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An integral formula for the solutions of Knizhnik–Zamolodchikov (KZ) equation with

values in an arbitrary irreducible representation of the symmetric group SN is presented

for integer values of the parameter. The corresponding integrals can be computed

effectively as certain iterated residues determined by a given Young diagram and give

polynomials with integer coefficients. The derivation is based on Schur–Weyl duality and

the results of Matsuo on the original SU(n) KZ equation. The duality between the spaces

of solutions with parameters m and −m is discussed in relation with the intersection

pairing in the corresponding homology groups.

1 Introduction

Let G be a finite Coxeter group, R be the corresponding root system, mα,α ∈ R be a

system of multiplicities, which is a G-invariant function on R. Let W be an irreducible

representation of G and define the Knizhnik–Zamolodchikov equation (KZ equation)
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related to W as the following system

∂ξψ =
∑

α∈R+

mα
(α, ξ)
(α, z)

(sα + 1)ψ,

where sα are the corresponding reflections acting on W-valued functions ψ(z). If the

multiplicities mα are integers, then all the solutions of the corresponding systems are

homogeneous polynomials (see [11, 3]) of degree equal to the value of the central element∑
α∈R+

mα(sα + 1) in the irreducible representation W. The finding of these solutions is

an important part of the description of the so-called m-harmonic polynomials [2]. In

the paper [3] these solutions were found explicitly in the simplest case of the standard

(reflection) representation of G = SN .

The main result of the present paper is an explicit integral formula for the

solutions of the corresponding KZ equation

∂iψ = m
N∑

j �=i

sij + 1
zi − zj

ψ, i = 1, . . . ,N (1.1)

with values in an arbitrary irreducible representation of the symmetric group SN for

any positive integer m. Our approach is based on Schur–Weyl duality and the results of

Matsuo, who found some integral formulas for the solutions of the original SU(n) KZ

equation [10] inspired by the work of Fateev and Zamolodchikov [13] and Christe and

Flume [1].

The main construction is the following. Let λ be the Young diagram with N boxes

and n rows of lengths λ1, . . . ,λn with λ1 ≥ · · · ≥ λn > 0. It is well known that for any such

diagram one can construct an irreducible representation Wλ of the symmetric group SN

and any irreducible representation of SN can be described in this way (see e.g. [6]).

The space Wλ has a basis vT labeled by the set T(λ) of all standard tableaux on

λ, which are the numberings T : λ → {1, . . . ,N} of the boxes of λ, increasing from left to

right and from top to bottom.

A fundamental set of solutions of the KZ equation with values in Wλ can be also

labeled by the set T(λ) :

ψT(z1, . . . , zN) =
∑

T ′∈T(λ)

ψT,T ′(z1, . . . , zN)vT ′ . (1.2)
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The components ψT,T ′(z1, . . . , zN) are known to be polynomial in z1, . . . , zN [3]. We can give

now an explicit formula for ψT,T ′(z1, . . . , zN) as an integral

ψT,T ′ =

∫
σT

ωT ′ (1.3)

of some rational differential form ωT ′ over a certain cycle σT in the top homology of the

following configuration space Cλ(z1, . . . , zN) related to Young diagram λ.

For given λ = (λ1, . . . ,λn) let us define the integers mi, i = 1, . . . ,n from the

relation λ = (m0 − m1,m1 − m2, . . . ,mn−2 − mn−1,mn−1). Explicitly we have

m0 = λ1 + λ2 + · · · + λn = N,m1 = λ2 + · · · + λn, . . . ,mn−2 = λn−1 + λn,mn−1 = λn,

so that ms is the number of boxes in the rows of λ strictly lower than s.

Consider n finite sets X0,X1, . . . ,Xn−1 of points on the complex plane C consisting

of m0, . . . ,mn−1 points respectively with the condition that Xi and Xi+1 have no common

points for all i = 1, . . . ,n − 2. Let us denote the elements of X0 as z1, . . . , zN and fix

them. The corresponding configuration space of all admissible {X1, . . . ,Xn−1} is our

Cλ(z1, . . . , zN). It has the dimension

dλ =

n−1∑
i=1

mi =

n∑
r=1

(r − 1)λr,

and can be described as the following subset in Cdλ :

Cλ(z1, . . . , zN) = {tb
s ∈ C, b ∈ λ, 1 ≤ s ≤ r(b) − 1 : tb

s+1 �= tb ′

s , tb
1 �= zk}, (1.4)

where we have denoted the elements of Xs as

Xs = {tb
s ∈ C, b ∈ λ, r(b) > s},

and r(b) is the row which the corresponding box b belongs to.

On this space Cλ(z1, . . . , zN) we have a natural action of the group Gλ = Sm1 ×
Sm2 × · · · × Smn−1 . The cycles σT in the top homology group Htop(Cλ(z1, . . . , zN)) can be

defined for any numbering T of λ, namely any bijection T : λ → {1, . . . ,N}. Consider first

the product ΓT of circles consecutively surrounding anti-clockwise zk with the variables

tb
1, . . . , t

b
r(b)−1, b = T−1(k) located on these circles:

ΓT = {tb
s ∈ C : |tb

s − zk| = εs, b = T−1(k)} (1.5)
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for any real positive ε small enough. The corresponding cycle σT is the skew-symmetriza-

tion of ΓT by the action of Gλ:

σT =
∑

g∈Gλ

(−1)gg∗(ΓT), (1.6)

where (−1)g denote the sign of g, which is the product of signs of the corresponding

permutations in Smi .

The form ωT has the form

ωT =
1

(2πi)dλ
Φm

λ φTdt, (1.7)

where

Φλ =
N∏

i<j
(zi − zj)2 ∏

s,b �=b ′
(tb

s − tb ′

s )2 ∏
s,b,b ′

(tb
s+1 − tb ′

s )−1 ∏
k,b

(tb
1 − zk)−1, (1.8)

φT =
∏
s,b

(tb
s+1 − tb

s )
−1 ∏

b
(tb

1 − zT(b))−1 (1.9)

and dt =
∏

s,b dtb
s is the exterior product of the differentials of all the coordinates (the

order is not essential since it is only changes sign).

Theorem 1.1. For any given positive integer m, the integral formulas (1.2), (1.3) with the

cycles σT and forms ωT ,T ∈ T(λ) defined above give a basis in the space of solutions of

the KZ equation (1.1) with values in the irreducible SN-module Wλ. The integral (1.3) can

be effectively computed as an iterated residue and gives a polynomial in z1, . . . , zN with

integer coefficients. �

We have derived these formulas from the results of Matsuo [10] using the Schur-

Weyl duality. The fact that in such a way we get all the solutions of the corresponding

KZ equation does not follow from [10] and needs to be proven independently. Using

representation theory it turns out that it is sufficient to prove that one of the integrals

ψT,T ′ does not vanish identically. This we prove by evaluating ψT,T for the tableau

assigning k to the kth box, counted from left to right and from top to bottom, in the

asymptotic region 0 � |z1| � · · · � |zN |. We find

ψT,T(z) ∼ C
∏
b∈λ

zm(T(b)−1+c(b)−r(b))
T(b) + · · · ,
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for some integer C �= 0, see Lemma 3.7, where c(b), r(b) are the coordinates (column

and row number) of the box b ∈ λ. As a by-product, we obtain a new derivation of the

interesting formula, due to Frobenius [5] (see [9], exercise 7 in Chapter I and comment on

p. 134) for the value f2(λ) of the central element
∑

i<j sij in the representation Wλ:

f2(λ) =
∑
b∈λ

(c(b) − r(b)).

Theorem 1.1 applies to the case of positive integer m. The case of negative m can be

reduced to it by using the isomorphism between the space of solutions KZ(V,m) of

the KZ equation with values in the representation V and parameter m and the space

KZ(V ⊗ Alt,−m), where Alt = Cε is the alternating representation. Indeed, it is easy to

check that if ψ ∈ KZ(V,m) then φ =
∏

i>j(zi − zj)−2mψ⊗ ε ∈ KZ(V ⊗Alt,−m). In particular

it follows that for negative m all solutions are rational functions. In the last section we

discuss also the duality between KZ(V,m) and KZ(V∗,−m) given by the canonical map

KZ(V,m) ⊗ KZ(V∗,−m) → C

in relation with the intersection pairing in the corresponding homology groups.

The case we consider can be viewed as a very degenerate limit of the general the-

ory of hypergeometric solutions of KZ equations associated with Kac–Moody algebras,

see [12] and references therein. We should mention that similar integral formulas were

found also by Kazarnovski-Krol [8] in the theory of zonal spherical functions of type An,

but combinatorics of the corresponding configuration space is very different and not re-

lated to Young diagrams.

2 Schur–Weyl duality

We start with the classical Schur–Weyl duality between the representations of the

general linear and symmetric groups.

Let V be an n-dimensional complex vector space. Then the symmetric group SN

on N letters acts on the N-fold tensor product V⊗N = V⊗· · ·⊗V by permutations of factors

and this action commutes with the diagonal action of GL(V). The Schur–Weyl theorem

states that, as a GL(V) × SN module, V⊗N has a decomposition into a direct sum

V⊗N ∼= ⊕λMλ ⊗ Wλ (2.1)
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where Mλ are inequivalent irreducible GL(V)-modules and Wλ are inequivalent irre-

ducible SN-modules. The sum is over partitions of N into at most n parts, namely se-

quences of integers λ1 ≥ · · · ≥ λn ≥ 0 with
∑

λi = N.

Moreover if n ≥ N all irreducible SN modules appear. Thus we can realize every

irreducible SN-module as

Wλ
= HomGL(V)(Mλ,V⊗N),

for any V of dimension ≥ N.

An explicit description of Wλ is obtained from the description of Mλ as a highest

weight module and depends on a choice of basis of V. Namely, let us fix a basis e1, . . . , en

of V and introduce the decomposition gl(V) = n− ⊕ h⊕ n+ of the Lie algebra of GL(V) into

strictly lower triangular, diagonal and strictly upper triangular n × n matrices. For any

gl(V)-module E and any µ ∈ h∗ = Cn, denote by Eµ = {v ∈ E|x · v = µ(x)v, ∀x ∈ h} the

weight subspace of weight µ. The space of primitive vectors of weight µ in E is

En+

µ = {v ∈ Mµ|a · v = 0, ∀a ∈ n+}.

The irreducible module Mλ is uniquely characterized by having a nonzero primitive

vector vλ of weight λ, which is unique up to normalization. Moreover Mλ is generated

over U(n−) by vλ and thus

Mλ
= Cvλ ⊕ n−Mλ. (2.2)

An element of HomGL(V)(Mλ,V⊗N) is then uniquely determined by the image of the

primitive vector and we obtain an isomorphism of SN-modules

Wλ
= (V⊗N)n+

λ .

From this realization we obtain a basis of Wλ labeled by standard Young tableaux,

making connection to the classical construction of Wλ as a Specht module, see [6]. Here

is how it works: let λ also denote the Young diagram with N boxes with rows of lengths

λ1, . . . ,λm. To each numbering T : λ → {1, . . . ,N} of the boxes we associate a weight vector

eT = eα1 ⊗· · ·⊗eαN ∈ (V⊗N)λ so that αk = i whenever T−1(k) is in the ith row. For example,

if T is the numbering
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3 4 1

2 5

6

of λ = (3, 2, 1), then eT = e1 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e3.

The symmetric group SN acts on the set of numberings of λ and we have σeT = eσT

for any σ ∈ SN . For any numbering T of λ, the row group R(T) is the subgroup of SN

consisting of permutations preserving the image of each row. Similarly, we have the

column group C(T) ⊂ SN . Two numberings T,T ′ give the same weight vector if and only

T ′ = σT for some σ ∈ R(T). In this case R(T) = R(T ′) and we say that T and T ′ are

row equivalent. Thus the vectors eT are associated to row equivalence classes {T} of

numberings of λ, which are called tabloids on λ. Recall that a standard tableau on λ

is a numbering of λ which is increasing from left to right and from top to bottom.

Proposition 2.1. Let λ be a partition of N and let dim(V) ≥ N.

1. The vectors eT , where {T} runs over tabloids on λ, form a basis of the weight

space (V⊗N)λ.

2. The vectors vT =
∑

σ∈C(T) sign(σ)eσT , where T runs over the set T(λ) of

standard tableaux on λ, form a basis of the SN-module Wλ = (V⊗N)n+

λ

of primitive vectors of weight λ. �

For proofs see, e.g., Chapter 9 of [7].

A dual realization of Wλ is also relevant. The symmetric bilinear form on V for

which the ei form an orthonormal basis induces a symmetric nondegenerate bilinear

form 〈 , 〉 on each weight space (V⊗N)λ. If λ is a partition of N, the tensors eT , where

{T} runs over the set of tabloids on λ, are then an orthonormal basis of (V⊗N)λ. Let τ be

the antiautomorphism of gl(V) given by matrix transposition with respect to the basis

ei. Then 〈x · v,w〉 = 〈v, τ (x) · w〉, x ∈ gl(V). Moreover the bilinear form is SN-invariant:

〈σ · v,σ · w〉 = 〈v,w〉, σ ∈ SN , v,w ∈ V⊗N .

Proposition 2.2. Let λ be a partition of N and let dim(V) ≥ N.

(i) The form 〈 , 〉 induces a nondegenerate SN-invariant pairing

(V⊗N/n−V⊗N)λ ⊗ (V⊗N)n+

λ → C.

Thus we can identify (V⊗N/n−V⊗N)λ with the dual SN-module (Wλ)∗.
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(ii) The basis dual to the basis vT of Wλ is given by the classes of the vectors eT ,

T ∈ T(λ) in (Wλ)∗ = (V⊗N/n−V⊗N)λ. �

Proof. It follows from (2.2) and the complete reducibility of V⊗N into a direct sum of

irreducible highest weight modules that

(V⊗N)λ = (V⊗N)n+

λ ⊕ (n−V⊗N)λ.

Moreover this is an orthogonal direct sum with respect to the contravariant form, since

τ maps n− to n+. Therefore the pairing is well-defined and is nondegenerate. Since

vT (T ∈ T(λ)) form a basis of Wλ and eT occurs in vT with coefficient 1, we get 〈eT

mod n−, vS〉 = δT,S, T, S ∈ T(λ). Thus the classes of eT form the dual basis of the dual

module. �

Remark 2.3. Actually, SN-modules are self-dual, (Wλ)∗ ∼= Wλ but the expression of the

isomorphism with respect to the bases labeled by tableaux is nontrivial. The space of

cycles in our integral formulae are more naturally associated with (Wλ)∗.

3 Integral representation of solutions

3.1 The action of the symmetric group on the solution space

We fix a Young diagram λ and a positive integer m and keep the notations of the

introduction.

The KZ operators Di = ∂i−m
∑

j �=i(sij+1)/(zi−zj) appearing in (1.1) are commuting

first-order holomorphic differential operators acting on Wλ-valued functions on the

configuration space CN = CN − ∪i<j{zi = zj}. Thus the space of holomorphic solutions

on any connected open subset U ⊂ CN has dimension dimWλ. The symmetric group SN

acts on CN and thus on the functions with values in the SN-module Wλ by (g · ψ)(z) =

g(ψ(g−1 · z)). The KZ operators obey g · Diψ = Dg(i)g · ψ for all g ∈ SN . Therefore g ∈ SN

maps solutions on U to solutions on g · U. In particular we have an action of SN on the

space of global solutions

KZ(λ,m) = {holomorphic functionsψ : CN → Wλ
: Diψ = 0, i = 1, . . . ,N}.

In fact, all local solutions extend to global solutions:
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Theorem 3.1. [11, 3] All local solutions of the Knizhnik–Zamolodchikov equation (1.1)

with m ∈ Z>0 extend to homogeneous polynomials of degree m(f2(λ) + (N − 1)N/2),

where f2(λ) is the value of the central element
∑

i<j sij of the group algebra of SN in the

representation Wλ. Moreover, the space of solutions KZ(λ,m) is isomorphic to Wλ as an

SN-module. �

The homogeneity follows directly from the equations: if ψ is a solution then∑
ziDiψ = (

∑
zi∂i − m(f2(λ) + (N − 1)N/2))ψ = 0.

3.2 Matsuo’s integral formulae.

The configuration spaces Cλ(z), z ∈ CN , of (1.4) form a fiber bundle over CN and the

action of SN on the base lifts canonically to an action on the bundle. Indeed, Cλ(z1, . . . , zN)

does not depend on the ordering of the zi. The forms ωT of eqn. (1.7) are holomorphic

differential forms on the total space that restrict to holomorphic top differential forms

ωT(z) on each fiber Cλ(z). They are defined for any numberings T, not just for standard

tableaux and, by construction, they obey ωgT(g · z) = ωT(z) for all g ∈ SN , where gT = g ◦T

is the natural action on the set of numberings T : λ → {1, . . . ,N}.

Let Htop(Cλ(z))s, z = (z1, . . . , zN) ∈ CN , be the skew-symmetric part of the

homology of the top degree dλ under the action of Gλ = Sm1 × · · · × Smn−1 :

Htop(Cλ(z))s = {σ ∈ Htop(Cλ(z)) : g∗σ = (−1)gσ, g ∈ Gλ}.

Lemma 3.2. If σ ∈ Htop(Cλ(z))s then
∫

σ ωT(z) depends only on the tabloid {T} of T. �

Indeed, if T and T ′ differ by an element h of the row group R(T), inducing a permutation

h1 of the set of boxes of λ then ωT(z) = (−1)gg∗ωT ′(z), where g ∈ Gλ is the permutation

tb
i �→ th1(b)

i of the variables (the sign comes from the volume form dt).

The following result can be extracted from Matsuo’s paper [10].

Theorem 3.3. (Matsuo [10]) Let σ ∈ Htop(Cλ(z))s, ψσ(z) =
∑

{T}
∫

σ ωT(z)eT ∈ (V⊗N)λ, with

summation over all tabloids {T} on λ.

(i) ψσ(z) ∈ Wλ = (V⊗N)n+

λ .

(ii) As z varies in some neighborhood of a point in CN , ψσ(z) is a solution of the

KZ equation (1.1). �

Recall that homology groups of neighboring fibers of a fiber bundle are canoni-

cally identified, so (ii) makes sense.
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Here are some details on how to deduce Theorem 3.3 from [10]: Matsuo considers

the general Knizhnik–Zamolodchikov equation

∂iϕ = m
∑
j �=i

Ωi,j

zi − zj
ϕ, (3.1)

for ϕ(z1, . . . , zN) taking values in a tensor product V∗
λ1

⊗ · · · ⊗ V∗
λN

of Verma modules V∗
λi

over sln of highest weight λi
1. In this version of the KZ equation, Ωij denotes the action

on the i-th and j-th factors of the tensor in sln ⊗ sln dual to the invariant bilinear form

(x, y) = tr(xy) on sln. The Verma module V∗
λ is generated by a highest weight vector v∗

λ

and is free over the Lie subalgebra of strictly lower triangular matrices n−, so it has a

Poincaré–Birkhoff–Witt basis

u∗
λ(�p) =

∏
α>β

Epα,β

α,β

pα,β !
v∗

λ, �p = (pα,β)n≥α>β≥1

where the product is defined for some choice of ordering of the standard basis (Eα,β)α>β ,

of n−. Accordingly, we have a basis u∗(�p) = ⊗N
a=1u∗

λa
(�pa), �p = (�p1, . . . ,�pN), of the tensor

product. Matsuo’s integral formula for solutions has the form ϕ =
∑

I(�p)u∗(�p) for some

integrals I(�p) whose integrand is described explicitly in [10]. The sum is over all �p such

that u∗(�p) has a given weight λ. It is then shown in [10] that the solution takes values in

the primitive vectors of weight λ.

For our purpose we need a special case of Matsuo’s construction, for which

the formulae simplify considerably. The vector representation V of sln is the quotient

of the Verma module V∗
�1

with fundamental highest weight �1 by its maximal proper

submodule. Thus we take λ1 = · · · = λN = �1, and we have the tensor product

πN : (V∗
�1

)⊗N → V⊗N of canonical projections. The KZ equation (3.1) makes sense for the

tensor product of any N modules; moreover any solution taking values in (V∗
�1

)⊗N projects

to a solution taking values in V⊗N . In the latter case we have Ωij = Sij −
1
n Id, where Sij

exchanges the i-th and the j-th factor of the tensor product and thus coincides with the

action of sij on the SN-module V⊗N . It follows that if ϕ is a solution of (3.1), then

ψ(z1, . . . , zN) =
∏
i<j

(zi − zj)m(1+1/n)πN ◦ ϕ(z1, . . . , zN)

1Actually, he uses lowest weights instead of highest weights, N − 1 instead of N and n + 1 instead of n, but it is
easy to translate to our convention.
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is a solution of (1.1). The canonical projection π : V∗
�1

→ V sends most PBW basis vectors

to zero. The only remaining ones are the classes of

eα = Eα,α−1 . . . E3,2E2,1v�1 , α = 1, . . . ,n.

It is straightforward to check that we obtain our integral formulae, as described in the

Introduction, by restricting the sum in Matsuo’s formula to include only tensor products

of vectors eα.

Corollary 3.4.

(i) The solution ψσ of Theorem 3.3 can be written as

ψσ(z) =
∑

T∈T(λ)

∫
σ

ωT(z)vT .

(ii) ψσ(g · z) = gψσ(z), σ ∈ Htop(Cλ(z))s = Htop(Cλ(g · z))s. �

Proof. (i) follows from Theorem 3.3, (i) and Proposition 2.1. For (ii) one uses the original

expression for ψσ. �

3.3 Completeness

We show here that all solutions are given as integrals over suitable cycles. The proof is

in two parts: first we construct an SN-equivariant map (Wλ)∗ → KZ(λ,m), defined as the

integral over the cycles σT . Since (Wλ)∗ is irreducible and of the right dimension, it then

suffices to check that the map is nonzero, which can be done by an asymptotic analysis.

We start by describing the action of the symmetric group on cycles.

Lemma 3.5. For any numbering T of λ and z = (z1, . . . , zN) ∈ CN , let σT = σT(z) ∈
Htop(Cλ(z))s be the homology class defined in the introduction as the skew-symmetriza-

tion of the image of the fundamental class by a map (S1)dλ → Cλ(z).

(i) For all g ∈ SN , σgT(g · z) = σT(z).

(ii) If T and T ′ are numberings of λ differing by a row permutation, then σT(z) =

σT ′(z). Thus σT(z) depends only on the tabloid of T. �

Proof. (i) holds by construction. The proof of (ii) is the same as the proof of Lemma 3.2.

This time the sign comes from the change of orientation. �
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Thus we get a map

Ψλ
m : (V⊗N)λ → KZ(λ,m)

eT �→
∫

σT

ω =
∑

T ′∈T(λ)

ψT,T ′vT ′ .

It is well defined since σT , just as eT , depends only on the tabloid of T.

Lemma 3.6. The map Ψλ
m is SN-equivariant. �

This follows from Lemma 3.5 and Corollary 3.4.

To prove that the map is nonzero we will use the following key technical lemma.

Let (r(b), c(b)) be the coordinates (row and column number) of the box b in the Young

diagram λ.

Lemma 3.7. Let T be the standard tableau mapping the kth box, counted from left to

right and top to bottom, to k. Then ψT,T(z) is not identically zero. The leading term for

0 � |z1| � |z2| � · · · � |zN | is

ψT,T(z) ∼ C
∏
b∈λ

zm(T(b)−1+c(b)−r(b))
T(b) + · · · ,

for some C �= 0. �

Proof. We show that, as zN → ∞,

ψT,T(z1, . . . , zN) = C ′zm(N−1+λn−n)
N (ψT ′,T ′(z1, . . . , zN−1) + O(zN)),

where T ′ is the standard tableau with N − 1 boxes obtained from T by removing the last

box and C ′ is a nonzero combinatorial factor. Since ψ
1 , 1

= 1 for the tableau with one

box, this gives an inductive proof of the claim.

Let λ ′, the shape of T ′, be λ without the last box. Then

Φλ = Φλ ′

N−1∏
k=1

(zk − zN)2(t k
1 − zN)−1

n−1∏
s=1

(t N
s − t N

s−1)
−1

n−1∏
s=1


 ∏

k<N

r( k )>s

(t k
s − t N

s )2 ∏
k<N

r( k )>s+1

(t k
s+1 − t N

s )−1 ∏
k<N

r( k )>s−1

(t N
s − t k

s−1)
−1


 ,



Polynomial Solutions of the KZ Equations 13

where k = T−1(k) is the box of λ labeled by k and we set t k
0 = zk. Also,

φT = φT ′

n−1∏
s=1

(t N
s − t N

s−1)
−1.

The leading term as zN → ∞ in ψT,T is obtained when the variables t N
s run over circles

around zN . With the variable substitution t N
s = zN +τ1 +· · ·+τs, the leading term as z → ∞

of the integration of ωT over the variables t N
s is

± ωT ′zm(N−1)
N resτn−1=0 · · · resτ1=0Ω,

where

Ω =
n−2∏
s=1

(zN + τ1 + · · · + τs)m(2ms−ms−1−ms+1)τ−m−1
s dτs

×(zN + τ1 + · · · + τn−1)m(2mn−1−mn−2−1)τ−m−1
n−1 dτn−1

=
n−2∏
s=1

(zN + τ1 + · · · + τs)m(λs+1−λs)τ−m−1
s dτs

×(zN + τ1 + · · · + τn−1)m(λn−λn−1−1)τ−m−1
n−1 dτn−1.

The residues can be computed explicitly. Such expressions give a nonzero result if the

total power of all factors containing any given τs is negative. This power is (λn −λs − 1)m

which is indeed negative for all s = 1, . . . ,n − 1. �

Theorem 3.8. The map Ψλ
m : (V⊗N)λ → KZ(λ,m) is an epimorphism of SN-modules with

kernel (n−V⊗N)λ and therefore defines an isomorphism (Wλ)∗ → KZ(λ,m). In particular,

the images ψT of the basis vectors [eT ], T ∈ T(λ), of (Wλ)∗ = (V⊗N/n−V⊗N)λ, form a basis

of the space of solutions of the KZ equation. �

Proof. By Lemma 3.6 and Lemma 3.7, Ψλ
m is a nonzero homomorphism from the SN-

module (V⊗N)λ to the SN-module KZ(λ,m). By Theorem 3.1 KZ(λ,m) is isomorphic to

the irreducible SN-module Wλ. Since the image of a homomorphism is a submodule, it

follows that the map is surjective. On the other hand, by (2.1), Wλ � (Wλ)∗ occurs in

(V⊗N)λ with multiplicity dimMλ
λ = 1 and the claim follows from Proposition 2.2. �

Another interesting corollary of Lemma 3.7 is the following classical formula.
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Proposition 3.9. (Frobenius [5]) Let f2(λ) be the value of the central element
∑

i<j sij in

the representation Wλ. Then

f2(λ) =
∑
b∈λ

(c(b) − r(b)), (3.2)

where as before r(b) and c(b)) are respectively the row and column coordinates of the box

b in the Young diagram λ. �

To prove this we recall that the degree of the polynomial solutions from KZ(W,m) is

equal to the value of the central element
∑

i<j m(sij + 1) in the irreducible representation

W (see [3]). Comparing this with the leading term of the solution from Lemma 3.7 and

taking into account that
∑

i<j 1 =
∑

b∈λ(T(b) − 1) =
N(N−1)

2 we come to Frobenius formula

(3.2).

3.4 Integrality

It is well known (and clear from Proposition 2.1) that (vT)T∈T(λ) is an integral basis of

Wλ, i.e., Wλ
Z

= ⊕T∈T(λ)ZvT is a module over the group ring ZSN .

Theorem 3.10. The functions ψT,T ′ are homogeneous polynomials in z1, . . . , zN with inte-

ger coefficients. Thus

Ψλ
m(z1, . . . , zN) =

∑
T,T ′∈T(λ)

ψT,T ′(z1, . . . , zN)vT ⊗ vT ′ ∈ W
λ
Z
⊗Z Wλ

Z
[z1, . . . , zN ].

Moreover Ψλ
m is SN-invariant: Ψλ

m(g · z) = g ⊗ gΨλ
m(z), for all g ∈ SN . �

The invariance is a rephrasing of the homomorphism property of Ψλ
m of Theorem

3.8. The integrality follows from repeated application of the following elementary

Lemma 3.11. Let mi be any integers and w1, . . . ,wk distinct complex numbers. Then, for

any contour γ in the complex plane not passing through w1, . . . ,wk,

1
2πi

∮
γ

k∏
i=1

(t − wi)midt =
∑
i<j

cij(wi − wj)�ij ,

for some integers cij, �ij. �
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Theorems 3.8 and 3.10 imply the statements of Theorem 1.1.

Example 3.12. We demonstrate here our formulae in the simplest nontrivial example

when N = 3 and λ = (2, 1), which corresponds to the usual two-dimensional representa-

tion of S3. In this case there are two standard tableaux:

T =
1 2

3
, S =

1 3

2
.

The corresponding primitive vectors are vT = ε3 − ε1, vS = ε2 − ε1.

The residues can be computed explicitly and one obtains a basis of KZ(λ,m):

ψ1(z1, z2, z3) = z2m
23

m∑
k=0

dm,k ((m − k)vT + kvS) zm−k
12 zk

13,

ψ2(z1, z2, z3) = z2m
13

m∑
k=0

(−1)m−kdm,k ((m − k)vT − mvS) zm−k
12 zk

23,

where we abbreviate zi − zj = zij and

dm,k = −
1
m

(
−m
k

)(
−m

m − k

)
.

4 Duality m ↔ −m and intersection pairing

To apply our results to the case of negative integers m we can use the isomorphism be-

tween the spaces of solutions KZ(V,m) and KZ(V ⊗ Alt,−m) mentioned in the Introduc-

tion.

Lemma 4.1. For any ψ ∈ KZ(V,m) the function

φ =
∏
i<j

(zi − zj)−2mψ ⊗ ε

belongs to the space of solutions KZ(V ⊗ Alt,−m). �

Indeed from the KZ equation (1.1) we have

∂iφ = (−2m)(
N∑

j �=i

1
zi − zj

)
∏
i<j

(zi − zj)−2mψ ⊗ ε + m
∏
i<j

(zi − zj)−2m(
N∑

j �=i

sij + 1
zi − zj

ψ) ⊗ ε

= (−m)
∏
i<j

(zi − zj)−2m
N∑

j �=i

sij + 1
zi − zj

(ψ ⊗ ε) = (−m)
N∑

j �=i

sij + 1
zi − zj

φ,

since sij(φ ⊗ ε) = −(sijφ) ⊗ ε.
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Remark 4.2. The pre-factor
∏

i<j(zi−zj)−2m will disappear if we consider the KZ equation

in the form

∂iψ = m
N∑

j �=i

sij

zi − zj
ψ, i = 1, . . . ,N,

which in general has rational solutions. The duality between m and −m for similar

systems was used in [4] to explain the shift operator for the Calogero–Moser systems.

It is well known that the involution V → V ⊗Alt corresponds to the transposition

of the Young diagram λ → λ ′. Thus we have established an isomorphism

KZ(λ,m) ≈ KZ(λ ′,−m). (4.1)

Note that the configuration spaces Cλ(z1, . . . , zN) and Cλ ′(z1, . . . , zN) in general are quite

different (in particular, they have different dimensions), so the structure of the integral

formulas for the solution of the KZ equations for a given Young diagram, which we get in

this way, substantially depends on the sign of m.

It turns out that there is a link between the spaces of KZ solutions with the same

Young diagram:

j : KZ(λ,m) ≈ KZ(λ,−m)∗. (4.2)

More precisely, there exists a natural pairing

KZ(V,m) × KZ(V∗,−m) → C, (4.3)

where V∗ is the dual space to V with the natural action of SN . It is defined by the following

lemma.

Lemma 4.3. Let 〈 , 〉 denote the canonical pairing between V and V∗. Then for any

two solutions ψ(z1, . . . , zN) ∈ KZ(V,m) and φ(z1, . . . , zN) ∈ KZ(V∗,−m) the product

〈ψ(z1, . . . , zN),φ(z1, . . . , zN)〉 is independent of z1, . . . , zN and thus defines a nondegenerate

canonical pairing (4.3). �

The proof is a straightforward check using the KZ equations (1.1):

∂i〈ψ(z1, . . . , zN),φ(z1, . . . , zN)〉 = 〈m
N∑

j �=i

sij + 1
zi − zj

ψ,φ〉 + 〈ψ, (−m)
N∑

j �=i

sij + 1
zi − zj

φ〉 = 0,
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since 〈sijv,w〉 = 〈v, sijw〉 for any v ∈ V,w ∈ V∗. The same calculation holds of course for

any Coxeter group.

Note that the SN-module V∗ is isomorphic to V and in the irreducible case the

isomorphism is almost canonical in the sense that it is unique up to a scaling factor.

This leads to an isomorphism (4.2) and allows us to find the solutions from KZ(λ,−m) as

follows.

Let us choose any basis e1, . . . , eM in V = Wλ and a basis of solutions ψα =∑M
i=1 ψi

α(z1, . . . , zN)ei, in KZ(λ,m). Let Φλ,m(z1, . . . , zN) = ‖ψi
α(z1, . . . , zN)‖ be the corre-

sponding M × M fundamental matrix of KZ(λ,m). Let e1, . . . , eM be the dual basis in

V∗ : 〈ei, ej〉 = δi
j . We are looking now for a fundamental matrix Φλ,−m(z1, . . . , zN) =

‖φj
β(z1, . . . , zN)‖ for KZ(λ,−m), given by a basis of solutions φβ =

∑M
j=1 φβ

j (z1, . . . , zN)ej.

From Lemma 4.3 it follows that one can choose the basis of solutions in such a way that

M∑
i=1

ψi
α(z1, . . . , zN)φβ

i (z1, . . . , zN) = δβ
α. (4.4)

Proposition 4.4. A fundamental matrix for KZ(λ,−m) can be found as the transposed

inverse matrix to the fundamental matrix of KZ(λ,m) :

Φλ,−m(z1, . . . , zN) = (Φλ,m(z1, . . . , zN)−1)T .

The determinant of the fundamental matrix is given by

det Φλ,m(z1, . . . , zN) = C
∏
i<j

(zi − zj)2md+(λ), (4.5)

where C = C(λ,m) is a nonzero constant and d+(λ) = dim Wλ
+ is the dimension of the

fixed subspace of reflection sij acting in the representation Wλ. �

The first part is equivalent to (4.4). To prove the formula for the determinant we

can use the standard fact that if matrix Φ satisfies the differential equation Φ ′ = AΦ then

its determinant satisfies the equation det Φ ′ = trA det Φ. Applying this to the KZ equation

(1.1) and using the fact that tr(sij + 1) = 2d+(λ) we have the result. The formula (4.5)

shows that the singularities of Φλ,−m(z1, . . . , zN) are located on the hyperplanes zi = zj,

which of course follows also from the previous considerations.

In the rest of this section we discuss the topological interpretation of the du-

ality (4.3) as intersection pairing between certain homology groups. It is based on the
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integral formula for the solutions of the KZ equation found in our previous work [3] (see

section 4.5).

We restrict ourselves with the special case of the reflection representation of SN ,

which is the standard (N − 1)-dimensional irreducible representation on the hyperplane

x1 + · · · + xn = 0 in C
N defined by permutation of coordinates. This representation is

isomorphic to Wλ with λ = (N − 1, 1). For positive m our integrals giving the solutions

are one-dimensional and, in terms of the standard basis εb of CN , they have the form

ψa =
∏

1≤i<j≤N
(zi − zj)2mrest=za

N∏
i=1

(t − zi)−m
N∑

b=1

1
t − zb

εb dt, a = 1, . . . ,N.

They obey the relation ψ1 + · · ·+ψN = 0 and ψ1, . . . ,ψN−1 form a basis of the solution space

KZ(λ,m).

A different integral representation for the solution space KZ(λ,−m) for positive

m was found in [3], where it was shown that

φa =
∏

1≤i<j≤N
(zi − zj)−2m

∫ zN

za

N∏
i=1

(t − zi)m
N∑

b=1

1
t − zb

εb dt, a = 1, . . . ,N − 1

give a basis in KZ(λ,−m). In particular, in the case N = 3 we have after explicit evaluation

of the integrals the following basis:

φ1(z1, z2, z3) = z−2m
23

m∑
k=0

(−1)m+kd ′
m,k ((−m − k)vT + kvS) z−m−k

12 zk
13,

φ2(z1, z2, z3) = z−2m
13

m∑
k=0

d ′
m,k ((−m − k)vT + mvS) z−m−k

12 zk
23,

where

d ′
m,k =

(
m
k

)
(m − 1)!(m + k − 1)!

(2m + k)!
.

Thus, in a more invariant geometric terms, for λ = (N − 1, 1) and m ∈ Z>0, we

have two maps

ψ : H1(C � {z1, . . . , zN}) → Wλ, φ : H1(C, {z1, . . . , zN}) → Wλ,

sending horizontal sections for the Gauss–Manin connection to solutions in KZ(λ,m)

and in KZ(λ,−m), respectively. The map φ induces an isomorphism between the com-

plexification of the space of horizontal relative cycles and KZ(λ,−m), whereas ψ has a
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one-dimensional kernel spanned by a cycle surrounding all the points zi. This kernel is

exactly the complexification of the left kernel of the intersection pairing

H1(C � {z1, . . . , zN}) × H1(C, {z1, . . . , zN}) → Z,

and the right kernel is trivial. Since the intersection pairing of cycles is preserved by

the Gauss–Manin connection we obtain a nondegenerate SN-invariant pairing KZ(λ,m)×
KZ(λ,−m) → C.

The claim is that this pairing is proportional to the one described in Lemma 4.3.

Proposition 4.5. Let λ = (N − 1, 1) and m > 0. The pairing (4.3) of solution spaces

KZ(λ,m) and KZ(λ,−m) is proportional to the image of the intersection pairing (·). More

precisely, let σ ∈ H1(C � {z1, . . . , zN}), τ ∈ H1(C, {z1, . . . , zN}) vary with the points zi as

horizontal sections, then

〈ψσ(z1, . . . , zN),φτ (z1, . . . , zN)〉 = CN
1
m

(σ · τ ),

σ ∈ H1(C � {z1, . . . , zN}), τ ∈ H1(C, {z1, . . . , zN}),

for some constant CN �= 0 depending on the normalization of the isomorphism (Wλ)∗ →
Wλ. �

Proof. The proof follows from Schur’s lemma, except for the determination of the con-

stant of proportionality of the two pairings. To compute it, we consider two special cy-

cles, namely a small circle around z1 and a path from z1 to zN . These cycles have inter-

section number −1 and the corresponding solutions are ψ1 and φ1, respectively. It is suf-

ficient to compute the pairing when z1 = 0 in the limit zN → 0, where also φ1 is regular.

After the change of variable t = zNτ we obtain

ψ1(0, z2, . . . , zN−1, 0) = Fm resτ=0τ
−m(τ − 1)−m

(ε1

τ
+

εN

τ − 1

)
dτ ,

φ1(0, z2, . . . , zN−1, 0) = F−1
m

∫ 1

0
τm(τ − 1)m

(ε1

τ
+

εN

τ − 1

)
dτ ,

for some function Fm of z2, . . . , zN−1. By integrating by parts we see that the coefficient

of εN is minus the coefficient of ε1 (as it should be since the solutions take values in

primitive vectors). The result of the calculation is

ψ1(0, z2, . . . , zN−1, 0) = Fm (−1)m (2m − 1)!
m!(m − 1)!

(ε1 − εN),

φ1(0, z2, . . . , zN−1, 0) = F−1
m (−1)m m!(m − 1)!

(2m)!
(ε1 − εN).
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If we normalize the pairing Wλ × Wλ → C defining the isomorphism between Wλ and

(Wλ)∗ so that the basis εa is orthonormal, we obtain 〈ψ1,φ1〉 = 1/m. �

Note that since the cycles defining the bases ψa and φa are dual (up to sign) with

respect to the intersection pairing, we deduce

〈ψa(z1, . . . , zN),φb(z1, . . . , zN)〉 = −CN
1
m

δa,b,

where CN = −1 with the choice of normalization described in the proof.

Remark 4.6. We would like to mention that an extension of these results to the case

of general representations should involve a suitable replacement of relative homology.

The singularity as integration variables approach each other causes difficulties with the

naive generalization.
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