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S U M M A R Y
We have developed two, new non-linear traveltime inversion schemes for 3-D seismic tomog-
raphy in anisotropic media. They differ from the traditional linearized inversion approach and
offer five significant improvements: (1) they are based on an alternative form of the first-order
traveltime perturbation equation, derived so as to simplify the inversion formulae and overcome
the quasi shear wave singularity problem; (2) robust 3-D ray tracing is employed which enables
the simultaneous computation of the first-arrival traveltimes and ray paths for the three body
waves (qP, qS1 and qS2) in arbitrary anisotropic media; (3) the Jacobian matrix used in the
update is based on an efficient computation for a 3-D anisotropic model, so that the inversion is
applicable to both weakly and strongly anisotropic situations, unlike most previous approaches
which assume weak anisotropy; (4) a local-search, constrained minimization is applied to the
non-linear inversion which makes anisotropic tomographic imaging an iterative procedure; (5)
there is an option to invert for the elastic moduli directly or the Thomsen parameters directly
in heterogenous, tilted transversely isotropic media, using any source–receiver recording ge-
ometry. We have examined the imaging capability of the non-linear solver with individual
body-wave modes using a 3-D synthetic anisotropic model incorporating two targets, a ‘high
velocity’ and a ‘low velocity’ anomaly, embedded in a titled transversely isotropic medium.
The model is illuminated by means of azimuthal VSP and crosshole measurements. The exper-
imental results show that the two non-linear inversion schemes successfully image the ‘targets’
and yield satisfactory 3-D tomograms of the elastic moduli and the Thomsen parameters.
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I N T RO D U C T I O N

The usual approach to reconstruct a 3-D image of the subsurface, or the deep structure of the Earth’s interior, is seismic traveltime tomography

(see e.g. Aki et al. 1977; Nolet 1987; Bregman et al. 1989; Sambridge 1990; Sehudandi & Toint 1993; Day et al. 2001; Zelt et al. 2001;

Bai & Greenhalgh 2005). Its popularity and appeal stems from the simple physical principle involved, the ease of measurement and the

straightforward nature of the data processing. Full 3-D elastic waveform inversion is still in its infancy, can be highly unstable without

excellent system calibration and knowledge of the source signal, and is computationally very demanding (Tarantola 1984; Pratt 1999; Pratt

& Shipp 1999; Greenhalgh & Zhou 2003; Xu et al. 2006). From a theoretical viewpoint, seismic traveltime tomography can be broken down

into two parts: (1) kinematic ray tracing in a 3-D geological model and (2) use of a non-linear inversion solver to reconstruct the medium

properties (wave speed) from the observed traveltimes of the seismic body waves. The first part, also called forward modelling, calculates the

traveltimes and corresponding ray paths traversing the medium for every source–receiver pair. The second part, called the inverse problem,

automatically finds a 3-D seismic model, whose synthetic traveltimes optimally match the observed data subject to certain constraints and

model smoothness criteria. The inverted 3-D seismic model is then taken to be a physical image of the underground geological situation.

Reviewing all of the 3-D ray tracing used in seismic traveltime tomography, one finds that most employ ray tracing techniques that deal

with heterogeneous, isotropic media. This includes the finite difference solvers (Vidale 1990; Kim & Cook 1999; Qian & Symes 2002), the

network algorithms (Moser 1991; Klimes & Kvasnička 1994; Cheng & House 1996; Bai & Greenhalgh 2005) and the fast marching method

(Sethian & Popovici 1999; Rawlinson & Sambridge 2004). This means that traditional 3-D seismic traveltime tomography is only applicable

for imaging an isotropic subsurface in which the wave speeds are independent of the wave-propagation direction. However, in reality, many

laboratory studies (Musgrave 1970; Helbig 1981; Crampin 1984; Thomsen 1986) and seismological observations (Anderson & Dziewonski

1982; Tanmoto & Aderson 1985; Nataf et al. 1986) show that some rocks and parts of the Earth’s interior are distinctly anisotropic. This is
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particularly true when the rocks have aligned structures, such as mineral/crystal orientation (Musgrave 1970), fine layering (Helbig 1981)

and parallel cracks (Crampin 1984). As is well known, wave propagation in an anisotropic medium differs quite significantly from that in an

isotropic medium (Crampin 1981). Three types of body wave (qP, qS1 and qS2) instead of two (P, S) propagate in an anisotropic medium and

travel at their own wave speeds (both group and phase velocity, which are different), varying with the wave-propagation direction. To image

anisotropic media, one should take into account the anisotropic properties so as to make 3-D seismic traveltime tomography applicable for

such situations.

To perform seismic traveltime inversion for a general anisotropic medium, Červeny (1982), Červeny & Jech (1982) and Hanyga (1982)

developed some fundamental formulae that give the first-order quantitative relationships between the traveltime perturbation and the elastic

modulus perturbation (variation) in the medium. Jech & Pšenčik (1989) extended the linearized formulae to overcome the singularity problem

when applied to the two quasi shear wave modes (qS1, qS2). In the last two decades, these formulae have been successfully applied to

the velocity sensitivity analysis of the seismic body waves (Farra & Le Bėgat 1995; Chapman & Miller 1996) and imaging 2-D or 3-D

structures in heterogenous anisotropic media (Hirahara & Yuzo 1984; Jech 1988; Chapman & Pratt 1992; Pratt & Chapman 1992; Watanabe

et al. 1996; Wu & Lees 1999; Eberhart & Henderson 2004; Zheng 2004). From these developments and applications, one finds that there

is the common assumption that the media are ‘weakly’ anisotropic. This implies that the anisotropic media can be treated as a small elastic

parameter perturbation from an isotropic background. This is to avoid successive ray tracing in an anisotropic medium and upgrading of the

Jacobian matrix after each iteration. They are generally replaced by ray tracing in an isotropic (reference) medium and the use of a constant

Jacobian matrix. Obviously, this assumption simplifies the forward modelling and the inverse problem, reducing the determination of the

elastic moduli and the imaging the structure of the anisotropic media to a simple linearized inversion. However, such a linearized approach

is invalid for ‘strongly’ anisotropic situations, The non-linear nature of the geophysical inverse problem strictly requires a non-linear solver

to obtain accurate results or better images of the anisotropic medium (Menke 1984; Tarantola 1987; Aster et al. 2005; Greenhalgh et al.
2006). A suitable seismic traveltime tomography scheme for anisotropic media imaging should be applicable to both ‘weakly’ and ‘strongly’

anisotropic situations, and successively improve the images by continuously upgrading the Jacobian matrix and iteratively approaching the

true ray paths. Unfortunately, such 3-D seismic tomographic imaging for anisotropic media has so far not been well developed for practical

applications. It is possible to achieve the goal because a number of researchers have developed various techniques for 3-D ray tracing in an

anisotropic medium (Gajewski & Pšenčik 1987; Shearer & Chapman 1988; Vavryčuk 2001; Zhou & Greenhalgh 2005b).

In this paper, we present two non-linear inversion schemes for 3-D seismic traveltime tomography, which have less limitations than

the traditional linearized inversion approach for anisotropic media. We have developed a new and more applicable form of the first-order

traveltime perturbation equation, which involves computation of the wave speed derivatives and does not necessarily involve calculation of the

eigenvectors or polarisation directions of the seismic body waves. Therefore, the singularity problem with the quasi shear waves (Crampin &

Yedlin 1981) is completely avoided. For the forward modelling, we employed our newly developed 3-D ray tracer simultaneously to calculate

the first-arrival traveltimes and corresponding ray paths for the three seismic body waves (qP, qS1 and qS2) in an arbitrary anisotropic medium.

For the non-linear inversion, we developed an efficient way to compute the Jacobian matrix for the anisotropic model and implemented

local-search, constrained minimization solutions for two distinct inversion schemes—one to obtain the elastic moduli and the other to obtain

the Thomsen parameters—for an arbitrary 3-D tilted transversely isotropic medium (TTI-medium). These inversion schemes were examined

by imaging the structure of a complex 3-D synthetic model. They satisfactorily recovered the elastic moduli and the Thomsen parameters

throughout the rock volume.

F I R S T - O R D E R T R AV E LT I M E P E RT U R B AT I O N E Q UAT I O N

Červeny (1982), by solving the ekinoal equation with a Hamiltonian method, obtained the first-order traveltime perturbation equation:

δτ = −1

2

∫
R

pi pl gk g jδai jkl
ds

U
, (1)

where aijkl is the fourth rank tensor of the density-normalized elastic moduli, τ is the traveltime of the seismic wave propagating along the

undisturbed ray path R, p = (p1, p2, p3) and g = (g1, g2, g3) are the phase-slowness vector and the eigenvector of the Christoffel equation,

ds and U stand for a small segment of R and the group velocity, respectively. All of the quantities and vectors in eq. (1) are functions of the

spatial coordinates x of the ray path R, and they are calculated with the undisturbed reference model, which may be an arbitrary anisotropic

medium. In eq. (1), we do not explicitly specify the seismic body-wave mode because the equation is valid for all of the three modes (qP, qS1

and qS2). Of course, different values of the quantities p, U , g and τ apply in each case.

As is well known, there can be up to 21 independent components of the fourth-rank modulus tensor (depending on the class of anisotropy),

due to the symmetry principle (Musgrave 1970). For general applications, we apply mν ∈ {aijkl} to represent the independent elastic moduli

and rewrite eq. (1) as follows:

δτ = −1

2

∫
R

(
∂ai jkl

∂mν

pi pl gk g j

)
δmν

ds

U
. (2)

To apply eq. (2) one must calculate the eigenvectors of the three wave modes (qP, qS1 and qS2). A singularity problem is encountered

with the quasi shear waves when their phase velocities, for certain directions of propagation, co-incide (Crampin & Yedlin 1981; Jech &

Pšenčik 1989). To simplify eq. (2), we use the equivalent form of eq. (2) obtained by Chapman & Pratt (1992), who applied Fermat’s Principle
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to obtain:

δτ =
∫

R
δp · dx, (3)

Here the phase-slowness vector p = p(mν , n) is a function of the model parameters mν and the phase-slowness direction n = (n1, n2,

n3) (or wave front normal). The perturbation of the phase-slowness vector (i.e. the total differential) may be calculated by expanding out in

terms of the partial derivatives in the usual way:

δp =
(

∂p

∂mν

)
δmν +

(
∂p

∂nq

)
δnq , (4)

Substituting into eq. (3) we see that the first-order traveltime perturbation comprises two parts:

δτ =
∫

R

[
r̂ ·

(
∂P

∂mν

)]
δmνds +

∫
R

[
U ·

(
∂P

∂nq

)]
δnq dτ . (5)

Here, the ray direction r̂ = dx/ds and the group velocity U = dx/dτ have been applied. Eq. (5) indicates that the first term on the RHS

is the contribution from the model parameter changes δmν with a fixed wave front normal n and the second term represents the contribution

from variations of the wave front normal δnq with unchanged model parameters mν . Now the integrand of the second integral can be shown

to vanish, since

U · ∂p

∂nq
= Ui

∂

∂nq

(
ni

c

)
= Ui

(
δiq

c
− ni

c2

∂c

∂nq

)
= 1

c
(Uq − Uq ) = 0, (6)

which gives rise to a new version of the first-order traveltime perturbation equation:

δτ =
∫

R

[
r̂ ·

(
∂p

∂mν

)]
δmνds, (7)

where the derivatives in the integrand are calculated with a fixed wave front normal n, that is n = n(x), x ∈ R, which is determined by the fixed

ray path R with the relationship n · r̂ = c(x)/U (x), x ∈ R and the reference model parameters mν . Differentiating both sides of the identity

p · U = 1 (Musgrave 1970), we have the following equation for the integrand of eq. (7):

r̂ ·
(

∂p

∂mν

)
= − 1

cU

(
n · ∂U

∂mν

)
. (8)

Accordingly, eq. (7) can be rewritten in the following form:

δτ = −
∫

R

1

cU

[
n ·

(
∂U

∂mν

)]
δmνds. (9)

With a fixed wave front normal n = n(x), x ∈R (see eq. 4), we have the expression of the derivative of the phase velocity (Zhou & Greenhalgh

2005a):

∂c

∂mν

= n ·
(

∂U

∂mν

)
, (10)

and eq. (9) becomes

δτ = −
∫

R

1

cU

(
∂c

∂mν

)
δmνds. (11)

Obviously, eqs (7), (9) and (11) do not explicitly involve the eigenvectors and they are much simpler than eqs (1) or (2) obtained by Červeny

(1982). This is due to the introduction of the derivatives. These three equations actually require different derivatives of the wave speeds ∂c/∂mν ,

∂p/∂mν and ∂U/∂mν , which play crucial roles in the first-order traveltime perturbation. Therefore, we call them the wave speed-derivative

versions of the first-order traveltime perturbation equation. It was shown above that the three new versions are equivalent. To apply these

new versions, the key step is to calculate the derivatives of the wave speed. In our previous paper (Zhou & Greenhalgh 2005a), two analytic

methods, called the eigenvector and eigenvalue methods, have been developed for a general anisotropic medium and numerically shown to

yield consistent results, for example, the derivatives of the phase velocity and group velocity vector may be analytically calculated with the

eigenvector formula (Zhou & Greenhalgh 2005a):

∂c

∂mν

= 1

2c

∂ai jkl

∂mν

ni nl gk g j , (12)

∂Ui

∂mν

= ∂ai jkl

∂mν

pl g j gk − Ui

c

∂c

∂mν

+ (ai jkl + aik jl )pl
∂g j

∂mν

gk, (13)

or the eigenvalue formula (Zhou & Greenhalgh 2005a):

∂c

∂mν

= 1

3c 3
√

r

(
cos B

∂r

∂mν

+ Dν

)
+ 1

6c

∂ A

∂mν

, (14)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂U1

∂mν

=
(

∂c

∂mν

sin θ + cos θ
∂2c

∂mν∂θ

)
cos ϕ − sin ϕ

sin θ

∂2c

∂mν∂ϕ
,

∂U2

∂mν

=
(

∂c

∂mν

sin θ + cos θ
∂2c

∂mν∂θ

)
sin ϕ + cos ϕ

sin θ

∂2c

∂mν∂ϕ
,

∂U3

∂mν

= ∂c

∂mν

cos θ − sin θ
∂2c

∂mν∂θ
,

(15)

which do not require the eigenvectors. The quantities r , B, Dν and A in eq. (14) and the second-order derivatives in eq. (15) are functions of

the model parameters mν and the wave front normal n defined by n = (sinθcosϕ, sinθsinϕ, cosθ ). The explicit expressions can be found in

our previous paper (Zhou & Greenhalgh 2005a).

Although the three new versions are mathematically equivalent, they have different computational efficiencies when applied to real data

inversions. To apply eq. (9), one has to calculate the derivatives of the group velocity. This requires the derivatives of the eigenvector ∂gj/∂mν

(see eq. 13), or the second-order derivatives of the phase velocity ∂2c/∂mν∂θ and ∂2c/∂mν∂ϕ (see eq. 15), while eq. (11) only involves scalar

computations and no requirement of the eigenvectors and the higher-order derivatives if the eigenvalue formula (eq. 14) is used. This means

that the quasi shear wave singularity problem can be circumvented so that eq. (11) becomes superior to the other two. This is a most attractive

feature of using the new wave speed-derivative version of the travel time perturbation equation.

I N V E R S I O N F O R A 3 - D T T I - M E D I U M

The formulations in the previous section are valid for a general anisotropic medium. In this section, we focus on a special class of anisotropy viz

a 3-D heterogenous TTI-medium, because it is a common geological model in exploration seismic (Helbig 1994; Tsvankin & Grechka 2006)

and in earthquake seismology/deep seismic sounding (Takeuchi & Saito 1972; Anderson & Dziewonski 1982). In a TTI-medium, the two quasi

shear wave modes qS1 and qS2 become qSV and qSH (Daley & Hron 1977; Thomsen 1986). To image the structure of a 3-D anisotropic model,

we divide the model domain (�) into N � = Nx·Ny·Nz cells (� = ∑N�

k ∂�k), where the integers Nx, Ny and Nz are the numbers of the cells in the

three coordinate directions, so that we have a 3-D grid consisting of N = (Nx + 1) × (Ny + 1) × (Nz + 1) nodes, and each of the cells has eight

sets of the model parameters defined by the density-normalized elastic moduli m(k)
ν = {(a(k)

11 , a(k)
13 , a(k)

33 , a(k)
44 , a(k)

66 , θ
(k)
0 , ϕ

(k)
0 ), k = 1, 2, . . . , 8},

or Thomsen parameters (m(k)
ν = {(α(k)

0 , β
(k)
0 , ε(k), δ∗(k), γ (k), θ

(k)
0 , ϕ

(k)
0 ), k = 1, 2, . . . , 8}), at the eight corners. Here θ

(k)
0 and ϕ

(k)
0 are the pair of

spherical polar angles giving the orientation direction (inclination and azimuth) of the symmetry axis of the TTI-medium. In a heterogeneous

anisotropic model the discrete model parameters vary with the spatial coordinates x k = [x (k)
1 , x (k)

2 , x (k)
3 ]. In our previous paper (Zhou &

Greenhalgh 2005b), we have already demonstrated a robust ray tracing method to simultaneously calculate the traveltimes and corresponding

ray paths for all three body waves (qP, qSV and qSH) in such a discrete model.

After the discretization, the traveltime perturbation given by eq. (11) can be calculated by the piecewise summation over the cells:

δτ = −
N�∑
k

∫
Rk

1

cU

(
∂c

∂mν

)
δmνds

≈ −
N�∑
k

Rk

2

[(
1

cU

∂c

∂mν

)
x

(k)
A

+
(

1

cU

∂c

∂mν

)
x

(k)
B

]
δmν, (16)

where Rk is the segment of the ray path R in the kth cell ∂�k and x(k)
A and x(k)

B are the two endpoints of Rk traversing the cell. Eq. (16) shows that

the calculation requires the three quantities c, U and ∂c/∂m ν at the two endpoints, for which we apply the Lagrange interpolation formula:⎛⎜⎝ c(x)

U (x)

∂c(x)/∂mν

⎞⎟⎠ =
8∑

i=1

8⋂
l=1
l �=i

[ (
x − x(k)

l

)(
x(k)

i − x(k)
l

)] ⎛⎜⎝ c
(
x(k)

i

)
U

(
x(k)

i

)
∂c

(
x(k)

i

)
/∂mν

⎞⎟⎠ , x, x(k)
i ∈ �k (17)

The nodal values c(x(k)
i ), U (x(k)

i ) and ∂c(x(k)
i )/∂mν may be calculated by the analytic methods described in our paper (Zhou & Greenhalgh

2005a), using the undisturbed model parameters m(k)
ν .

Applying eq. (16) to a large number of ray paths leads to the following matrix form of equation for non-linear inversion (Zhou et al.
1992; Greenhalgh et al. 2006):

mq+1 = mq + Zm

[(
JT

q Wd Jq + λWm

)−g
JT

q Wdδτq, (q= 1, 2, . . . .), (18)

where the subscript ‘−g’ stands for the generalized inverse matrix, the operators Wd and Wm are the weighting matrices for the data and

the model parameters, respectively, both of which can be chosen in terms of the available information on the data noise and the model

variation (Menke 1984; Tarantola 1987; Carrion 1989). The real scalar λ is a trade-off parameter between the data fit and the degree of model
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perturbation, and the other quantities are given by

δτ = {
τ ob

j − τ
syn
j (mq ), j = 1, 2, . . . M

}
,

mq = {
m(q)

νk
, k = 1, 2, . . . , N

}
,

Zm(mν) = {aν ≤ mν ≤ bν},

Jq =
(

∂τ j

∂m(q)
νi

)
M×N

, (19)

where τ ob
j and τ

syn
j (mq ) are the observed and synthetic traveltimes along the jth ray path and Zm is the constraint operator defined by the lower

and upper bounds [aν , bν] for each inverted parameters mν , and Jq is the Jacobian matrix calculated by the following formula:

∂τ j

∂m(q)
νi

= −
N�∑
k

R(q)
jk

2

⎡⎢⎣(
1

cU

∂c

∂m(q)
νi

)
x(q)

A j

+
(

1

cU

∂c

∂m(q)
νi

)
x(q)

B j

⎤⎥⎦. (20)

It should be noted that the summation in the above equation counts the cells that the particular ray path Rj traverses [R(q)
jk �= 0], which

is generally a small number compared to the total number of cells in the model. This means that the Jacobian matrix generally has large

dimensions and a sparse pattern, making it suitable to use an iterative solver, such as the conjugate gradient method (Zhou et al. 1992,

Greenhalgh et al. 2006), for the generalized inverse matrix in eq. (18). We also should point out that there are two options for the derivatives

in eq. (20). One is to use the derivatives with respect to the elastic moduli, e.g. derivatives ∂c/∂mν , mν ∈ {a11, a13, a33, a44, a66}, which are

calculated with the analytic expressions of the phase velocities given by Daley & Horn (1977) or Thomsen (1986), and the other is to apply

the derivatives with respect to the Thomsen parameters (α0, β 0, ε, δ∗, γ ), that is,,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂α0

= 2α0(2ε + 1)
∂c

∂a11

+ α0

[
α2

0(ε + δ∗ + 1) − β2
0 (ε + 2)

](
a13 + β2

0

) ∂c

∂a13

+ 2α0

∂c

∂a33

,

∂c

∂β0

=
{

β0[2β2
0 − α2

0(ε + 2)](
a13 + β2

0

) − 2β0

}
∂c

∂a13

+ 2β0

∂c

∂a44

+ 2β0(2γ + 1)
∂c

∂a66

,

∂c

∂ε
= 2α2

0

∂c

∂a11

+ α2
0

[
α2

0 − β2
0

)]
2
(
a13 + β2

0

) ∂c

∂a13

,

∂c

∂δ∗ = α4
0

2
(
a13 + β2

0

) ∂c

∂a13

,

∂c

∂γ
= 2β2

0

∂c

∂a66

.

(21)

which are obtained by the differential chain rule. This leads to two inversion schemes which may be used to image the structures, such as

spatial variations in the elastic moduli or the Thomsen parameters. We call the two inversion schemes the elastic modulus scheme and the

Thomsen parameter scheme.

So far, we have not specified a body-wave mode in the above formulations in that they are all applicable for the three body-wave modes

(qP, qSV and qSH). To discriminate them, we adapted the explicit expressions of the phase velocities given by Daley & Hron (1977) or

Thomsen (1986) for a TTI-medium. We have numerically shown that these expressions may give two independent slowness sheets for the two

quasi shear waves even when they cross, so that we can easily identity the wave modes in the computations (Zhou & Greenhalgh 2004).

S Y N T H E T I C E X P E R I M E N T S

In order to test the imaging capability of the new non-linear inversion schemes, we wrote a PC program 3-Dray gTI (it may be download from

the website: www.adelaide.edu.au/directory/bing.zhou) and designed a 3-D anisotropic model shown in Fig. 1. This model is of volume, 50 m ×
50 m × 50 m and has 121 geophones distributed uniformly over the upper surface, plus an additional 40 geophones in the four boreholes

(10 geophones in each hole, spaced at 5 m intervals). Two isolated prismatic ‘targets’ are placed in the background medium at depths of 10 m

and at different horizontal locations. Each body is 10 m thick and of lateral dimension 10 m. The background medium and the two ‘targets’

are anisotropic rocks, each having 45◦-dipping symmetry axes. Their Thomsen parameters are listed in Fig. 1 and they were obtained from

laboratory measurements (Thomsen 1986), from which it can be appreciated that all three rocks are strongly anisotropic. One of the ‘targets’ is

a ‘high velocity’ body while the other is a ‘low velocity’ body. To image the two ‘targets’, 10 sources were successively fired in each borehole

(at 5 m intervals, co-inciding with the geophone locations) and recorded on all surface geophones and the 30 geophones located in the other

three boreholes (the geophones in the source hole were not used). The shooting procedure was repeated for all four holes, yielding in total 6040

traveltimes for every body-wave mode. With this synthetic model, we applied our 3-D ray tracing method (Zhou & Greenhalgh 2005b) and

accurately calculated the traveltimes of the three wave modes (qP, qSV and qSH). To the resulting synthetic traveltimes was added Gaussian

random noise of level <5 per cent (standard deviation) to produce the ‘observed’ data as input to the inversion routines. Both ‘isotropic’

and ‘anisotropic’ inversions were performed for each individual wave mode. The former treated the model as composite isotropic media and
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Figure 1. Synthetic anisotropic model for the numerical experiments of 3-D seismic traveltime tomography. The Thomsen parameters of the three rocks are

adopted from the Laboratory measurements given by Thomsen (1986).

used a traditional seismic traveltime tomography algorithm (Zhou et al. 1992) to reconstruct the P- and S-wave velocity structures (V p, V S).

The latter applied the traditional linearized anisotropic inversion (weak anisotropy assumption) and the new non-linear anisotropic inversion

described in the previous section. The linearized anisotropic inversion used the isotropic reference model computed by aiso
11 = aiso

33 = 0.5(a11 +
a33), aiso

44 = aiso
66 = 0.5(a44 + a66), and aiso

13 = aiso
11 − 2aiso

44 and a constant Jacobian matrix. The non-linear anisotropic inversion entailed

both the elastic modulus scheme and the Thomsen parameter scheme, which iteratively upgrade the ray paths, the Jacobian matrix and the

anisotropic media. For all of the synthetic non-linear inversion experiments, we started with a homogeneous medium (isotropic or anisotropic,

respectively), set the unit matrix as the weighting operator in each case Wd = I and Wm = I, and implemented the iterative inversions given

by eq. (18) until the data fit reached a satisfactory level with an optimal regularisation or damping parameter (λ ∈ 0.001 ∼ 10.0).

Fig. 2 gives the results of the linearized anisotropic inversion for all three wave modes (qP, qSV and qSH). These results show that the

‘high velocity’ anomaly is distorted, the ‘low velocity’ body is hardly seen and many artificial anomalies appear in the shallow and deep parts

of the target field as a result of ignoring the strongly anisotropic nature of the rocks and the non-linear nature of the inverse problem.

Fig. 3 gives the results of the isotropic inversion (Fig. 3a) and the non-linear anisotropic inversion (Figs 3b and c) with the qP-wave data.

From these results it can be seen that the isotropic inversion is unable to reconstruct clear images of the two targets because the prevalent

anisotropy of the media is ignored. The isotropic inversion almost loses the image of the ‘low velocity’ body (Shale 2) and produces many

spurious anomalies in the deeper parts of the model. Implementing the Thomsen parameter scheme of the non-linear anisotropic inversion,

we obtained the tomograms of the three parameters: α0, ε and δ∗ (see Fig. 3b), which are the dominant parameters for this wave mode and

for this recording geometry. Although the inverted ε distribution is not as good as expected, the results for the other two parameters are much

better than with the isotropic inversion (see Fig. 3a) and the linearized anisotropic inversion (see Fig. 2). In particular, one can see that the α0

tomogram successfully recovers the two ‘targets’ with the right sizes and locations and the inverted δ∗ gives a good image of the ‘high velocity’

body (Shale 1). These imaging differences are mainly caused by the incomplete illumination with the given measurement configuration (lack

of vertical ray paths) and the sensitivity behaviour of the Thomsen parameters to the qP-wave velocity (Zhou & Greenhalgh 2005a). The

three parameters are actually dominant for the wave speed changes of the qP-wave, but α0 is almost ‘isotropic’ among the three, or much

less anisotropic than other two. Since ε and δ∗ are strongly sensitive to the ray path directions, this means that with a certain coverage of ray

paths, or a specified recording configuration, the inversion result for α0 should be much better than the other two, because it does not seriously

depend on the ray path directions like the parameters δ∗ and ε do. Fig. 3(b) is clear confirmation of this. Implementing the elastic modulus

scheme of the non-linear anisotropic inversion, we obtained the tomograms for four elastic moduli: a11, a13, a33 and a44 (see the upper row in

Fig. 3c). The four reconstructions clearly give the images of the two ‘targets’ in the depth range of 10–20 m and verify the superiority of the

non-linear anisotropic inversion to the linearized anisotropic inversion. From the inverted moduli, one can calculate the Thomsen parameters

(we call them the converted Thomsen parameters) using the well-known relationships: α0 = √
a33 and β0 = √

a44 (see the lower row in

Fig. 3c). Comparing the converted Thomsen parameters with those obtained directly by the Thomsen parameter scheme (Fig. 3b), we find

that the converted Thomsen parameters are not as good. Specifically, the result for α0 from the Thomsen parameter inversion scheme is much

better than the converted one from the elastic modulus inversion scheme. It can be explained as follows: α0 behaves as an ‘isotropic’ parameter

in the former while in the latter the elastic modulus a33(= α2
0) is more sensitive to certain ray path directions (Zhou & Greenhalgh 2005a).

Another cause may be that minor errors in the four inverted elastic moduli get amplified or mixed up in the conversion so that the converted
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Figure 2. Results of the linearized anisotropic inversions with the (a) qP-wave, (b) qSV-wave and (c) qSH-wave data.

Thomsen parameters are worse than the results of the direct Thomsen parameter scheme. It is also apparent that with the qP-wave data, the

Thomsen parameter scheme of the non-linear anisotropic inversion cannot give a good image of β 0 because of the much weaker effects it has

than any other parameters on this wave mode (Zhou & Greenhalgh 2005a). However, the elastic modulus scheme of the non-linear anisotropic

inversion can successfully recover the structure of the ‘shear wave-related’ parameter with the qP-wave data.

Fig. 4 gives the results of the isotropic inversion (Fig. 4a) and non-linear anisotropic inversion (Figs 4b and c) with the qSV-wave

traveltimes, from which we see that the isotropic inversion produces a distorted image for the ‘high velocity’ body (Shale 1) and fails to

indicate the existence of the ‘low velocity’ block (Shale 2). By contrast, the Thomsen parameter scheme of the non-linear anisotropic inversion

yields clear images for both ‘targets’ in the β 0 and δ∗ tomograms (see Fig. 4b), which are the dominant parameters of the qSV wave. The

elastic modulus scheme of the non-linear inversion produces three satisfactory tomograms of a11, a33 and a44 (the upper row in Fig. 4c), all of

which correctly indicate the sizes and positions of the two anomalous blocks. From the inverted elastic moduli, we also obtained the converted

Thomsem parameters including α0 (the lower row in Fig. 4c), which cannot be resolved by the Thomsen parameter scheme with the qSV-wave

data due to the weak effects it has on this wave mode. Obviously, the two non-linear anisotropic inversion schemes are much better than the

isotropic inversion and the linearized anisotropic inversion when applied to the strongly anisotropic media. However, the converted β 0 and δ∗

(the lower row in Fig. 4c) are not as good as the results obtained directly by the Thomsen parameter inversion scheme (see Fig. 4b). It once

again shows that the conversion process amplifies or compounds minor discrepancies in the inverted elastic moduli so that they mask the two

targets in the converted Thomsen parameter tomograms.

Fig. 5 shows the results obtained by the isotropic inversion (Fig. 5a) and the non-linear anisotropic inversions (Figs 5b and c) with the

qSH-wave traveltimes. Again, the isotropic inversion yields distorted and incomplete images of the two ‘targets’ and produces many fictitious

anomalies (see Fig. 5a). The Thomsen parameter scheme of the non-linear anisotropic inversion successfully recovers the spatial variations

in β 0, giving the correct dimensions, locations and magnitudes of the two ‘targets’ (see Fig. 5b). Theoretically, there are only two Thomsen

parameters β 0 and γ , or elastic moduli a44 and a66, which play a role in the wave speeds for the qSH wave mode. Unfortunately, the Thomsen
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Figure 3. Results of the (a) isotropic inversion and two non-linear anisotropic inversions: (b) Thomsen parameter scheme and (c) elastic module scheme with

the qP-wave traveltimes. Thomsen parameter scheme successfully yields the α0- and δ∗-image, and the elastic modulus scheme recovers the structures very well

for all four elastic moduli (a11, a13, a33, a44); both non-linear inversion schemes are obviously superior to the isotropic and linearized anisotropic inversions

(Fig. 2a).

parameter scheme is unable to give a reasonable tomogram of γ , which is mainly sensitive to a certain range of the ray directions. For example,

in the VTI case γ is most sensitive to the vertical ray paths (Zhou & Greenhalgh 2005a), which are lacking in the measurement configuration

used in this experiment. However, implementing the elastic modulus scheme of the non-linear anisotropic inversion, we obtained satisfactory

tomograms of a44 and a66, both of which correctly define the sizes and depth ranges of the two ‘targets’ (see Fig. 5c). The images are obviously

much better than those obtained by isotropic inversion (Fig. 5a) and the linearized anisotropic inversion (see Fig. 2c), and competitive with

the results of the direct Thomsen parameter scheme (see Fig. 5b). Applying the two inverted elastic moduli, we calculated the tomogram of

γ [= (a66 − a44)/2a44, which unfortunately cannot delineate the ‘targets’ from the conversion (not shown). This is believed to be due to

compounding of inversion errors.

To assess the degree of data fit with the three types of inversions (isotropic, linearized and non-linear anisotropic inversions), we present

in Table 1 the root-mean-square (rms) traveltime residuals at the initial and 20th iteration for all three modes. The table clearly shows that the

non-linear anisotrotpic inversion is far superior and reaches a satisfactory convergence level, whereas the other two do not.

C O N C L U S I O N S

We presented two new non-linear inversion schemes, called the elastic modulus scheme and the Thomsen parameter scheme, for 3-D seismic

traveltime tomography in an arbitrary TTI-medium. These two schemes are based on a newly developed robust 3-D ray tracer that can

simultaneously calculate the first-arrival traveltimes and corresponding ray paths in an arbitrary TTI-medium, and a new version of the first-

order traveltime perturbation equation. This approach differs from the traditional linearized anisotropic inversion (weak anisotropy assumption)

and simplifies the non-linear inversion formulae by introducing the wave speed derivatives with respect to the elastic moduli or the Thomsen

parameters. These derivatives may be calculated in the manner of the eigenvalue formulation and applied to assembling the Jacobian matrix

with an arbitrary anisotropic background medium. The eigenvectors of the three wave modes (qP, qS1 and qS2) or (qP, qSV and qSH) are not

required so the new scheme essentially avoids the quasi shear wave singularity problem and is applicable for both ‘weakly’ and ‘strongly’

anisotropic situations.

The synthetic imaging experiments show the need for anisotropic inversion when the medium is anisotropic and that better images can

be obtained by the non-linear anisotropic inversion than with the linearized anisotropic inversion for a strongly anisotropic case. The two
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Figure 4. Results of the (a) isotropic inversion and two non-linear anisotropic inversions: (b) Thomsen parameter scheme and (c) elastic modulus scheme

with qSV-wave traveltimes. The two non-linear inversion schemes successfully reconstruct the positions and shapes of the two anomalies in the β 0- and

a44-tomograms, which are distorted with the isotropic and linearized inversions (Fig. 2b). For the other model parameters, the non-linear inversions are still

better than the linearized inversion, even though there is less sensitivity to these parameters than to β 0 and a44 in such surveying geometry.

new schemes of the non-linear anisotropic inversion successfully image the ‘targets’ embedded in a TTI-medium and satisfactorily obtain the

Thomsen parameters and the elastic moduli of the TTI-medium. However, the results also show that the two non-linear inversion schemes are

not equivalent in imaging the structure of the TTI-medium. This discrepancy is mainly caused by the significant difference in the sensitivity

behaviour of the Thomsen parameters and the elastic moduli to the ray directions.

The Thomsen parameter scheme may successfully yield the tomograms of α0 and β 0 with the qP-wave and one of the two quasi shear

wave modes (qSV, qSH), respectively, because of their nearly ‘isotropic’ properties to the body-wave modes. For the other parameters, such

as ε, δ∗ and γ , the non-linear anisotropic inversions depend on the distribution of ray directions in the background medium, which in turn

depends on the recording geometry. These parameters, are mostly sensitive to a certain range of ray directions. Any lack of these ray directions,

or deficiencies in angles of illumination, may cause incomplete or corrupted images for these particular Thomsen parameters. In general, the

better the ray path coverage across the target field then the better the image quality and the more Thomsen parameters that may be satisfactorily

obtained.

The elastic modulus scheme of the non-linear anisotropic inversion may be applied to the determination of the elastic moduli with an

appropriate measurement configuration, that is, VSP + crosshole, and the first-arrival traveltimes of the body-wave modes (qP, qSV and qSH).

However, the coverage of ray directions determined by the measurement configuration, and the nature of the background medium, mainly

control the resolution of the elastic moduli. They have complementary sensitivity ranges over the ray directions. An incomplete or fragmentary

set of ray directions in the survey geometry may result in a loss of recovery of certain elastic moduli which are mostly sensitive to these

missing directions. The converted Thomsen parameters from the inverted elastic moduli are generally not as good as those obtained directly

by the Thomsen parameter inversion scheme. The main reason is the propagation of inversion errors in the individual elastic moduli, which

mask or distort the true images of the structures of the Thomsen parameters.
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Figure 5. Results of the (a) isotropic inversion and two non-linear anisotropic inversions: (b) Thomsen parameter scheme and (c) elastic modulus scheme

with the qSH-wave traveltimes. The two non-linear inversions successfully recover the structure of the two anomalies, which are distorted in the isotropic and

linearized inversions (Fig. 2c).

Table 1. The rms traveltime residuals of the three types of inversions for all three wave modes.

Isotropic inversion

Wave mode Travel time initial Residual (rms, ms)

20th iteration

qP 1.292 0.352

qSV 2.222 0.299

qSH 4.619 0.574

Linearized anisotropic inversion

Wave mode Travel time initial Residual (rms, ms)

final

qP 0.921 0.282

qSV 1.748 0.650

qSH 2.403 0.550

Non-linear anisotropic inversion

Wave mode Travel time initial Residual (rms, ms)

20th iteration

qP 0.724 0.011

qSV 1.617 0.036

qSH 1.429 0.016
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Červeny, V. & Firbas, P., 1984. Numerical modelling and inversion of travel-

times of seismic body waves in inhomogeneous anisotropic media, Geo-
phys. J.R. Astr. Soc., 76, 41–51.
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