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Direct numerical simulations of the variable density and viscosity Navier–Stokes
equations are employed, in order to explore three-dimensional effects within
miscible displacements in horizontal Hele-Shaw cells. These simulations identify
a number of mechanisms concerning the interaction of viscous fingering with a
spanwise Rayleigh–Taylor instability. The dominant wavelength of the Rayleigh–Taylor
instability along the upper, gravitationally unstable side of the interface generally
is shorter than that of the fingering instability. This results in the formation of
plumes of the more viscous resident fluid not only in between neighbouring viscous
fingers, but also along the centre of fingers, thereby destroying their shoulders and
splitting them longitudinally. The streamwise vorticity dipoles forming as a result
of the spanwise Rayleigh–Taylor instability place viscous resident fluid in between
regions of less viscous, injected fluid, thereby resulting in the formation of gapwise
vorticity via the traditional, gap-averaged viscous fingering mechanism. This leads
to a strong spatial correlation of both vorticity components. For stronger density
contrasts, the streamwise vorticity component increases, while the gapwise component
is reduced, thus indicating a transition from viscously dominated to gravitationally
dominated displacements. Gap-averaged, time-dependent concentration profiles show
that variable density displacement fronts propagate more slowly than their constant
density counterparts. This indicates that the gravitational mixing results in a more
complete expulsion of the resident fluid from the Hele-Shaw cell. This observation
may be of interest in the context of enhanced oil recovery or carbon sequestration
applications.

Key words: buoyancy-driven instability, fingering instability, Hele-Shaw flows

1. Introduction
Hele-Shaw displacements have long served as models for corresponding porous

media flows, such as those encountered in enhanced oil recovery applications
(Homsy 1987). At the same time, Hele-Shaw flows have also been of interest within

† Email address for correspondence: meiburg@engineering.ucsb.edu
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the more fundamental context of pattern formation (Maxworthy 1987). Traditionally,
most efforts to model Hele-Shaw flows theoretically or computationally have been
two-dimensional in nature, based on Darcy’s law or its modifications (e.g. Saffman &
Taylor 1958; McLean & Saffman 1981; Meiburg & Homsy 1988).

For immiscible displacements, analytical approaches based on perturbation theory
have allowed us to gain some insight into the role of three-dimensional effects in the
vicinity of the interface (Park & Homsy 1984). For miscible displacements, on the
other hand, it has been more difficult to make progress in this regard, due to the
non-local effects of diffusion and dispersion (Taylor 1953; Petitjeans et al. 1999). The
last decade, however, has seen progress in terms of fully three-dimensional treatments
of miscible Hele-Shaw flows based on the Stokes or Navier–Stokes equations, both
in terms of linear stability analyses and most recently also with regard to nonlinear
simulations. The Stokes-based linear stability analysis by Graf, Meiburg & Härtel
(2002) was able to reproduce experimentally measured dispersion relations (Fernandez
et al. 2002) for miscible Rayleigh–Taylor instabilities in vertical Hele-Shaw cells
across several orders of magnitude in the Rayleigh number, whereas an equivalent
Darcy-based analysis gave approximately valid results only for small Rayleigh
numbers. Further comparisons between theoretical models and lattice-Boltzmann
simulations for this type of instability are provided by Martin, Rakotomalala &
Salin (2002). These Stokes-based linear stability results were subsequently extended
to variable density and viscosity displacements in vertical Hele-Shaw cells (Goyal
& Meiburg 2004; Goyal, Pichler & Meiburg 2007), cf. also the corresponding
experiments by Lajeunesse et al. (1997, 1999, 2001), and to constant density, variable
viscosity displacements in horizontal cells (Goyal & Meiburg 2006).

The effectiveness of the Hele-Shaw model has also been examined for shear flow
instabilities. Gondret & Rabaud (1997) used an Euler–Darcy equation to describe
Kelvin–Helmholtz instabilities in Hele-Shaw cells, while Plouraboué & Hinch (2002)
improved the linear stability results by basing their analysis on the Navier–Stokes
equations.

Very recent nonlinear, three-dimensional simulations of miscible Hele-Shaw
displacements by Oliveira & Meiburg (2011) revealed a novel inner splitting
mechanism of fully developed fingers, which is in contrast to the more familiar
tip-splitting mechanism observed by other authors (e.g. Tan & Homsy 1988). Oliveira
& Meiburg (2011) revisited the classical flow visualization images of Wooding (1969)
and found evidence of such inner splitting events in those experiments. This inner
splitting mechanism owes its existence to a quadrupole streamwise vorticity structure
along the length of the finger, which bisects the finger by transporting resident fluid
from the walls of the Hele-Shaw cell to the centre. Clearly, such flow structures are
three-dimensional in nature, and they cannot be obtained based on two-dimensional,
gap-averaged approaches.

Hallez & Magnaudet (2008) perform two- and three-dimensional Navier–Stokes
simulations to investigate gravitational mixing of two interpenetrating miscible fluids
placed in a tilted tube or channel. They show that differences between the two-
dimensional and three-dimensional geometries are associated with the dynamics of the
vorticity field. This configuration has been studied experimentally by Séon, Hulin &
Salin (2005), Séon et al. (2006, 2007).

The goal of the present investigation then is to investigate the role of gravity when
such miscible displacements are carried out for variable density fluids in horizontal
Hele-Shaw cells. Such flows are substantially more complex than their constant
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FIGURE 1. Schematic figure showing the problem geometry: injected fluid 1 (µ1, ρ1, c = 0)
displaces resident fluid 2 (µ2 > µ1, ρ2 > ρ1, c = 1) in the positive x-direction, driven by
Poiseuille inflow. Gravity acts in the negative y-direction. Solid walls form the top and bottom
boundaries, while symmetry conditions are assumed at the z-boundaries. The grey surface
denotes the c = 0.5 concentration contour, which can be considered a representation of the
miscible interface.

density counterparts, as they combine elements of viscously unstable displacements
with aspects of gravity currents (Simpson 1997; Hartel, Meiburg & Necker 2000),
cf. also related recent experiments in slightly inclined channels by Taghavi et al.
(2010, 2011a,b). A linear stability analysis by Talon, Goyal & Meiburg (2013) has
been carried out in parallel to the present, nonlinear investigation and is presented
separately in part 1 of this investigation. It demonstrates that the fingering instability
can be modified substantially by the effects of gravity, while novel, gravitationally
driven instabilities can appear at the predominantly horizontal interfaces between the
layer of resident fluid left behind on the wall and the injected fluid propagating along
the centre of the apparatus. Our interest in the present part 2 of this investigation will
focus on the nonlinear evolution of these instability mechanisms.

Towards this end, we first compute quasisteady two-dimensional base states, which
are subsequently disturbed along the spanwise direction in order to trigger viscous
fingering and Rayleigh–Taylor instabilities. Section 2 introduces the physical problem
and formulates the governing equations, whose solution is subsequently described
in § 3. Validation results are provided in § 4 in terms of the two-dimensional base
state properties and the early growth rates of their three-dimensional perturbations.
Section 5 focuses on the results of the investigation, first for the two-dimensional base
states, and subsequently for the fully three-dimensional displacements evolving from
these. In particular, we will identify and quantify novel mechanisms governing such
flows, and analyse them in terms of their vorticity dynamics. Finally, § 6 presents a
summary of the findings, along with the main conclusions.

2. Physical problem
We consider a horizontal Hele-Shaw cell of gap width b, in which fluid 1 displaces

fluid 2, with which it is fully miscible, cf. figure 1. The fluids have different viscosities
(µ1 < µ2) as well as different densities (ρ1 < ρ2). As a result of the unfavourable
viscosity ratio, we expect the displacement front to give rise to a fingering instability.
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Furthermore, there is the potential for additional gravitational instabilities to develop,
for example along the upper interface of the front, where denser resident fluid is
situated above lighter injected fluid.

2.1. Governing equations

Assuming incompressible flow, we employ as our governing equations for miscible
displacements the transient three-dimensional Navier–Stokes equations in the
Boussinesq approximation with variable viscosity, coupled to a convection–diffusion
equation for the concentration field. In non-dimensional form, they read

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= 1

Re

[
∂

∂xj
µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− ∂p

∂xi

]
− Fcδi2, (2.2)

∂c

∂t
+ uj

∂c

∂xj
= 1

Pe

∂

∂xj

∂c

∂xj
, (2.3)

where ui indicates the velocity component in the spatial direction xi, c denotes the
concentration of the resident fluid, D the (constant) diffusion coefficient and p the
pressure. Here δi2 represents the unit vector in the +y-direction. As characteristic
scales we employ the length l∗ = b, time t∗ = b/U, where U is the gap-averaged
inflow velocity, and pressure p∗ = µ2U/b, along with the smaller density ρ∗ = ρ1

and larger viscosity µ∗ = µ2. In this way, we obtain dimensionless parameters in
the form of a Reynolds number Re = Ub/ν2, gravity parameter F = 1ρgb/ρ1U2 and
Péclet number Pe = Ub/D. Note that the non-dimensionalization of Re is different
from that employed in Oliveira & Meiburg (2011), who analysed the neutrally
buoyant case. They used the smaller viscosity ν1 to define the Reynolds number Re′.
When comparing with these results, the conversion ratio of Re numbers is therefore
Re′ = eR ·Re, where R= lnµ2/µ1.

We assume that density is a linear function of the concentration

ρ(c)= ρ1 + c ·1ρ, 1ρ = ρ2 − ρ1, (2.4)

while viscosity varies with concentration according to

µ(c)= µ2eR·(c−1). (2.5)

Despite being much simpler to implement, this exponential dependence returns similar
results as the quarter power mixing rule frequently used by petroleum engineers
(Vanaparthy & Meiburg 2008). Based on the observation by those authors that a
concentration-dependent diffusion coefficient has a very small influence on such front
properties as their velocity or thickness, we employ a constant diffusion coefficient
throughout.

We closely follow Oliveira & Meiburg (2011) and Oliveira (2012) regarding
boundary and initial conditions and provide only a summary here. For the velocity
field, we impose no-slip conditions at the top and bottom walls, symmetric boundary
conditions at the spanwise boundaries and a Poiseuille profile at the streamwise inflow
boundary. At the streamwise end of the domain, convective outflow conditions are
implemented. The concentration field satisfies an error function across the streamwise
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FIGURE 2. Early evolution of the c = 0.5 contour for the two-dimensional base states
corresponding to the indicated values of F, and times t = 0.1, 0.5 and 0.9, R= 2.0, Re= e−2.0

and Pe= 2000.

direction

c(x, t = 0)= 1
2

(
1+ erf

(
x− 0.5

0.1

))
. (2.6)

Beginning at time t = 0, the prescribed Poiseuille flow results in the immediate
deformation of the initial concentration profile and in the emergence of a two-
dimensional base state in the form of a displacement front that propagates in the
x-direction along the interior of the cell, see figure 2.

Similarly to the constant density case, after a transient period the front of this
finger assumes a quasisteady shape in a moving reference frame. Consistent with the
Stokes flow observations by Goyal & Meiburg (2006) for the constant density case,
this quasisteady shape does not depend on the thickness of the initial error function
profile, so that we keep its value at 0.1 for all simulations. Regarding the negligible
influence of the initial interface thickness, cf. also the recent experiments by Aubertin
et al. (2009).

2.2. Disturbing the two-dimensional base state
In order to trigger a fully three-dimensional evolution, we disturb the quasisteady, two-
dimensional base state with a small amplitude, sinusoidal perturbation in the spanwise
z-direction at time t = 2.0. This perturbation effectively displaces the interface
either in the streamwise or in the vertical direction, as will be explained in detail
below.

For validation purposes, we would like to compare the growth rates of these
perturbations with results from the accompanying linear stability analysis of Talon
et al. (2013). As pointed out by those authors, two different types of dominant
perturbations can evolve, namely a viscously dominated mode along the front, and a
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Rayleigh–Taylor mode along the top interface. They presented separate sets of linear
growth rate results for each of these modes.

Within the fully nonlinear simulations, we attempt to trigger these different modes
by imposing one of the two following types of perturbations, which instantaneously
shift the concentration field at time t = tdist according to

cg(x, y, z)→ cg

(
x, y+ A cos

(
2π
λ

z

)
, z

)
, (2.7a)

cν(x, y, z)→ cν

(
x+ A cos

(
2π
λ

z

)
, y, z

)
. (2.7b)

Here A denotes the amplitude, typically O(10−3), and λ the wavelength, which is
chosen to be the one of maximum growth, as predicted by Talon et al. (2013) as
a function of (F, R, Pe). The perturbation cg displaces the interface alternatingly
upwards and downwards in the spanwise direction, which primarily triggers the
Rayleigh–Taylor instability mode along the upper interface. Conversely, cν displaces
the interface in the upstream and downstream directions, which results in the
preferential evolution of viscous fingering along the displacement front. In this way
we are able to obtain approximate growth rates separately for both of the dominant
instability modes from the fully nonlinear simulations, which can then be compared
with the respective linear stability results of Talon et al. (2013).

3. Numerical implementation
The numerical solution of the governing equations largely follows the approach

described by Oliveira & Meiburg (2011) and by Oliveira (2012), so that we provide
only a brief summary here.

The governing equations are solved directly on a staggered grid. They are
discretized spatially by second-order central differences, with a fifth-order WENO
scheme (Jiang & Peng 2000) employed for the derivatives of convective terms, due to
the presence of steep concentration gradients. The temporal integration is performed
using a fractional step method following Kim & Moin (1985). In the past, this method
was successfully combined with a three-step hybrid Runge–Kutta/Crank–Nicolson
(RK/CN) time integration scheme, for which convective and diffusive terms are treated
separately, using the explicit RK scheme for the convective and the implicit CN
scheme for the viscous terms, respectively, see Rai & Moin (1991). By explicitly
including the pressure gradient into the projection step, we solve the Poisson equation
using cosine transformations for a scalar related to pressure and make the projection
scheme more accurate.

3.1. Adaptive domain size
In order to improve on the efficiency of the simulation approach by Oliveira &
Meiburg (2011), we let the size of the computational domain grow with time. This
allows us to employ relatively small domain sizes during the early stages of the
simulation, so that we do not spend a large amount of numerical effort on those
sections far downstream of the front where the flow is essentially of Poiseuille
type. Making use of the existing parallel implementation the adaptive domain size
algorithm interrupts the simulation well before the displacement front reaches the
outflow boundary. The domain size is then increased by adding a new subdomain
initially containing Poiseuille flow. In this fashion, the average domain size over the
duration of the entire simulation is approximately halved.
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FIGURE 3. Velocity of the front dxtip/dt and front elevation ytip (—) as a function of time for
various F, R = 2.5, Pe = 2000 and Re = e−2.5. The Stokes flow results of Talon et al. (2013)
are shown for comparison (- - -).

4. Validation
4.1. Front properties

A first validation step focuses on the properties of the two-dimensional base states.
We remark that the two-dimensional simulations presented in the current work were
carried out with the three-dimensional code, by keeping only three grid points in the
spanwise direction. Those, when combined with the ghost nodes, provide the minimum
stencil necessary for the WENO discretization. The finger tip {xtip, ytip} is defined as
the rightmost point of the c = 0.5 contour, which is accurately determined by means
of two-dimensional spline interpolation between the grid points. Bearing in mind that
for F 6= 0 the flow is not symmetric in the y-direction, we always found a unique
value for ytip. For a small value of Re = e−2.5, figure 3 shows the velocity of the
tip dxtip/dt along with the vertical elevation of the tip ytip for various F, during the
early stages of the flow as the quasisteady base state develops. The Stokes flow results
reported by Talon et al. (2013) are given for comparison. We remark that we generated
a Navier–Stokes simulation code instead of a Stokes flow code, since we eventually
plan to explore the effects of inertia at higher Reynolds numbers. However, in the
present analysis we kept Re small enough so that inertial effects are negligible. This
is confirmed by the good agreement with the results of Talon et al. (2013), which are
based on the Stokes equations. Analogous front velocity results were obtained for the
dependence on R and Pe, for various F-values. The errors for the velocities and the
front elevations generally are of O(10−2) or less, for all F and times. This represents
satisfactory agreement, when taking into account that an entirely different numerical
environment was used, and that the present Navier–Stokes results are compared with
the Stokes values of Talon et al. (2013).

4.2. Instability growth rates
A subsequent second validation step was performed by evaluating the linear growth
rates σ during the early three-dimensional stages, for both the viscous fingering
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F R σ νT σ νwmax
εw (%) σ νΩx

εΩ (%)

60 3.0 0.935 0.730 −21.9
60 2.5 0.698 0.562 −24.6 0.646 −7.5
60 2.0 0.418 0.340 −18.7 0.418 −10.1
40 3.0 0.865 0.782 −9.6
40 2.5 0.652 0.565 −13.3
40 2.0 0.407 0.374 −8.1 0.371 −8.9
20 3.0 0.788 0.813 3.2
20 2.5 0.614
20 2.0 0.392 0.371 −5.4 0.375 −4.3

TABLE 1. Computationally evaluated growth rates σ νwmax
of the viscously most unstable

mode, determined from the maximum spanwise velocity wmax near the finger tip and σ νΩx
as determined from the maximum streamwise vorticity in the entire domain, for Pe= 2000
and Re = e−R. The linear stability analysis results σ νT of Talon et al. (2013) are given for
comparison, with ε indicating the relative error.

F R σ
g
T σ g

wmax
εw (%)

60 3.0 1.723 1.709 −0.8
60 2.5 1.374 1.468 6.8
60 2.0 1.106 1.076 −2.7
40 3.0 1.202 1.236 2.8
40 2.5 0.988 0.959 −2.9
40 2.0 0.827 0.828 0.1
20 3.0 0.651 0.664 2.0
20 2.5 0.554 0.539 −2.7
20 2.0 0.488 0.456 −6.6

TABLE 2. Computationally evaluated growth rates σ g
wmax

of the gravitationally most
unstable mode, determined from the maximum spanwise velocity wmax at the upper c= 0.5
concentration contour of the finger, compared with the linear stability analysis results σ g

T of
Talon et al. (2013).

instability at the displacement front and the gravitational instability at the upper
interface. To obtain the growth rate, we recorded the maximum spanwise velocity
as a function of time throughout the simulation, either in a sufficiently large control
volume around the displacement front, or along the upper c = 0.5 contour. As an
alternative, we also recorded the maximum streamwise vorticity within the entire
domain. Continuous loci of the maxima were found, and exponential growth could
be observed over a moderately long time interval (typically 5–10 units of time) for
most values of F and R. Where unique values were found, the data so obtained are
compared with the linear stability results of Talon et al. (2013) in table 1 for the
viscous instability and in table 2 for the gravitational instability. Typical errors for the
growth rate of the viscous instability range from O(5 %) for moderate values of the
gravity parameter F ≈ 20, to O(20 %) for F = 60. For the gravitational instability, we
see good agreement across the entire range of F-values, with errors of O(5 %).
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5. Results
In the following, we focus on the influence of F on the nonlinear dynamics and

pattern formation of miscible fingering in horizontal displacements. For this purpose,
we hold the remaining governing parameters constant at the values M = 2, Re = e−2

and Pe= 2000. The F-value ranges from F = 0 to a maximum of F = 60.

5.1. Two-dimensional base state
5.1.1. Long-term evolution of front velocity and elevation

As we saw earlier in figures 2 and 3, larger gravity numbers F result in increasingly
elevated quasisteady displacement fronts, which are associated with more pronounced
interface curvature and an initially faster streamwise front velocity. Beyond the
quasisteady state shown in figure 3, however, the displacement front gradually slows
down and moves towards the centreline of the channel. Interestingly, for long times
the early trend reverses, in that larger F-values result in slower displacement fronts,
cf. figure 4(b), which shows the long-term behaviour of the front velocity dxtip/dt.
For comparison, the velocity at the front utip = u(xtip, ytip) is shown in figure 4(c). As
discussed by Oliveira & Meiburg (2011), whenever dxtip/dt is larger (smaller) than utip,
fluid particles will cross the interface from right (left) to left (right).

In the neutrally buoyant case the maximum streamwise fluid velocity is found at
the midgap position. Owing to the loss of vertical symmetry due to density difference
effects for non-zero F-values, the location of the utip-maximum across the gap can
now lie above y = ytip. Furthermore, we observe that beyond t = 30 the tip elevation
ytip for the case F = 60 abruptly rises, with smaller F-values showing a similar trend
at somewhat later times. We now proceed to discuss the mechanisms governing this
unexpected behaviour.

5.1.2. Two-dimensional pinch-off mechanisms
We now describe two phenomena that can affect the two-dimensional evolution of

the displacement front for long times. The first is shown in figure 5 for a constant
density displacement. In these figures, we recognize that the tip itself still contains
some relatively undiluted less viscous fluid. However, immediately behind the tip, the
concentration contours from opposite sides of the finger approach each other and
successively pinch off. We also note that there is substantial vorticity present along
the entire length of the finger. However, this spanwise vorticity has a predominantly
layered structure, so that it mostly promotes the transport of undiluted injected fluid in
the x-direction, towards the front. The small vorticity peak within the finger tip near
x = 80 augments this transport of injected fluid into the tip of the front. At the same
time, it also tends to favour the transport of resident fluid from the walls towards the
centre immediately behind the finger tip. We hence term this phenomenon ‘dispersive
pinch-off’.

Figure 6 displays the value of the vorticity maximum within the vortex immediately
behind the tip, as a function of time. It demonstrates that the vorticity transiently
grows and reaches a maximum soon after the base state forms, but then declines
monotonically with time. Furthermore, as gravitational effects become important, the
strength of this vortex increases.

Figure 7 shows a fundamentally different pinch-off mechanism, which we term
‘gravitational pinch-off’. It occurs much farther behind the tip than the dispersive
pinch-off. We observe the sinking of a large amount of heavy fluid over an extended
x-interval, which effectively separates the tip of the displacement front from the bulk
of the finger. The sinking of heavy fluid from the top wall allows the separated
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(a)

(b)

(c)
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FIGURE 4. Long-time behaviour of two-dimensional base flows: ytip, dxtip/dt and utip for
various F. The raw data are smoothed by taking mean values over a moving window of 0.5
units of time. Here Pe= 2000, R= 2.0 and Re= e−2.0. Beyond t > 5 larger F-values are seen
to result in slower displacement fronts. Beyond t > 30, the tip elevation of the front abruptly
rises for F = 60, as explained in the text. (b,c) Comparison of the velocity of the tip (dxtip/dt)
and the fluid velocity at the tip (utip), respectively. Fluid particles cross the interface from
right (left) to left (right) if dxtip/dt is larger (smaller) than utip.

finger tip to rise into the space vacated by this heavy fluid, which explains the abrupt
increase in the tip elevation that we saw in figure 4. Simultaneously, the tip slows
down, as it is effectively cut off from the continued supply of fresh injected fluid,
again in agreement with the front velocity data shown in figure 4.

Figure 8 summarizes the findings on dispersive and gravitational pinch-off. It
shows the times until individual contour levels undergo pinch-off, as function of
the gravitational parameter F. The process by which the lower concentration levels
split shows little dependence on F, indicating that it is dispersively dominated. By
comparison, gravitational effects have only a weak influence. However, we notice a
slight delay in pinch-off time for larger F-values, which is related to the increasing
strength of the vortex immediately behind the front, as seen in figure 6. The change
in slope near c≈ 0.35 for F = 60 signals the transition from dispersive to gravitational
pinch-off. Within the simulation times investigated here, the highest concentration
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(a)

(b)

FIGURE 5. Dispersive pinch-off of the concentration contours immediately behind the finger
tip. (a) Concentration field (1c = 0.1) in grey levels and contour lines of vorticity after the
base Poiseuille flow has been subtracted out. Positive vorticity is represented by continuous
lines and negative vorticity by dashed ones. (b) Black contours show the concentration field
and grey arrows represent the velocity field, after the base Poiseuille flow has been subtracted
out. Time t = 50, the parameter values are F = 0, R = 2.0, Re = e−2.0 and Pe = 2000. Here,
the c= 0.2 contour has already pinched off, and the c= 0.3 contour is about to pinch off near
x= 80, cf. also figure 8 for the pinch-off times of the concentration contours.

55

t

 2
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4

5
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7

8

0 5 10 15 20 25 30 35 40 45 50

FIGURE 6. Maximum vorticity within the vortex immediately behind and above the tip, as a
function of time and for various F. The other parameter values are R = 2.0, Re = e−2.0 and
Pe= 2000.

levels did not undergo pinch-off for low values of F, so that we observed gravitational
pinch-off only for F = 60.

5.2. Three-dimensional flows
For three-dimensional flow simulations, we choose the spanwise domain size equal
to the wavelength of the most amplified viscous mode. Since the wavelength of the
gravitational mode is typically significantly shorter than that of the viscous mode,
this domain size will allow for gravitational modes to evolve as well. To trigger the
three-dimensional evolution, we introduce at t = 2 a disturbance of the viscous type cν
(see (2.7)) with amplitude A= 0.03.

5.2.1. Cavity formation, tip velocity and elevation
Figure 9 shows a representative case of a three-dimensional flow. We can clearly

recognize that the gravitational term has resulted in a loss of the up–down symmetry
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FIGURE 7. Gravitationally dominated pinch-off of the concentration contours far behind the
finger tip. (a) Grey levels of the concentration field (1c = 0.1) and contour lines of vorticity
after the base Poiseuille flow has been subtracted out. Positive vorticity is represented by
continuous lines, and negative vorticity by dashed ones. (b) Concentration contours (black
lines) and velocity field after the base Poiseuille flow has been subtracted out. Time t = 71.0,
the parameter values are F = 60, R= 2.0, Re= e−2.0 and Pe= 2000. The c= 0.4 contour has
already pinched off and the c = 0.5 is about to pinch off near x = 84, cf. also figure 8 for the
pinch-off times.

 

 

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7
c

FIGURE 8. Pinch-off times of concentration contours as function of F, for R = 2.0,
Re = e−2.0 and Pe = 2000. The lower concentration levels pinch off primarily as a result
of dispersive pinching, whereas gravitational effects are responsible for the pinch-off of the
larger concentration levels.

about the y = 0 plane. While the top surface shows a pronounced, elongated cavity
along z = 0 in the region 15 < x < 27, no such cavity exists on the lower surface of
the finger, which is gravitationally stable due to the presence of lighter fluid above
denser fluid.

The origin of this cavity becomes clear from the x = const. cross-cut shown in
figure 10. This figure displays the concentration field (in grey shading) along with
a projection of the velocity field onto the x = const. plane. It demonstrates that the
cavity formation is associated with a negatively buoyant plume of the denser fluid near
z = 0, which is propelled downwards by a streamwise vortex dipole and thus bisects
the finger lengthwise. This process is a clear manifestation of a Rayleigh–Taylor
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FIGURE 9. (Colour online) Representative three-dimensional flow evolution, for F = 20,
R = 2.0, Re = e−2.0 and Pe = 2000. Shown is the c = 0.5 contour at t = 20. A gravitational
cavity forms near z= 0 in the interval 15< x< 27, as a result of heavier resident fluid sinking
into the lighter, less viscous finger body.
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–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
z

FIGURE 10. Cross-sectional view of the concentration and velocity fields at x = 22, for the
flow shown in figure 9. The inner cavity forms as a negatively buoyant plume sinks near z= 0,
propelled by a vortex dipole.

instability in the spanwise direction, as investigated in the linear stability analysis of
Talon et al. (2013). Those authors show that a spanwise Rayleigh–Taylor instability
along the upper side of a displacement front typically has a most amplified wavelength
that is several times shorter than the dominant wavelength of the viscous fingering
instability. Hence, we expect to see more than one wavelength of the Rayleigh–Taylor
instability within one viscous fingering wavelength. This is consistent with the present
observation of a Rayleigh–Taylor instability wavelength half as long as the viscous
fingering instability wavelength, so that negatively buoyant plumes form at z = −Lz/2,
z = 0 and z = Lz/2. Note that the gravitational splitting is a three-dimensional effect
associated with the spanwise direction, as opposed to the gravitational pinch-off
described earlier, which occurs even in the two-dimensional base flow.

We remark that the present, gravitational splitting is fundamentally different from
the inner splitting described by Oliveira & Meiburg (2011) for constant density
displacements. In those flows, a pronounced quadrupole streamwise vorticity structure
forms which convects resident fluid from the walls to the centre in a symmetric
fashion, thereby resulting in a splitting event. When gravitational forces become
important, this streamwise vorticity quadrupole gives way to the dipole structure near
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FIGURE 11. (Colour online) Three-dimensional perspective showing the c = 0.5
concentration contour for F = 60, R = 2.5, Re = e−2.5 and Pe = 2000 at time t = 8.1. Note
that two additional cavities appear behind the cavity being formed near x= 10.

the centre of the cell shown in figure 10, which leads to an asymmetric splitting. It
appears possible that for flows such as that shown in figure 9 these two splitting
mechanisms may amplify each other, since the gravitational dipole structure is of the
same sign and in approximately the same location as one half of the quadrupole
structure in the constant density displacement. However, for other values of F it
is possible that the ratio of the dominant Rayleigh–Taylor and viscous fingering
instability wavelengths will be such that not one, but multiple cavities might form
on the upper side of the front (see figure 11). For those cases, the amplification of the
gravitational splitting by the constant density inner splitting becomes dependent on the
streamwise position and the number of gravitational cavities.

We emphasize that for the flows reported in this section, the imposed perturbation
primarily triggers the viscous instability. Early on, the viscous mode dominates and
establishes the finger, and it allows for vertical fluid transport in the gaps between
neighbouring fingers. The gravitational mode then develops on top of that, and since
there is already vertical fluid transport occurring in the gap between neighbouring
fingers, those wavenumbers of the gravitational mode that are a multiple of the viscous
mode are preferred.

The gravitational splitting mechanism provides the dense fluid above the viscous
finger with a more direct path to escape from the near-wall region than having to
move laterally all of the way around the sides of the viscous finger. As the dense
fluid from above the finger moves downward through the cavity, the buoyant viscous
finger is able to rise towards the top wall into the space vacated by the dense fluid.
Figure 12(a) shows the resulting sudden and rapid increase of the front elevation
ytip for different values of F. As expected, larger values of F result in earlier cavity
formation, so that the dense fluid above the finger can escape more rapidly and the
front rises earlier. From the front velocity data shown in figure 12(b), we see that the
front generally slows down as it rises and approaches the wall, which enhances the
overall displacement efficiency.

5.2.2. Shoulder deformation
We define the shoulder of the finger as the region near the lateral symmetry

boundaries z = ±Lz/2 where neighbouring fingers initially are connected, i.e. where
initially c < 0.5. As we saw above in figure 10, negatively buoyant plumes of the
heavier, more viscous fluid also form in these shoulder regions. In fact, they form
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FIGURE 12. Tip elevation ytip and velocity at the front utip as functions of F, for R = 2.0,
Re = e−2.0 and Pe = 2000. The tip elevation is seen to rise abruptly, as a result of the
gravitational cavity formation. A comparison with the two-dimensional results of figure 4
shows that the finger tip moves faster than the corresponding two-dimensional displacement
front.

more rapidly at the shoulders of the fingers than near z = 0 because at the shoulder
the viscous fingering instability also leads to a thinning of the displacement front,
so that the two instabilities locally amplify each other. The three-dimensional view
in figure 13, along with the cross-cuts shown in figure 14(a,b) indicate that these
sinking plumes can destroy the shoulders, i.e. sever the c = 0.5 contour at the lateral
domain boundaries z = ±Lz/2, thereby effectively disconnecting neighbouring fingers.
We recognize that the fingers are still connected at t = 7, while they have become
disconnected at the lateral boundaries in the interval 9< x< 11 at t = 7.5.

In fact, it appears possible for the negatively buoyant plumes that form the inner
cavities and destroy the shoulders to generate finger-like flow patterns even in the
absence of an unfavourable viscosity contrast. If the two fluids have equal viscosities,
the two-dimensional base state will consist of a Poiseuille flow modified by buoyancy
forces. The spanwise Rayleigh–Taylor instability will then generate negatively buoyant
plumes that cut through this two-dimensional displacement front at regular spanwise
intervals, thereby dividing it up into periodic finger-like flow structures.

We note that by destroying the shoulder connecting neighbouring fingers, the
gravitational instability can drastically increase the effective length of individual
fingers. This hints at a very interesting interplay between the gapwise vorticity that
creates the viscous fingers in the first place and the streamwise vorticity associated
with the sinking plumes that makes them longer by disconnecting them from their
neighbours at the root. Properties of the vorticity field will be discussed in more detail
below.

Occasionally, the opposite effect can also occur and two disconnected fingers can
become reconnected across the lateral symmetry boundaries some distance downstream
of the shoulder, as a result of spanwise fluid motion within the fingers. During this
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FIGURE 13. (Colour online) Shoulder destruction by negatively buoyant plumes of the dense
resident fluid near the lateral domain boundaries z=±Lz/2: (a) t = 7.0, neighbouring fingers
are still connected at the domain boundary; (b) t = 7.5, neighbouring fingers have become
disconnected by the sinking plume in the region 9 < x < 11. Shown are the c = 0.5 contours
for F = 60, R= 2.0, Re= e−2.0 and Pe= 2000.
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FIGURE 14. Concentration contours c = 0.1, 0.5 and 0.9 and the (v,w)-velocity field at
x = 10, for the flow shown in figure 13: (a) t = 7.0, the c = 0.5 contours are still connected
across the lateral symmetry boundaries at z = ±Lz/2; (b) t = 7.5, the sinking plume of dense
fluid has severed the c= 0.5 contours at the lateral boundaries, thus effectively disconnecting
neighbouring fingers.

process, some of the resident fluid may get trapped in between the original shoulder
location and the newly formed connection between the neighbouring fingers. Without
providing detailed data, we just remark that such trapping was primarily observed for
larger F-values.

5.2.3. Three-dimensional finger tip deformation
We now discuss aspects of the three-dimensional finger tip shape and how this

is being affected by density differences. To illustrate the substantial influence that
gravitational effects can have on the shape of the finger tip, figure 15 shows
concentration contours within the planes y = ytip(F, t), for a variety of F-values and
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FIGURE 15. Concentration contours c = 0.1, 0.3 and 0.5 within the planes y = ytip(F, t)
for various F-values and times. The other parameter values are R = 2.0, Pe = 2000 and
Re = e−2.0. Purely viscously driven fingers favour a round tip shape, while gravitational
effects result in a flatter shape of the finger tip.

different times. While the purely viscous instability tends to form round finger tips,
increasing values of F result in blunter, squared off tip shapes. Also note that the
tip velocity is reduced substantially for larger F, which indicates an overall higher
displacement efficiency. This important global property will be discussed in more
detail below, in the context of the time-dependent cross-section averaged concentration
profiles.

Figure 16 presents longitudinal cross-cuts of fingers in the symmetry plane z = 0,
for a variety of F-values and times. Both for small F and large times, as well as for
large F and small times, a ‘droplet’-like structure can be observed at the very tip of
the finger, located on its lower side. However, within the different F-regimes these
structures owe their existence to different mechanisms. The droplet seen on the lower
side of the finger tip for F = 5 at t = 25 is a result of the three-dimensional analogue
of the dispersive pinch-off described earlier for F = 0, cf. figure 5. For the present,
small but non-zero F-values this pinch-off has lost its top–bottom symmetry, so that
the droplet-like structure appears only on the lower side of the finger tip.

On the other hand, the droplet observed for F = 60 at t = 10 is a result of
gravitational forces, which tend to lift the upstream sections of buoyant finger
while the finger tip tends to move down towards the higher velocity region at the
centre of the cell. The upward indentation behind the droplet resembles the ‘dimple’
described by Vanaparthy & Meiburg (2008) in their three-dimensional capillary tube
displacement simulations for F 6= 0. Those authors speculated that this dimple might
be a precursor of a longitudinal splitting along the symmetry plane of the finger, as
observed in the experiments of Petitjeans & Maxworthy (1996). However, they could
not run their simulations for sufficiently long times to fully describe the subsequent
evolution. In the present, Hele-Shaw cell simulations this dimple disappears with time,
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FIGURE 16. Longitudinal cross-cuts of fingers at the symmetry plane z = 0, for various F-
values and times. The other parameter values are R = 2.0, Re = e−2.0 and Pe = 2000. Shown
are the concentration contours c= 0.1, 0.3 and 0.5.
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FIGURE 17. (Colour online) Long-time behaviour of the three-dimensional finger for
R = 2.0, Pe = 2000, Re = e−2.0 and F = 60: (a) t = 15, the upper interface being diffused
away; (b) t = 43, the final quasisteady configuration after the cavity has bisected the tip.

as it is overwhelmed by the formation of a large inner cavity in the z = 0 symmetry
plane, as shown for F = 60 and t = 25 and described in detail earlier.

5.2.4. Long-time behaviour
As detailed above, for F = 60 the shoulder destruction occurs near t = 7 and around

time t = 10 the gravitational cavity starts to develop. Figure 17 shows the c = 0.5
contour at later times. By t = 15 it has risen close to the top wall and even later it
no longer exists near the top wall. By contrast, near the lower wall it still resembles a
traditional fingering interface. The cavity has moved downstream and bisected the tip,
as shown in figure 17(b) at t = 43.
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FIGURE 18. Isosurface of concentration c = 0.5 (light grey) and vorticity isosurfaces
superimposed, for F = 20, R = 2.0, Re = e−2.0 and Pe = 2000 at t = 13.5: (a) streamwise
vorticity contours (dark grey +2.0, transparent −2.0); (b) gapwise vorticity contours (dark
grey +2.25, transparent −2.25). Note the strong spatial correlation of streamwise and
gapwise vorticity, both within the A vortices near 18 < x < 22 and in the shoulder vortices
near 16< x< 18.

Interestingly, the two-dimensional shape of figure 7 presents a remarkably different
behaviour. After the gravitational pinch-off takes place, the c = 0.5 contour remains
intact near the upper and lower walls, suggesting that the pinching mechanism could
be repeated later on. For three-dimensional dynamics, on the other hand, a second
pinch-off would seem unlikely to occur.

5.3. Vorticity dynamics

We now discuss properties of the streamwise and gapwise vorticity components
obtained by taking the curl of the velocity field. For the case F = 20, R = 2,
Re = e−2.0 and Pe = 2000, figure 18 shows streamwise and gapwise vorticity contours
at the early time t = 13.5. The strong spatial correlation of these two vorticity
components is striking. The streamwise vorticity dipole closer to the front of the finger,
approximately in the interval 18 < x < 22, which we call A vortices, is associated
with the negatively buoyant plume of sinking resident fluid that forms in between
neighbouring fingers as a result of the Rayleigh–Taylor instability, as discussed
earlier. These plumes place viscous, resident fluid in between neighbouring fingers
of less viscous, injected fluid, thereby generating z-gradients in the viscosity. This, in
turn, will immediately trigger the production of gapwise vorticity due to the viscous
fingering instability mechanism. Hence, streamwise and gapwise vorticity coexists in
approximately the same location. The same mechanism is at work further upstream,
forming shoulder vortices in the region near 15 < x < 18. Note that the resulting
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FIGURE 19. Isosurface of concentration c = 0.5 (light grey) and vorticity isosurfaces
superimposed, for F = 20, R = 2.0, Re = e−2.0, Pe = 2000 at t = 20.0. Inner vortices clearly
visible around cavity for both of the components: (a) streamwise vorticity (dark grey +1.5,
transparent −1.5) and (b) gapwise vorticity (dark grey +1.7, transparent −1.7). The rear of
the A vorticity branch meets the front part of the inner vortices at the location x≈ 25.

dipole structure of the vorticity field is fundamentally different from the quadrupole
structure observed by Oliveira & Meiburg (2011) for neutrally buoyant displacements.

Above we had seen that the cavity dipole near z = 0 forms somewhat later in time
than the dipole near the lateral symmetry boundaries z = ±Lz/2. This observation is
consistent with figure 19(a), which shows that for the same flow as in figure 18 a
streamwise cavity dipole has formed by t = 20, in the region 19 < x < 25, which
we call inner vorticity. As the cavity forms, viscous resident fluid is again placed in
between regions of less viscous injected fluid, so that the viscous fingering mechanism
immediately results in the production of gapwise vorticity in approximately the same
location, as seen in figure 19(b).

Further information on how changes in F affect the flow field is provided by the
x = const. cross-cuts shown in figure 20 (F = 10) and figure 21 (F = 60). For the
lower F-value, we find that as the tip approaches a certain x-location, it pushes
the resident fluid radially outwards in a source flow-like fashion that maintains an
approximate top–bottom symmetry and resembles the F = 0 case analysed by Oliveira
& Meiburg (2011). However, while Oliveira & Meiburg (2011) observed a quadrupole
streamwise vorticity structure behind the front for F = 0, we find that even for the
low value of F = 10 gravity forms a dominant dipole structure near the emerging
cavity at z = 0, along with counterrotating shoulder vortices near the lateral symmetry
boundaries. For the larger value of F = 60, gravity’s strong influence is already felt
right at the finger tip. The finger tip itself is lifted above the centre plane y = 0, and
the flow in its vicinity represents a combination of source flow and dipole vortex, cf.
the cross-cut in figure 21(d). Some distance behind the front, we again recognize the
formation of a cavity by a strong vortex dipole, along with counterrotating shoulder
vortices near the lateral boundaries.

5.3.1. Global vorticity dynamics
In order to identify the dominant features associated with the global dynamics of

the vorticity field, it is useful to move beyond a description of the detailed, local
aspects of the time-dependent vorticity field. For this purpose, we now focus on
the spatiotemporal evolution of averaged quantities. More specifically, we consider
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FIGURE 20. Three-dimensional flow evolution for F = 10, R = 2.0, Re = e−2.0 and Pe =
2000 at time t = 25.0: (a) concentration contours c = 0.1, 0.5 and 0.9 in the symmetry
plane z = 0; (b) the same concentration contours within the plane of the tip y = ytip; (c,d)
concentration field and (v,w)-velocity vectors at different streamwise locations, (c) cut
through the cavity at x= 32.5 and (d) cut near the finger tip at x= 42.0.

the (y, z)-averages of the magnitude of the streamwise and gapwise vorticity
components, as functions of x and t.

Figure 22(a) shows the averaged streamwise vorticity magnitude 〈|Ωx|〉y,z(x, t) for
the relatively low-gravity parameter value of F = 5, while figure 22(b) provides
corresponding information for the average gapwise vorticity magnitude 〈|Ωy|〉y,z(x, t).
The striking similarity between the two figures is consistent with our earlier
observation that there exists a strong spatial correlation between these two vorticity
components. Both figures indicate the existence of a main vorticity ‘front’ associated
with the A vortices that accompany the advancing finger tip. A secondary front, which
originates from approximately the same (x, t)-location, signifies the influence of the
shoulder vortices described above. Clearly, these shoulder vortices advance at a lower
streamwise velocity as compared with the A vortices. The (x, t)-origin of these two
vortex families is determined by the time and x-location at which the two-dimensional
base state is first disturbed. The essence of the above information is summarized in the
schematic figure 22(c).
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FIGURE 21. Three-dimensional flow evolution for F = 60, R = 2.0, Re = e−2.0 and Pe =
2000 at time t = 10.5: (a) concentration contours c = 0.1, 0.5 and 0.9 in the symmetry
plane z = 0; (b) the same concentration contours within the plane of the tip y = ytip;
(c,d) concentration field and (v,w)- velocity vectors at different streamwise locations, (c) cut
through the cavity at x= 12.0 and (d) cut near the finger tip at x= 17.5.
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FIGURE 22. Contour plots of the (y, z)-averaged magnitude of the streamwise and gapwise
vorticity components, for R = 2.0, Re = e−2.0, Pe = 2000 and F = 5 (a–c) and F = 60
(d–f ). (a,d) Streamwise component 〈|Ωx|〉y,z(x, t). (b,e) Gapwise component 〈|Ωy|〉y,z(x, t).
(c,f ) Schematic representation. By focusing on the locations where the vorticity has a
maximum in the (x, t)-plane, it indicates that the pattern formation is associated with the
vorticity dynamics.

Corresponding information for a flow with a larger gravity parameter value of
F = 60 is provided in figure 22(d–f ). At this larger value of F, the tendency of gravity
to form pronounced shoulder vortices is much stronger than for the lower F-value.
In fact, the generation mechanism for the shoulder vortices is so strong that they are
not being swept downstream, but rather remain anchored to the location where they
first originate. Furthermore, the formation of a cavity near z = 0 is observed as well,
associated with a dipole of inner vortices. Owing to the strong influence of gravity,
this cavity grows rapidly in length. While its leading edge moves at approximately
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FIGURE 23. The (y, z)-averaged concentration profiles for R = 2.0, Re = e−2.0 and Pe =
2000: (a,c) F = 0, (b,d) F = 60. (a,b) Two-dimensional simulations at times t = 0, 5,
10, . . . , 65. (c,d) Three-dimensional simulations at times t = 0, 3, 6, . . . , 27. For both two-
and three-dimensional displacements, the variable density fronts propagate more slowly than
the constant density ones, indicating that a higher fraction of the resident fluid is being
displaced in the variable density flows.

the same velocity as the finger tip, its trailing edge even moves slightly upstream.
Note that gravitational instabilities may form additional, smaller cavities in the upper
interface at later times, as indicated by points d and e in the schematic figure 22(f ).

We remark that it is not meaningful to draw corresponding figures for the spanwise
vorticity component, which is dominated by the Poiseuille base flow component.

5.4. Cross-section averaged concentration profiles
Figure 23 displays (y, z)-averaged concentration profiles cavg(x, t) for four different
simulations with R = 2.0, Re = e−2.0 and Pe = 2000. Figure 23(a,c) show the
neutrally buoyant case F = 0, while figure 23(b,d) are for F = 60. Two-dimensional
simulation results are given in figure 23(a,c), with figure 23(b,d) presenting their three-
dimensional counterparts. The two-dimensional, neutrally buoyant results show the
formation of a steep shock at the front, consistent with the observations by Lajeunesse
et al. (1997, 1999). The local minimum immediately behind the front reflects the
dispersive pinch-off discussed earlier. The two-dimensional results for F = 60 display
no such minimum, reflecting the absence of pinch-off. In three dimensions for F = 0,
both the shoulder as a result of the finger formation, and also the effects of the
pinch-off at the finger tip are clearly visible. In the three-dimensional simulation
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FIGURE 24. Maximum values (—), and interpolated curves (· · ·): (a) streamwise vorticity
component maxx(〈|Ωx|〉Ay,z(F, t)); (b) gapwise vorticity component maxx(〈|Ωy|〉Ay,z(F, t)) for
various F, R= 2.0, Re= e−2.0 and Pe= 2000.

for F = 60, all of these features get smoothed out somewhat, due to intense mixing
of the two fluids in much of the x-domain. Note that the three-dimensional front for
F = 60 moves significantly more slowly than for the corresponding neutrally buoyant
case, cf. also figure 15. This demonstrates the higher overall displacement efficiency
of the F = 60 case, indicating that the resident fluid is driven out of the Hele-Shaw
cell more completely for variable density displacements than for neutrally buoyant
cases. This observation is potentially significant for those applications in enhanced
oil recovery for which displacements within hydraulically opened fractures play an
important role.

5.5. Transition from viscous finger tip to gravitational finger tip
The viscous fingering instability leads primarily to the formation of gapwise vorticity,
while gravity is the main driver responsible for the generation of streamwise vorticity.
Hence, a comparison of the two components can determine which of the two effects
dominates. To this end, figure 24 provides data for the A vortices, as a function
of time and F. Specifically, figure 24(a) shows the transient growth and decay of
the maximum value (over x) of the (y, z)-averaged streamwise vorticity magnitude,
maxx(〈|Ωx|〉Ay,z)(t). Figure 24(b) indicates corresponding information for the maximum
value of the (y, z)-averaged gapwise vorticity magnitude, maxx(〈|Ωy|〉Ay,z)(t). Near
locations where vortex branching occurs, it was occasionally not possible to identify a
maximum of the A vorticity, so that we fitted the curve by using interpolation.

In general, larger gravity numbers result in stronger streamwise and weaker gapwise
vorticity components. The temporal evolution of both components is qualitatively
similar for all F-values, displaying transient growth followed by monotonic decay.
We define the ratio a(F, t) of the two maximum values as

a(F, t)= maxx(〈|Ωy|〉Ay,z(x, t,F))

maxx(〈|Ωx|〉Ay,z(x, t,F))
. (5.1)

We remark that the limits of a for purely viscous or gravitational instability are
not well defined, since both vorticity components are non-zero in both cases.
Figure 25(a) shows a(F, t) for R = 2.0, Re = e−2.0 and Pe = 2000, where those values
corresponding to the fitted curve sections above are indicated by dashed lines.
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FIGURE 25. (a) Ratio a(F, t) of the maxima of gapwise to streamwise averaged A vorticity
as a function of F and t, for R = 2.0, Re = e−2.0 and Pe = 2000: (—) where calculated from
maxima; (- - -) where calculated from fitted values. (b) Time-averaged ratio 〈a(F, t)〉t(F) as
a function of F, for R = 2.0 (—) and R = 2.5 (- - -). The error bars indicate the standard
deviation from the averaged values.

As F is increased from 0 to 60, a(F, t) decreases by almost an order of magnitude,
indicating that streamwise vorticity is becoming more dominant. We note that for
sufficiently large F-values, a(F, t) remains nearly constant over time, which shows that
the growth and decay of the two A vorticity components does not exhibit a phase lag.
Only for very small F-values does a time dependence of a(F, t) persist, showing faster
growing gapwise vorticity initially. Later, the gapwise vorticity already decays, while
the streamwise vorticity is still growing. Eventually, both decay rates become equal,
see figure 25(b).

6. Summary and conclusions
The present investigation has employed direct numerical simulations of the variable

density and viscosity Navier–Stokes equations, in order to explore three-dimensional
effects within miscible displacements in horizontal Hele-Shaw cells. These simulations
identify a number of mechanisms that cannot be analysed based on gap-averaged
approaches.

Regarding the long-term evolution of the two-dimensional base states, we find that
the tendency of the early, quasisteady phase investigated by Talon et al. (2013) is
reversed, in that fronts propagate more slowly for stronger density contrasts. The two-
dimensional simulations furthermore show that, in addition to the dispersive pinch-off
immediately behind the front for low F-values, a larger-scale gravitational pinch-
off can occur far behind the front for higher F-values. This gravitational pinch-off
effectively cuts the front off from its supply of injected fluid and allows it to rise in
response to buoyancy forces.

Three-dimensional simulations reveal the mechanisms by which the viscous
fingering instability interacts with a spanwise Rayleigh–Taylor instability. Consistent
with the linear stability results of Talon et al. (2013), we observe that the dominant
wavelength of the Rayleigh–Taylor instability is shorter than that of the fingering
instability. This results in the formation of negatively buoyant plumes of the more
viscous resident fluid not only in between neighbouring viscous fingers, but also along
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the centre of the finger. In this way, a streamwise cavity forms along the axis of the
viscous finger, which can result in its longitudinal splitting.

The negatively buoyant plumes are associated with streamwise vorticity dipoles,
rather than the quadrupoles observed by Oliveira & Meiburg (2011) for constant
density displacements. They can destroy the shoulders connecting neighbouring fingers,
thereby increasing the effective length of the viscous fingers. We note that the
formation of the streamwise cavity in three-dimensional flows typically occurs earlier
than the gravitational pinch-off of the corresponding two-dimensional base state, so
that this pinch-off may not be observed in experiments. On occasion, we have also
observed that neighbouring fingers can reconnect some distance downstream of their
original shoulder, as a result of spanwise transport of injected fluid, trapping resident
fluid in the process.

In analysing the streamwise and gapwise vorticity components, we found that
these exhibit a strong spatial correlation. The streamwise vorticity dipoles forming
as a result of the spanwise Rayleigh–Taylor instability place viscous resident fluid
in between regions of less viscous, injected fluid. This results in the formation
of gapwise vorticity at the same location via the traditional, gap-averaged viscous
fingering mechanism. Both the streamwise and the gapwise vorticity components
in the dominant vortical structures first grow and then decay exponentially over
time. For larger F-values, the streamwise vorticity component increases, while the
gapwise component is reduced, thus indicating a transition from viscously dominated
to gravitationally dominated fingers.

Gap-averaged, time-dependent concentration profiles reflect the vigorous mixing
observed in three-dimensional displacements, as a result of gravitational effects. They
furthermore show that for both two- and three-dimensional flows, variable density
displacement fronts propagate more slowly than their constant density counterparts.
This indicates that the gravitational mixing results in a more complete expulsion of
the resident fluid from the Hele-Shaw cell. This observation may be of interest in
the context of enhanced oil recovery or carbon sequestration applications involving
displacements in hydraulically opened fractures, which share features with Hele-Shaw
displacements.
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