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ABSTRACT

The snail-trematode host-parasite system has been widely studied, as trematodes are known to greatly
influence the fitness of their hosts. Indeed, during their development, the trematodes castrate the
snail and one possible consequence of infection is gigantism of the snail. Snail gigantism is usually
investigated experimentally by comparing the size of healthy and artificially infected snails. Here,
I focused on naturally infected populations in order to investigate if snails submitted to trematode
pressure have evolved specific life-history traits to respond to the parasite prevalence in their natural
population. To this end, I estimated the correlations between measures of size (obtained from healthy
laboratory individuals originating from populations) and the parasite prevalence at the population
level. I found that the adult size of populations was positively correlated with population prevalence,
an indication that gigantism might be operating. Moreover, I found a positive relation between
growth and fecundity in healthy populations, while no such trade off was found in highly parasitized
populations, suggesting that there may be a cost in fecundity to this gigantism.

INTRODUCTION

Parasites play a major role in the evolution of their host’s life
history, because they greatly influence the survival, growth
and fertility of the host (e.g. in snails: Minchella, 1985; in
Drosophila: Jaenike, 1992; in fish: Loot et al., 2002). A good
model for studying host-parasite interactions is the mollusc-
trematode system as trematodes castrate, most of the time, the
host by infecting the gonads (Wright, 1971). Several studies
have highlighted that snails increase their body size after
exposure to trematodes, a phenomenon termed ‘gigantism’
(Minchella et al., 1985; Mouritsen & Jensen, 1994; Ballabeni,
1995; Gorbushin, 1997; Keas & Esch, 1997; but see Taskinen,
1998). Three explanations have been put forward to explain
gigantism. First, gigantism may be due to a manipulation by
the parasite: with an increased survival of its host, the parasite
benefits for a longer reproductive period and from a larger
amount of host tissue to exploit (Baudoin, 1975). Second, it
could be a host adaptation: if the host is not completely
castrated by the parasite then it will benefit from investing in
growth in order to survive the parasite and reproduce later
(Minchella, 1985). Last, gigantism could simply be a side
effect of infection: as the host’s reproduction is reduced, it can
invest more energy in growth (Keas & Esch, 1997). Hence,
whether gigantism is adaptive remains largely debated (Sousa,
1983; Minchella, 1985; Gorbushin & Levakin, 1999; Sorensen
& Minchella, 2001).

Up to now, studies of gigantism in the snail-trematode
system have focused on the short-term response of individual
snails to the presence of parasites. This short-term response of
individual snail sizes to trematode infection implies that size is
plastic. Ballabeni (1995), however, suggested that a genetic
component is involved since only snails from populations pre-
viously exposed to parasites showed gigantism when infected.

In this idea of a genetic component in gigantism, it is
suggested that if some populations of snails often encounter
parasites, a genetic response of the snail to trematode infection
and selection for a larger size in these snail populations would
be expected (Agnew, Koella & Michalakis, 2000). I will refer,
in this paper, to this genetic response in snail size to trematode
infection as ‘evolutionary gigantism’.

As mentioned above, trematodes have an impact on snail life
history through gigantism (snail’s body size) and castration
(snail’s fecundity), but their possible influence on the trade-offs
between those traits is not understood. Indeed, life histories are
made of correlations between fitness components such as
growth, reproduction and survival (Stearns, 1992). For
instance, a classical life-history strategy prediction is a positive
correlation between size at the adult stage and fecundity
(Stearns, 1992; Roff, 2002). The simplest explanation for this
pattern is that with an increase in body size, the amount of
space for the eggs increases at the same time. In the case of
gigantism, snails increase their body size by either a delayed
maturity or a faster growth rate. Both strategies may have a
cost in fecundity or survival (Roff, 2002), and thus the
expected positive correlation between size and fecundity may
not be observed in the case of gigantism.

The pulmonate snail Galba truncatula is an appropriate model
for exploring the snail-trematode relationship. It is known to
be the main intermediate host of the liver fluke, Fasciola hepa-
tica, in Europe, but also of several other species of trematodes
(Abrous, Rondelaud & Drefuss, 1999). Direct gigantism due to
trematode infection has already been suggested in this species
(Wilson & Denison, 1980). However, nothing is known about
any genetic component of this gigantism in G. truncatula, which
is why I chose to investigate it. Additionally, the impact of tre-
matodes on trade-offs between host life-history traits, and more
precisely size and fecundity, has never been explored.

To answer these questions, I estimated trematode prevalence
from 15 G. truncatula populations, and measured for severalCorrespondence: E. Chapuis; e-mail: elodie.chapuis@univ-montp2.fr
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laboratory-born healthy individuals originating from these
15 populations pre-mature sizes, age and size at sexual maturity,
size after sexual maturity, and fecundity. If evolutionary gigant-
ism exists in those populations, I expect a positive correlation
between size and trematode prevalence per population.
However, gigantism may have a cost in fecundity because less
resources are attributed to reproduction. Thus I expect a nega-
tive relation between size and fecundity linked because of tre-
matode prevalence.

MATERIAL AND METHODS

Biological material

Galba truncatula reproduces almost exclusively by self-
fertilization, with a selfing rate above 90% (Trouvé et al.,
2003; Trouvé, Degen & Goudet, 2005; Chapuis et al., 2007). It
lays eggs in places of high humidity such as moist mud
(Kendall, 1953). Two periods of egg laying, one in the spring
and one in autumn, have been recorded in the laboratory and
in the wild (Morel-Vareille, 1973; Fretter & Peake, 1975).
Galba truncatula can be found in both permanent water (e.g.
streams or ponds that do not dry out) and temporary water

habitats (e.g. pools or wet meadows that freeze during winter
and dry during summer), even within the same locality
(Trouvé et al., 2005; Chapuis et al., 2007).

Sampling and estimation of parasite prevalence per population

Galba truncatula individuals were collected in 15 populations
from western Switzerland in spring and summer 2003 (Fig. 1;
more details on those populations are available on Chapuis
et al., 2007). For these two sampling periods, the field-collected
individuals were brought back to the laboratory in order to
estimate the parasite prevalence of populations. The presence
of trematodes was detected by dissecting each individual under
a binocular microscope. I recorded whether snails were parasi-
tized by trematodes (1) or healthy (0). The different species of
trematodes were not identified. Mean parasite prevalence for
each population was estimated by averaging prevalence over
spring and summer.
The random geographical distribution of parasite prevalence

between populations was tested using a Mantel test carried out
between the matrices of geographic distance and prevalence
difference between pairs of populations, using the software
FSTAT 2.9.4 (Goudet, 1995).

Figure 1. Localities of the 15 sampled populations in western Switzerland. Three groups can be defined according to the prevalence of the
parasite: five highly parasitized populations, six intermediate populations and four healthy populations.
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Life-history measures on the laboratory generation

Individuals sampled in the summer (G0) were kept isolated in
the laboratory until they laid eggs, and were dissected after col-
lection of their egg capsule. A family consisted of an egg
capsule per G0. To avoid potential maternal effects, only off-
spring (G1) born from uninfected mothers (G0) were measured.
On average, three individuals per family were measured from
10 families per population. G1 individuals were kept isolated
from the 20th day in a Petri dish filled with filtered Lake
Leman water and fed ad libitum with an alimentary concentrate
used for snail rearing (TEXTIERw, France). The laboratory
conditions were homogeneous and controlled, with room temp-
erature kept at 19+ 18C and a photoperiod of 12 h light: 12 h
dark. The size of each individual was estimated by measuring
shell length with a micrometer under a binocular microscope
(precision of 0.01 mm) at three and 33 days after hatching, at
maturity, and at 31 days after reaching sexual maturity. An
individual was considered as sexually mature when it laid its
first egg capsule. Fecundity was estimated as the total number
of eggs laid during a 30-day period following sexual maturity.
In laboratory conditions the snails stop laying eggs beyond this
period (personal observation); consequently, this measure of
fecundity provides a good estimation of reproduction of G. trun-
catula under laboratory conditions.

Statistical analyses

Analyses were done using the statistical software R (R
Development Core Team, 2007). For each trait, I estimated a
population and a family mean. The gigantism was estimated at
the population level, so population means were used to esti-
mate the Spearman rank correlation between the traits and
parasite prevalence. On the contrary, in order to look at the
correlation between traits, I worked on individuals, i.e. on
family means. Because the presence of parasites could influence
the magnitude and sign of the correlations between traits,
I estimated these Spearman rank correlations for healthy and
parasitized populations independently. Tests for the corre-
lations between measures of size and prevalence were one-
tailed, since I postulated a positive correlation between adult
size and prevalence. Similarly, life-history theory predicts a

positive relationship between size and fertility in healthy
populations. Thus I used a one-tailed test for assessing the
significance of this correlation. All other tests were two-tailed.

RESULTS

Variation in parasite prevalence throughout time and populations

Between the two sampling periods (spring and summer), esti-
mates of prevalence remained stable (R2 ¼ 0.45, P , 0.05)
(Table 1). Thus, I used the mean parasite prevalence per
population for all subsequent analyses.

Parasite prevalence varied among the 15 sampled popu-
lations. In four populations (LS, PO1, PO2, T3), I did not
find parasites (Table 1), while five populations (BO2, Ch, T2,
S2, BO3) were strongly parasitized (with estimates . 10% and
up to 51%, Table 1). Six populations (BO1, M, Cv, Si, S1,
T4) were intermediate, with prevalence between 0 and 10%
(Table 1). For these intermediate populations, prevalence was
often 0 in one season (Table 1). It was therefore difficult to
assign these populations to the non-parasitized or the parasi-
tized groups, and they were then excluded from tests of adult
size and fecundity. No correlation was found between parasite
prevalence and geographic distance (Mantel test, R2 ¼ 0.26,
P ¼ 0.61, Fig. 1).

Correlation between parasite prevalence and life-history traits

The size after maturity in highly parasitized populations was
significantly higher than in healthy populations (t-test, P ,
0.001, data not shown). Significant positive correlations
between mean trait value and parasite prevalence were found
for the size at maturity (rho ¼ 0.44, one-tailed test P ¼ 0.05;
Fig. 2C) and size 31 days post-maturation (rho ¼ 0.57, one-
tailed test P ¼ 0.01; Fig. 2D). On the contrary, no correlation
between population parasite prevalence and age at maturity
was found (rho ¼ 20.09, two-tailed test P ¼ 0.75; Fig. 2E),
nor between fecundity and population prevalence
(rho ¼ 20.32, two-tailed test P ¼ 0.24; Fig. 2F). Conversely,
during pre-maturation life stages, no correlation was found
between size and population prevalence (one-tailed tests: at

Table 1 . Measure of parasite prevalence in spring and summer.

Population Prevalence Number of

individuals sampled

Prevalence Number of

individuals sampled

Prevalence

Spring Summer Mean

LS 0 15 0 41 0

PO1 0 16 0 39 0

PO2 NA NA 0 39 0

T3 NA NA 0 39 0

BO1 0 15 0.03 38 0.01

M 0.04 24 0 30 0.02

Cv 0 6 0.05 41 0.02

Si NA NA 0.03 64 0.03

S1 0 17 0.14 44 0.07

T4 NA NA 0.08 49 0.08

BO2 0.04 16 0.17 59 0.11

Ch 0.13 15 0.12 33 0.13

T2 0.10 20 0.32 38 0.21

S2 0.33 12 0.49 43 0.41

BO3 NA NA 0.51 53 0.51

Not all populations were sampled in spring, the missing values are then coded NA.
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3 days rho ¼ 20.43, P ¼ 0.94; Fig. 2A; and at 33 days rho ¼
0.01, P ¼ 0.49; Fig. 2B).

Correlation between adult size and fecundity

For healthy populations (four populations and 86 families),
I found a significant positive correlation between family fecun-
dity and size at maturity or with size 31 days after maturity
(rho¼ 0.20 and 0.34, one-tailed test P ¼ 0.04 and P ¼ 0.002,
respectively; Fig. 3A for the second correlation). On the con-
trary, when using the family mean of the highly parasitized
populations (five populations and 52 families), no significant
correlation was found between size at maturity and size at
31 days after maturity and fecundity (rho¼ 0.10 and 0.05, one-
tailed test P ¼ 0.76 and P ¼ 0.35 respectively; Fig. 3B for the
second correlation)

DISCUSSION

I found significant positive correlations between trematode
prevalence and population means of adult sizes in the fresh-
water snail Galba truncatula, a suggestion of gigantism.
Interestingly, no correlation was found between adult size and
fecundity in highly parasitized populations, while a positive
correlation was found in healthy populations, suggesting that
there may be a cost in fecundity to this gigantism.

Trematodes are an important evolutionary force because they
can have strong fitness consequences on their host (Wright,

1971). Since I only measured offspring from healthy mothers,
the indications from this study of gigantism are not byproducts
of parasite-mediated effects. Thus, gigantism seems not to be
simply a side effect of infection in G. truncatula. The stability of
the parasite prevalence per population observed between the
two sampling periods indicates that parasitic pressure may be a
constant evolutionary force in G. truncatula. A previous study on
the freshwater snail Potamopyrgus antipodarum has already showed
a pattern suggestive of a parasite-associated selection for an early
reproduction of the host in relation to trematode prevalence
(Jokela & Lively, 1995). In G. truncatula, I found that the more a
population is infected by trematodes, the larger are the individ-
uals at the adult stage. I found no relationship between parasite
prevalence and age at maturity: the parasitized populations do
not take longer to reach a greater size. This showed that snails
did not respond genetically to trematode infection by maturing
earlier in order to reproduce before castration. Additionally,
because no relation was found between sizes at the early stage of
life and parasite prevalence in the population, there was a
further indication that gigantism was not due to an increase in
growth rate at early life stages, but rather just before sexual
maturity. Finally, in highly parasitized populations, I did not
find the classical positive relationship between size and fecund-
ity. It seemed that individuals invested energy to reach a larger
size at the possible expense of fecundity.
Proximal gigantism has been suggested to allow molluscs to

survive trematode infection, and might be selected in parasitized
populations (Sorensen & Minchella, 2001). However, it is still

Figure 2. Relationships between parasite prevalence and mean size, age at maturity and fecundity in 15 populations of Galba truncatula. Only
significant correlations are represented by a line. A. Length at 3 days after hatching. B. Length at 33 days after hatching. C. Length at maturity.
D. Length at 31 days after maturity. E. Age at maturity. F. Fecundity.
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debated whether it is beneficial to the snail or to the parasite.
Minchella (1985) suggested that, by surviving, the snail could
have additional reproductive events to compensate for parasitic
infestation. On the other hand, when the snail increases its life
span through a bigger size, it allows the parasite to reproduce for
a longer time also (Baudoin, 1975). However, here, I show a
genetic response of the snails to trematode prevalence, suggesting
evolutionary gigantism as a host adaptation. Two arguments
reinforce this idea of gigantism as a host adaptation in G. trunca-
tula. First, a host, in order to compensate for parasitism by repro-
duction, should be a long-lived species (life span . 1.5 year) or
a species having several periods of reproduction (Minchella,
1985). In contrast, Sousa (1983) predicted that, in short-lived
mollusc species (life span , 1.5 year) or species having only one
period of reproduction, gigantism might not be adaptive to the
host. In G. truncatula, two generations a year (autumn and
spring) have been observed in nature and in the laboratory
(Morel-Vareille, 1973; Belfaiza, Moncef & Rondelaud, 2005).
These two reproductive periods suggest the possibility of host
adaptation through gigantism by G. truncatula.

Second, gene flow of both host and parasite have been
shown to be key factors in the adaptation of the parasite. The
trematodes infecting snails use birds as definite hosts, which
have a great ability for dispersion. Consequently, parasites dis-
perse widely and are probably not able to be locally adapted
to snail populations (Fredensborg & Poulin, 2006). This might
be the case in the G. truncatula-trematode system since trema-
todes may be dispersed by ducks or mammals.

In conclusion, I have shown that the life history of the fresh-
water snail G. truncatula is influenced by trematode infection. In
particular, I found that populations of snails, where parasites
are frequent, produce larger adults, a likely evolutionary
response of snails to trematode presence in the population.
However, further investigations are necessary to confirm gigant-
ism as a host response to parasites, and to fully understand the
interaction between G. truncatula and trematodes. I also suggest
the need to investigate the differential investment of resources
between growth, reproduction and survival in the parasites.
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