proposition.

PROPOSITION 2.4. Under assumptions 2.1 and 2.2 there exists exactly one contin-
uous extension L1 of L:

Ly:H'— H™",  with Ly = L.
We can now formulate the problem we are dealing with more precisely, as follows.
PROBLEM 2.5. Find A € R and u € H' \ {0} such that
Liu — F(u) + pG(u) = Au
holds in H 1.
REMARKS.

(i) X € R is an eigenvalue and we are looking for solutions (\,uy) € R x H'. The
method we will use consists in finding for a given value of A the corresponding
functions uy.

(ii) p is a positive constant that remains fixed. It is in fact a measure for the
amplitude of the term uG.

(iii) The operators F, G : H' — H~! are nonlinear (see below). Let us simply
remark for the moment that F(0) = G(0) = 0. Hence, the aim of the condition
H'\ {0} is to exclude the ‘trivial’ solutions (A, 0) in problem 2.5.

We now introduce the assumptions made on F' and G.

ASSUMPTION 2.6. There exists @ € C'(H';R) such that F = &’. Moreover, we
have the following conditions:

(i) #(0) =0 and &(u) > 0 for u € H* \ {0};
(ii) 3o > 0 such that (F(u),u) = (2 + 0)®(u), Vu € H*;
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Conflicting nonlinearities and lacunae 1045

(iii) Jep > 0 and pp > 1 such that

|F(u)||—1 < cp(F(u),u)/?P, Yuec H.

ASSUMPTION 2.7. There exists ¥ € C1(H';R) such that G = ¥'. Moreover, we
have the following conditions:

(i) ¥(0) =0 and ¥(u) >0 for ue H'\ {0};
(ii) 37 > 0 such that (G(u),u) = (2 + 7)¥(u), Vu € H';
(iii) Jeg > 0 and pe > 1 such that
1G(u)]| -1 < ca{G(u),u)/Pe, Yue H'.
We will see below that these assumptions imply F(0) = G(0) = 0 and

_2+U _2+T
T 140’ pG_lJrT'

br

Until now, we have presented the similar faces of F' and G. We now introduce an
additional assumption on the coexistence of these terms.

AsSUMPTION 2.8. The operator F : H' — H~! is compact. Moreover, whenever
Un — u € H', we have
F(un) = pGun) = F(u) = pG(u),  F(uy) = F(u) in H™,
b(up) = d(u) in R, VU (u) < iminf ¥ (u,).

n—oo
We have, for any sequence {u,} C H' with lim,, . ¥(u,) = +o0,

P(un)
11m =
n—oo tW (uy,)

Finally, 0 < o < 7.

For a discussion of existing relations between these properties we refer the reader
to the classical theorems of Tsitlanadze [30]
In order to simplify the notation, we introduce the following shortcut.

ASsUMPTION 2.9. The assumptions 2.1, 2.2, 2.6, 2.7 and 2.8 hold.

Within this setting, problem 2.5 is of variational type. Therefore, we introduce
the notation:

B(u) = (Lyu,u) = [|IL"Y?u])? = ||ull3,
B (u) == B(u) = Allul]?,

1) = 1By (1) — B(u),

Ia(u) == 2By (u) — B(u) + p¥(u) = Ir(u) + p (u).

Then the following proposition holds.
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1046 H.-J. Ruppen

PROPOSITION 2.10. Under assumption 2.9, we see that

(A, u) solves problem 2.5 <= {@{:\e(uliﬂz\oio}

The rest of this section is devoted to the study of terms By, ¢ and V.
PROPOSITION 2.11. Under assumptions 2.1 and 2.6 we have

(1) ®(tu) = t2T°®(u) fort >0, Vu € H,

240
T 140

(2) pr and, for all u € H,

[ F(u)|—1 < const.|juliT7 and &(u) < const.|ul|2+.

Proof. We follow Heinz [10]. Concerning the first point, it is sufficient to prove the
claim for u # 0. In this case we have

F(su), su)

log @(tu) — log P(u) :/1 < SB(s0) ds

b1
=02+ o)/ —ds
1 s
= (2+0)logt,
and the claim follows. For the second point, we note that
1 1
1F ()| =1 < ep(F(u), ) /77 < epl|F(u) | VP fully/ P

so that
|IF(u)||—1 < const.|[ul[}/®" ™Y = const. ||ulZ

where p’ = pr/(pr — 1). Hence,
1
2P (u) = B(tu) = / (F(stu),tu)ds
0
1 ’
< / || F'(stu)]|—1|[tw]]1 ds < const.t? , Vit >0,
0

and this implies that p’ = 2+ ¢ and pr = (24 0)/(1 + o). Moreover,

1 1

P(u) = 2+J<F(u),u> S o

1 ()| = [lully < const.[ful[7*.

So we are done. O
By the same arguments we obtain the following proposition.
PROPOSITION 2.12. Under the assumptions 2.1 and 2.7 we have

(i) @(tu) = t**7W(u) fort >0, Vu € H;
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Conflicting nonlinearities and lacunae 1047
2471

(il) pe = T and, Vu € H,

|G (u)||-1 < const.||u\H+T and ¥(u) < const.HuH%‘”'T.

When analysing the quadratic term B (u), we restrict our analysis to
A€ ]—o00, A1 \o(L1).
DEFINITION 2.13.
(1) If A < Aq, we set
A" :=—00 and A" := )\, sothat A €A, AT[,
Py :=0:H—H and P}:=id:H — H.
(2) A € JA1, Aprpa[ \o(L1), we set
A7 i=max{\; | \; < Awherei=1,..., M},
AT i=min{\; | \; > A where i = 1,..., M + 1},
so that A € ]A7, AT[. Moreover, we denote by P, : H — H the orthogonal
projection associated with the interval | — oo, A7] in the decomposition of the
unity of the operator L; in a similar way we denote by P;' : H — H the

orthogonal projection associated with the interval [A\T,+oo[. Clearly, Py +
Pl =id.

(3) In any case we define EY := P (H").

LEMMA 2.14. Under assumptions 2.1 and 2.2 and if A € |—o0, Apr1[ \o(L1), we
find that

(i) Py and P;r commute with the powers of L in the following sense:
PELY? C LV2PE, .,
(ii) EY and EY are subspaces of H' such that
H'=Ey & EY,
the sum being orthogonal in (-,-) and (-, ).
PROPOSITION 2.15. Under assumptions 2.1 and 2.2 and if X < A1, /BA(*) is a
norm in H' which is equivalent to the ‘usual’ norm B(-).
Proof. Indeed,
B(u) = [B(u) = Arflull®] + A fJul* = B, (u) + Mful?

is the usual norm in H' and the claim follows from

A1 —A

B (u) = By, (u) + (A1 = A)l|ul|* = Bx, (u) + Aafull?,

A1 — A A — A
minq 1, a4 ||u||f < Bx(u) < max< 1, a2 Hu||%
/\1 >\1
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1048 H.-J. Ruppen
For A > Ay with A & o(Lq), we set Bx(a) =1— A a.

PROPOSITION 2.16. Suppose that assumptions 2.1 and 2.2 are fulfilled and that
A€M, Avr1][ \o(L1). Then

(1) for o> 0 we have
B(u)
B(u)

allul]* = Bx(u) < Bx(a)ull7,

< <p
> = p

allul® = Ba(u) = Ba(o)Jullf;

(2) in particular, if A\~ < X < AT, then
By (u) < ﬂ;||u||% Yu € Ey, where 85 = [B\(A7),
Bi(u) > ﬂj”u”f Yu € E;\”‘, where ﬁj\' = B(AT).

Proof. Concerning the first point, B(u) = |lull; < «f/ul|?> implies that |jul|®> >
(1/a)]ull?. So

A
Ba(u) = B(w) = M[ull* = [[ull = Allull® < [Jullt = Zullf = Sr(@)llulf.

The conclusion for B(u) > al|ul|? follows in a similar way. The second point is a
consequence of the first point and the remark that

B(u) < A |lul)?, YueE™,
B(u) = A|jul|?, Yue ET.

3. The Palais—Smale condition

When applying variational methods, it is well known that the corresponding poten-
tial function (Jy in the present paper) must verify some compactness condition,
such as the Palais—Smale condition. So let us consider some Palais—Smale sequence;
by this we mean a sequence {u,} C H' such that

{Jx(un)} is bounded in H' and ||J{(un)|—1 — 0 asn — +oo.

We say that the Palais—Smale condition is fulfilled if any such sequence has a con-
vergent subsequence. We analyse in this section the existence of such a converging
subsequence.

Combining the equations

Jg\(un)un = B(un) = (2 + 0)P(un) + (2 + 7)¥ (uy),
2Jx\(un) = Bx(un) — 2@(uy,) + u2¥ (uy,)
leads to the following three basic relations:
2J\ (up) — Iy (up)uy = 0®(up) — p7¥(uy),
2(2 4 o)\ (un) — 2J5 (un)un = 0Bx(uy) — 2(1 — o) u¥ (uy,),
2(2 + 1)\ (up) — 2J3 (up)un = 7B (upn) — 2(7 — 0)P(uy,).

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:51:44, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/50308210500004261


https://doi.org/10.1017/S0308210500004261
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Conflicting nonlinearities and lacunae 1049

In particular, we have

Plu,) = 5 Ba(a) = T ) + ), (1)
J () = ﬁBx(un) - ii—ZJA(un) + iﬂ\(un)un. (3.2)

We distinguish now two cases with respect to the behaviour of | By (uy,)]|.

CASE 1. Suppose that (up to a subsequence) we have lim,,_, o | Bx(un)| = +00.

If the sequence
U
- c H!
{ Bx(un) }

is bounded, we would have, for n — +o0,

J,’\(un)% 0 and éi(&)) -0,
so that
B(u,) = By (un) {2(77_0) + 0(1)]
and
1 (1) = B (un) {2(70'_0) + 0(1)] .

This would imply, for n — 400, that
By(up) = +o00 and ¥ (u,) = +o0

and thus lead us to the contradiction

TR () Y
n—+00 ,uLD(un) o

We may conclude that (up to a subsequence) we have

[[wn |2
|B)\(un)|

If A < Ay, this is impossible in view of proposition 2.15 and since

— 400 asn — +00.

[[tn 11
B (un)
so that the sequence {B)(uy,)} is in fact bounded.

For A € JA1, Ap41], the situation calls for a more detailed analysis. To this
purpose, we set (taking, if necessary, a subsequence)

— +00,

I (U )t
= i A nin
7T S e TBa(un)

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:51:44, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.
https://doi.org/10.1017/50308210500004261


https://doi.org/10.1017/S0308210500004261
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

1050 H.-J. Ruppen
where v € R. Now v € +00 would lead us to

o . 1 Ji(un)uy
2(1 — o) +o(l)+

1 (uy) = By (uy) — 400 asn — 400

T—0 Bx(up)

and to

D(uy) . 7+ 0(1) + 2J5 (un )un{Ba(un)} !

li =

}
= :1
A o) + 27wy un{Ba () 1 L

which contradicts assumption 2.8. Hence, v € R and

o) = 2|2 o),

T—o |2
W () = li*(_ug){‘;+7+o(1)].

We even find that v € {—10,—17}. Indeed, v # —%0 implies that ¥(u,) — 400
as n — +o00, so that
P(un)  TH2y

=0
n—too pW(uy,) 0+ 2y

shows that v = *%7‘.

CASE 2. Suppose that the sequence {|Bx(uy,)|} remains bounded.
Note that, in this case, J}(uy)u, remains bounded, for otherwise (up to some
subsequence) we would be led by the relations (3.1) and (3.2) to

3 (Un )y, — 400, ¥(u,) — +oo and  lim

a contradiction to assumption 2.8. So, in fact, the sequences

{A(un)un}t, {@(un)} and {P(un)}

are all bounded.
Thus, we are led to the following lemma.

LEMMA 3.1. Suppose that the assumption 2.9 holds and that N\ € I\, Apr1[. Let
{un} be a Palais—Smale sequence. Then, up to a subsequence, we find that either
(for n — +00)

[[tn |1

‘B)\(Un” — +00, m — 400,
B(uy) = 75;{“;) B +y+ 0(1)}
and
() = 220) B +7+ o(l)],

where v € {—7/2,—0/2}, or the sequences {Bx(un)}, {J3(un)un}, {P(un)} and
{¥(un)} are bounded.
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Conflicting nonlinearities and lacunae 1051

In order to show that {u,} remains bounded in H!, we will use the following
property, given by assumptions 2.6 and 2.7: Vu € H!,

|9 (u) — 1 ()| 1 < const[B(u)F+0/ (B0 4 pup () A7)/ 4]
We now obtain, for our Palais—Smale sequence {u,} and for A & o(L1),
unlly = 1(Z1 = X)7HL1 = Nunlh
<1 = NI = Nl
< const[[| T3 (un)l| -1 + |9 (un) — p#’ (un)[| 1]
= const.[o(1) + ||®' (un) — ¥’ (un)]|-1]- (3.3)

Now suppose for a moment that we find, in the conclusions of lemma 3.1, that
| Ba(u,)| = +00. Then we have

l[tin||1 < comst.o(1) 4 const.| By (uy, )| 17/ 2+7)],

Mually

| Bx(un)

But this is a contradiction.

Hence, | By (uy,)| must remain bounded. Then, using the result in lemma 3.1 and
(3.3), we are led to

< o(1) + const.| By (u,)| ") = 0.

[[unll1 < const.,
i.e. the sequence {||u,||1} is bounded.
Hence, the following proposition holds.

PROPOSITION 3.2. Suppose that assumption 2.9 holds. Suppose moreover that \ €
]—00, Anrs1[ \o(L1). Every Palais—Smale sequence is then bounded in H*.

H' is a Hilbert space. So, up to some subsequence, we may assume that, for
n — +00o,
Up —u  in HY, D (up) — @' (u) and ¥ (u,) — ¥ (u),
(L1 — Nup, — (L1 — M.
Now we have

lim 2J\(up) = lLim [2J)\(un) — J3 (un)un]

n—-+oo n—-+oo

= lim [o®(un) — p7¥(uy)]

n—+oo
< oP(u) — T (u).
On the other hand, we have Jj(u,) — 0 and, since
T () = (Ly = Nt — & () + ()
= (L1 = Nu = &' (u) + p'(u) = J} (u),
we obtain J} (u) = 0. Hence,

lim 2Jy(un) < 0®@(u) — Tu¥(u)

n——+o0o

= 2J)\(u) — J(u)u = 2J,(u).
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Figure 2. Domain without solutions.
Since
2J5(u) = ((L1 — Nu, u) — 2&(u) + 2u¥ (u),
we find, up to a subsequence, that

lim By (u,) < By(u).

n—-+o0o

If A < A1, then, by proposition 2.15, u, — w in H*. If X € JA;, A\ayry1[ \o(L1), we
proceed by decomposition and in this manner we obtain (see lemma 2.14)

B (upn) = BA(Py up) + Ba(Py up).
On E;\r we obtain, by convexity,

lim BA(P;un) > B,\(P;ru).

n—-+oo
On the other hand, the finite dimensionality of F, implies that

Py (uy) — Py (u) in H, im By (Py uy,) = By (u).
Thus,
ngrfw By (P u,) = BA(Pyu)
and hence Py (u,,) — Py (u) in H.
Consequently, we obtain the following important result.

THEOREM 3.3. Suppose that assumption 2.9 holds and that
PYS ]—OO, )\M+1[ \O’(Ll)
Every Palais—Smale sequence {u,} then has a convergent subsequence.

The above results about the convergence of the Palais—Smale sequence open the
door to the variational approaches for the problem under consideration. We close
this section with a remark about the nonexistence of solutions. This may be amazing
at first glance, but eventually may be seen that the existence of solutions will hold
only if A and p satisfy some condition that can be thought as an equilibrium between
the nonlinearities in our problem.

First, we introduce a new assumption.
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j‘u,u

Figure 3. Definition of to.
ASSUMPTION 3.4.
(1) Assumption 2.9 holds.
(2) There exists a function ¢(u) such that
(2+0)P(u) = 2+ 1) (u) < c(p)||ull?, Vue H,
where
(i) e(u) > 0, Vpu > 0;
(i) lim,_, o+ c(p) = 400 and lim, o c(p) = 0;
(iii) ¢(-) is non-increasing on (0, +00).
We have the following result.

THEOREM 3.5. Suppose that assumption 3.4 holds. Then problem 2.5 has no solu-
tion (A\,u) € R x (H'\ {0}) with X < Ay — c(u) (see figure 2). Thus, a necessary
condition for the existence of solutions is

A=A —c(p).
Proof. By assumption 3.4 we have
Ji(uyu = B(u) = Allull® = (2 + )P (u) + pu(2 + 7)¥ (u)
> (A= Null® = e(u)ul®
= M1 = e(u) = A|Jul®.
Thus, J}(u) = 0 implies that A; —¢(p) — A < 0. O

4. The critical sets 2T, and Ny

We denote by
2:={ue H' | Juls =1}

the unit sphere in H' and we consider, for u € 2, A € R and p € Rt fixed, the
function

saua(t) 1= Ja(tu) = 3Ba(w)t® = P()|[tPT7 + p@ (u)|t**7, tER,
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f'u’u

Bl(u)— """""""""""""""""""

\

Figure 4. Situation where u € £2\ K.

with
S\ (t) = HBA(u) = (2 + ) P(w)[t|” + (2 + ) (u)[t]7].

We set
Jualt) = 2+ O)PW)[t” — 2+ Db (w)e], tER,

and we define ¢o(u) > 0 by the relation (see figure 3)
Fuu(to(u)) = max fi.(t).

Then
t=0,

b0 {10
This property explains our interest in the two following subsets of (2:
(i) B :={ue 2] fuu(to(u)) = Bxr(u)}; note that 2N E~ C K.
(i) &) = {u € &y | Br(u) > 0}.
For u € &, we define t1(u) by the relations
) >0, fuu(ti@) = Ba(w) and ), (t(w) > 0.
For u € Ry, we define t2(u) by the relations

ta(u) >0,  fuu(ta(u)) = Ba(u) and f ,(t2(u)) <O

REMARK 4.1.
(i) For u € 2\ &), we have the situation shown in figure 4.
(ii) For u € &, we have either of the situations in figure 5.
(iii) For u € & \ &), t1(u) does not exist and we have the situation in figure 6
We consider now the mappings

&1:,@1'—>H1, u > £ (u)u,
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Bj(u) —p--m-=mmmmmmmmmmeszmssmmmneoons

B (1)

T t t
t,(u) = ty(u) \ 1, () tz(u)\

Figure 5. Situation where u € ﬁ;\r.

Juw

227 I S

Figure 6. Situation where u € £ \ & .

and
Ko : Ry — HY, u > to(u)u,
and we define the sets
My = r1(RY) and Ny = Ka(K)).
As soon as ﬁ;r = 0, we set M, = (; and, similarly, as soon as Ky = ), we set
Ny = 0. We remark, however, that 91\ # ) whenever A > A;.

The following proposition summarizes our interest in these sets.

PROPOSITION 4.2. Suppose that assumption 2.9 is correct. The equation Ji(u) =0
then implies that

u € My UWIAU{O}.

REMARK 4.3. Note that inf,eon, Jx(u) = 0 if 9y # 0.
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5. A first solution set

Our aim in this section is to establish the existence of a set of solutions (A, u; ) for
A < A1. To this end we will use minimization on the set 91y as well as an associated
mountain-pass theorem.

PROPOSITION 5.1. Suppose that assumptions 2.9 and 3.4 hold, and suppose that
A < A1. There then exists a function pi(\) such that

(1) Ma#0 for 0 < p < pa(N);
(i) M =0 for p> p(N).
The function p1(\) is non-decreasing and satisfies the relation A = A1 — c(u1(N)).

Proof. We show first that DM, # 0 as soon as p > 0 is sufficiently small. Indeed, let
us choose any u € {2 and then fix any value of ¢ > 0 so that

(24 0)P(tu)
-_— >
12
Such a choice of t is possible, since @(tu)/t? = t°®(u) is a strongly increasing,

positive function of ¢. Then we have, for sufficiently small p > 0,

e e

But this means that xs(u) € My for such values of p.
Next we remark that as soon as My # () for some ji, we have a fortiori My # 0

for € (0, fil.
The result follows now from the fact that M, = @ for u sufficiently large (see
theorem 3.5). O

REMARK 5.2. When A < Ay, 9y # 0 if and only if 21y # 0.
Now, for A < A; and p € (0, 1 (N)], we set

mi(A) == ué%}fg Ja(u) and ni(A):= uler‘llf;A Ja(u).
Clearly, +00 > m1(A) = n1(A) > —oo. We are interested in the finiteness of these
quantities. In fact we put forward the following proposition.

PROPOSITION 5.3. Suppose that assumptions 2.9 and 3.4 hold, that A < A\ and
that 0 < p < pyp(N). Then +0o > myi(A) = ny(A) > —oco.

Proof. Suppose, on the contrary, that there exists a sequence {u, } C 91y such that
In(un) = —00 as n — +oo. Since J'(u,)u, = 0, a computation similar to that
leading to equation (3.2) gives

P (up) = 57— Ba(un) — -
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If, up to some subsequence, we have By (u,) — 400 for n — 400, we may obtain
w¥ (uy,) — +oo; this would lead us to the contradiction

D (un)
Lp(un)

If, up to some subsequence, we have that Bj(u,) remains bounded, this same
argument would lead us to the same contradiction.

Therefore, up to some subsequence, we should have Bj (u,,) — —o0, contradicting
A < A1, and so we obtain the desired conclusion. O

Ia(n) = —(uy,) { - 4 — +o0.

REMARK 5.4. For A > Ay, we have 91, # {; in this case, the above argument no
longer holds. It seems difficult to show that nj(A) > —oo holds for A > A; in
the general case. With additional assumptions, this can be shown. For example if,
whenever By (u,) — —o0, we have

(¥ (up) = 400 and By (up) > —const. W (u,)? ),

then we can proceed with the above argument for Bj(u,) — —oo by showing that
J(uy,) must remain bounded from below. Indeed

Ix(tn) = 5Bx(un) + ¥ (un)(1 + o(1))
> —const. ¥ (u, )+ 4+ 1 (u,) (1 4 o(1)).

PROPOSITION 5.5. Suppose that assumptions 2.9 and 3.4 hold, that A < A\ and
that 0 < p < p1(X). Then my(A) > 0.

Proof. We have, for ||u||; sufficiently small, say [Jull; = p > 0,
Ixn(u) = In(u) = 3 Bx(u) — D(u)

AL — A
> min{l7 ! }||u|% — &(u) (by proposition 2.15)

1
2

At
_ A1 — A D(u)
||u|2{1mln{17 } -
s A1 ulld
AL — A
imin{l, ! }||u|% (by proposition 2.11).

Thus, ml()\) > %min{l, (/\1 — )\)/)\1}/)2 > 0. O

WV

We will need the fact that mj(A) > nq(A). This is so, for example, as soon as
n1(A) < 0. More generally, we have the following result.

PROPOSITION 5.6. Suppose that assumptions 2.9 and 3.4 hold and that A < A1.
There then exists a function fiy(N) with i1 () € (0, u1(X)] such that

mi(A) > ni(A)  for p € (0, fir ()]
Moreover, the function fii1(-) can be chosen to be non-decreasing.

REMARK 5.7. We insist on the fact that we do not exclude the possibility that
lim)\*))\— ﬂ1(>\) € R.
1
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Proof. Tt is enough to show that ni(\) < 0 as soon as p > 0 is sufficiently small.
In order to achieve this, we fix any u € (2 and choose ¢ > 0 in such a way that
&(tu)/t> > By(u). Then

D(tu U (tu
(t2) H 552)

Ja(tu) = t?| 1By (u) — < —1t?By(u) <0

for p > 0 sufficiently small. O

PROPOSITION 5.8. Suppose that assumptions 2.9 and 3.4 hold, that A < A\ and
that p € (0, i1 (X)). Then the set My UMy is bounded away from zero.

Proof. Suppose, on the contrary, that we could find a sequence {u,} in 2\ U N,
with ||up|l1 — 0. Then

Ba(un) = (24 0)P(un) — p(2 4+ 7)¥ (un) < (2 + 0)P(un),
so we may obtain, by propositions 2.15 and 2.11, the contradiction

D(uy)

I}

AL — A
min{l, 1)\ }<(2+0) —0 asn— +oo.
1

O

Now everything is ready to apply variational methods, except that we need a
manifold structure for a subset of 91y that does not intersect the set 9ty. Thus, we
introduce, for A < Ay and p € (0, fi1 (), the set

‘JIM = {U ISR ‘ J)\(u) < ml(/\) — 6},
where € € (0,m1(A) —n1(X)).

PROPOSITION 5.9. Suppose that assumptions 2.9 and 3.4 hold, that A < A\ and
that p € (0, i1 (X)). Then

(i) Myrc is a complete Ct-manifold (with boundary Ny ) of codimension 1;
(ii) the space My . intersects the ray span{u} transversally, i.e.
span{T, M Uspan{u}} = T, H', Vu € Ny, \ Ny ..
Proof. We set h(u) := By(u) — (2+0)P(u) +p(2+7)¥(u) = J} (v)u and we remark

that
h(u) =0 < u € M, UM, U {0}.

We recall that, for ¢ > 0,

(24 0)P(tu) n (24 7)¥(tu)
t 4
2+4+0)1+0)P(tu) (24 7)1 + 1) (tu)
t2 - 12 ’

85 pult) = Ba(u)t —

)

S/)(,,u,,u(t) = B)\(u) -
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so that
I)\,u,u(l) = S//\/,,u,,u(l) = 07
— {BM) = 2+ 0)P(u) — (2+ 7)¥(u),
By(u)=2+0)(140)P(u) — 2+ 7)(1 + 7)¥(u),
By(u) = (24 0)P(u) — (2+ 7)¥(u),
= {sz(u) — (24 0)2B(u) — (2 4+ 7)2F(u),
h(u) =0,
= {h’(u)u =0
Hence,
hzg‘u _ g} = ue (M N U {0}

Let us consider now some point u € My .. Then h(u) = 0, but A'(u)u # 0, since
u & My U{0}. By the inverse function theorem we find that

(i) M. is a Cl-manifold of codimension 1 in a neighbourhood of u;
(i) TNy = T, N e = ker A/ (u).

So it remains to show that the manifold 91, . is closed. To this end, we consider
a sequence {u,} C My . with u, — u as n — +oo. Then h(u,) = 0 implies that
h(u) = 0, so that u € M, U N, U {0}. Since M) UMN, is bounded away from 0,
we necessarily have u € My UMy, and Jy(u,) < my(A) —e, i.e. Jy(u) <mi(A) —e
shows that u € 91 .. O

THEOREM 5.10. Suppose that assumptions 2.9 and 3.4 hold. Suppose also that A <
A1 and p € (0, i1 (A)).

There then exists an element wy x € Ny such that Jy(w1,x) = ni(A), J{(wi,x) =0
and wy x # 0. Hence (A, wy,2) s a solution of problem 2.5.

Proof. Consider a minimizing sequence {u,} C Mx: Jx(un) = n1(A) for n — +o0.
We choose a sequence of positive numbers {e,} such that

In(un) <ni(N) +€2, &, — 0.
Without loss of generality we may assume that
nl(/\) + Ei < ml()\)

We may now apply Ekeland’s variational principle (see, for example, [22]) in order
to obtain a new sequence {v,} C N, satisfying

J)\(Un) S JA(Un+w)+En||wH17 Yo, +w € Ny,
Ia(vn) < Ix(un),
[vn — un|l < én.
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Now
”J;\(Un)H—l = sup J;\(Un)w,
weTy,, N,
llwl1=1
So

In(vn +w) — In(vn) = —enllwl|lr, Yo, +w e Ny
implies that J§ (v, )w > —ey,||wl|1, such that (replacing w by —w) we obtain
[ 75 (vn) -1 < &p.

By the Palais—Smale condition established above we may now assume that, up
to some subsequence, we have v,, — v in H'. Thus, we obtain

veEMy, Jy(v)=0, Ji(v)=ni(N).
We call this element wy ! O
REMARK 5.11. If Jy is an even function, we in fact obtain a solution pair (X, £ws ).

REMARK 5.12. In the context given in remark 5.4, the solution (A, ws ) corre-
sponding to the critical value ni(A) exists for A € JA,U[ \op(L1), too, since the
above proof remains valid in this case, this being so for all values of u > 0.

The next theorem gives us the existence of a second critical point, independent
of any additional symmetry assumption on J)y(-).

THEOREM 5.13. Suppose that assumptions 2.9 and 3.4 hold. Suppose also that A <
A1 and p € (0, i (A)).
There then exists a second critical point v\ of Jy such that
J,\('Ul’)\) > ml()\) > ?11()\), J;\(UL,\) = 0, V1,2 € {wl,)\,O}.

Proof. We consider a set of paths
P = {p € C%([0,1]; 1) | p(0) = wi,x,p(1) = 0}.
We then consider

m1(A) := inf sup Jy(u).

PEP uep

We remark that mi(A) = mq(A) > max{0,n1(\)}.
Now a classical mountain-pass argument gives the desired result. O

REMARK 5.14. If Jy is an even function, we in fact obtain a solution pair (A, £y ).

6. The existence of other solutions

In §5 we established the existence of two ‘non-trivial’ critical values nq(A) and
m1(A) of Jx(u) for A < Ay, as long as p > 0 is sufficiently small, i.e. as long as

0< < ﬂl()‘)7

where fi1(A) is a non-decreasing function defined on (—o0, A1). Moreover, we have
seen that there are no ‘non-trivial’ critical values if p > 0 is sufficiently large.
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When A > Ay, say A € (A1, Ag), for example, My # @ even if p > 0 is large, but
there is no evidence for nq(A) to be finite in general, this being so even if p > 0
is small (see, however, remark 5.4). This new situation calls for a new approach
when studying the existence of solutions of problem 2.5 for A > A;. It will turn out
that this new variational characterization will lead us to new critical values even if
A< A1l

But before presenting this new approach, let us introduce a somewhat stronger
assumption.

ASSUMPTION 6.1.

(i) Assumption 2.9 is fulfilled.
(i) dim H' = +oo.

(iii) The functionals @ and ¥ are even and belong to C?.
)

(iv) The eigenspace F()\;) corresponding to L; — A; is of finite dimension for
i=1,...,M, where M < M.

Suppose now that
A € (=00, Ag,y) \ 0p(L1) for some ko € {1,..., M +1}

and let
ko
d(ko) ==Y dim E(\;) if ko # M + 1 and d(M + 1) = +o0;
i=1

for convenience we set d(0) = 0. We consider the set
A:={AC Ny | Ais compact and A = —A}

and we denote by 7(-) the Krasnoselski genus of symmetric sets in 2. For k =
1,...,d(ko), we introduce the sets

Sri={AeA[v(A) >k}
and we look at the following candidates for critical values

nk(A) = inf sup Ia(u),

with ng(\) = 400 if Fx = 0. Note that, for A < A\; and k = 1, this definition
coincides with the former definition of n1 () used in the previous section.
Our first interest lies in the finiteness of ng ().

PROPOSITION 6.2. Suppose that assumptions 2.9, 3.4 and 6.1 are fulfilled and let
ko € {1,...,M + 1}. Then the following hold.

(1) For every k € {d(ko — 1)+ 1,...,d(ko)} (or k > d(ko — 1) if d(ko) = o0),
there exists a non-decreasing function u(X\) defined on (—oo, A, ), such that

(1) r#0if 0 < p < pr(N),
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1062 H.-J. Ruppen
(i) Sk =0 if p> pr(N).
Moreover, fori=1,..., ko,
0 < pr+1(N) < pe(A)  on (=00, ), Vke{dii—1)+1,...,d(i)}.
(2) Foreveryk € {d(ko—1)+1,...,d(ko)}, we have np(N\) € R for A € (—o0, A,)
and 0 < p < pk(A).
Before proceeding with the proof, we make a remark. Suppose, for example, that
dim E(A\;) =1, dim E(A2) = 2 and M = M = 2; we then find that
(1) p1(N) is defined on (—oo, A1) and
ni(A) €R for A< A and 0 < p < pp(A).

Moreover,
p1(A) 2 p2(X) = ps(A) = -+ on (=00, Ay).

(2) p2(A) and ps(N) are defined on (—oo, Az) and

na(A) € R for A < Ag and 0 < g < pa(A),
n3(A) €R for A < Ag and 0 < p < puz(A) < pa(A).

Moreover,
p2(A) = p3(A) = pa(A) = --- on (=00, Ag).

(3) ux(A) (k> 4) is defined on (—oo, A3) and
ni(A) € R for A < Az and 0 < p1 < pi(N).

Moreover,
pa(A) = ps(X) = pe(A) = -+ on (=00, Ag).

Proof. We begin the proof by choosing a compact set A C {2 with A = —A in such
a way that 7(A) = k. Such a choice is always possible and there exists a b € R such
that

sup By (u) = b.

u€A

We then determine some ¢ > 1 such that

O(tu)
12

(24 0) >3b, Vue A

Such a t exists, for otherwise we could find a sequence {u,} C A such that

P(nuy,
(2+ a)% =n7(2+ 0)P(uy,) < 3b.

Thus, we would have that lim, . @(u,) = 0. But, A being compact, and if
necessary taking a subsequence, we could assume that u, — u € A as n — oco. By

continuity, this would lead us to the contradiction

&(u) =0 for some u € £2.
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Since A is compact, ¥(tu) is bounded on u € A. Thus, we may choose p > 0 to
be sufficiently small (say p < pg(A)), such that

d(t U(t
(2+40) iQU)—u(2+T) i2u)>%b, Yu € A.

Thus, we could show that
fuu(t) = %b > gBA(u), Yu € A,

and thus that, in fact, A C K.

By the inverse function theorem, to(u) depends continuously on u € A. Thus,
A(rs(A)) > k.

Note that if we increase A, b will be decreasing, so p(\) is non-decreasing,.

All that remains to be shown is that §x = 0 as soon as p > 0 is sufficiently
large and ko > 2. Suppose indeed that p is so large that Ag, — A > ¢(u). Let
P:H' = @ °1 'E ) be the orthogonal projection. Then

JA(U)U = B(u) = Mull* = (2 + 0)P(u) + (2 + 7)% (u)
> (Ako = Mllull* = c(p)ul?
= (Mo — A —c(p)|Jull* >0, Vu with P(u) = 0.

But this means that whenever A € §j we would have v(A) < d(kg — 1). Indeed, in
this case we obtain

ko—1

@E )\ {0} = R0 {o}.

Finally, note that §r+1 C §k, such that the first point is established.

Concerning the second point, note that Fx # () implies that ng(\) < +o0o. More-
over, for any set A in § with k > d(ko — 1), we have 0 € P(A), where P is the
orthogonal projection H' — @ko ! E();) introduced above. Hence, there always
exists an element us € A such that ua € E;\r Suppose now for a moment that
ni(A) = —oo. We could then obtain a sequence {u4, } C My with

Ja(ua,) = —oo and Ji(ua,)ua, =0.

The same argument as that in the proof of proposition 5.3 can now be used in order
to find
By(ug, ) — —0c0 asn — +o0,

contradicting in this way the choice of ua, € Ej\' O

The above proposition ensures finiteness of ng(\), but we need to know that
nk(A) is even negative.

PROPOSITION 6.3. Assume that the assumptions 2.9, 3.4 and 6.1 hold and let kg €
{1,...,M +1}.

Then, for every k € {d(ko — 1) +1,...,d(ko)} (or k > d(ko — 1) if d(ko) = o)
there exists a non-decreasing function fi(\) defined on (—00, A, ), such that

(i) 0 < fik(A) < pup(X), where pk () is given in proposition 6.2,
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(i) nk(X) <0 for A € (=00, Ag,) and 0 < p < fig(A).
Moreover, fori=1,..., kg,
0 < fkr1(N) < ag(A) on (—o0,N;), Vke{dli—1)+1,...,d(%)}.
Proof. We choose a compact set A C 2 with A = —A in such a way that v(A) =k

and we set
b := sup By (u).
u€A
Note that b > 0, since k > d(ko — 1). We then determine some ¢ > 0 such that
D(t
(t;‘) >b, Vue A

Such a choice is possible, for otherwise we could find a sequence {u,} C A with
n’®(u,) < b, i.e. P(u,) — 0. A being compact, we may assume, up to a subse-
quence, that u,, — u € £2, &(u) = 0, obtaining in this way a contradiction.

Since A is compact, ¥(tu) is bounded for u € A. Thus, we may choose p > 0
sufficiently small (say p < fi()A)), such that

B(tu) — p(tu) > 30>, Vu € A.

Thus,
Ja(tu) < EB\(u)t? — 3bt* < —1bt?, Vu € A.

So A C Ry and ka(A) C Ty with

inf  Jy(u) <0.
u€Ekz(A) )\( )

Finally, note that if we increase A, fix(\) will not decrease. O
We consider now, for € € (0, —3n())), the set
Mre :={ue M| Ia(u) < —c}.
PROPOSITION 6.4. Suppose that assumptions 2.9, 3.4 and 6.1 hold. Let
ko € {1,...,M +1}

and suppose that A € (—o00,\g,) and 0 < p < G(X), where fix(\) is given by
proposition 6.3.

Then Ny is a complete, symmetric Finsler manifold (with boundary 0Ny ¢) of
class C™1 and of codimension 1. Moreover, T\« and spanu intersect transver-
sally, i.e.

span{T, M. Uspan{u}} = T, H', Vu € Ny, \ Ny ..

Proof. The proof of proposition 5.9 can be carried over with obvious adaptations.
O

By a classical argument (see, for example, [22]) we find that ng(A) is a critical
value of Jy. Moreover, if ng_1(A) = ng(\), then we obtain infinitely many critical
points at level ng(A). Thus, we obtain the following important result.
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THEOREM 6.5. Suppose that the assumptions 2.9, 3.4 and 6.1 hold; let
koe{l,...,M+1}.
Suppose that X € (—00, Agy) \ 0p(L1) is such that
0<p<pr(N) for somek >d(ko—1). (6.1)
Then Jy has (at least) k — d(ko — 1) pairs of critical points
fw; z, i=d(ko—1)+1,... k.
The corresponding critical values are all distinct from zero and
In(tw; ) =ni(A) fori=d(ko—1)+1,... k.

When one must verify the condition in the above equation (6.1), it is interesting
to recall that, as soon as we have 0 < p < fix,(A) for some A, we find that

0<p <), YA€)

and the solutions +w; y exist for A € [\, Ay, ) \ 0p(L1). They continue to exist even
for A\ € [\, U[\o,(L1) in the context given by remark 5.4, since ng(\) = n1(A).

We recall now that, for A € (—o0, A1), we could associate with the critical value
n1(A) another critical value, m;(X). We will now show that this procedure can be
extended to ng(N).

A closer analysis of the proofs of propositions 6.2, 6.3 and 5.6 shows the following.

PROPOSITION 6.6. Assume that assumptions 2.9, 3.4 and 6.1 hold and let ko €
{1,...,M +1}.
The following hold.

(1) For allk € {d(ko — 1)+ 1,...,d(ko)} (or k > d(ko — 1) if d(ko) = o0) there
exists a non-decreasing function fip(\) defined on (—oo, A,) such that

(1) S #0if 0 < p < fig(N),
(i) 3A € Fi such that A is contained in some finite-dimensional space (of
dimension k + 1) and sup,¢ 5 Jx(u) < 0.

Moreover, fori=1,..., ko,
0 < fig+1(N) < (N on (—o00,;), Vke{dli—1)+1,...,d(i)}.
(2) Forallk € {d(ko—1)+1,...,d(ko)}, we have
ng(A) 